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Abstract

We study a mathematical framework for the construction of domain decomposition
methods (DDM) for the model Helmholtz equation with high order transmission conditions
(TC) and cross-points. A compatibility condition is formulated for cross-points matrices so
that the DDM is proved to be convergent under general conditions. The proof is based on a
new global energy formulated on the skeleton of the DDM decomposition. It allows to use
transmission operators which have a non trivial anti-symmetric part.

1 Context
We propose a mathematical framework for the construction of domain decomposition methods
(DDM) for the model Helmholtz equation with high order transmission conditions (TC) and
cross-points. It is an elaboration on a previous work [12] on the treatment of corners. We use
the same definitions and notations in dimension two as in [12]: a cross-point is a point at the
intersection of 3 subdomains or more; points at angular edges between two subdomains or on the
exterior boundary are called corners.

The issue of cross-points is unavoidable for the development of optimized DDM with enhanced
convergence or stability properties. Important mathematical and technical issues are obstacles
to the development of these techniques, see [14, 16, 18, 19, 20]. Some partial solutions have
been described in [2, 4, 13]. The purely discrete case is considered in [15, 16]. An optimization
procedure based on quasi-local operators with convenient regularity is proposed in [17], but
ultimately the problem posed by mesh singularities is not solved due to incompatibility between
some function spaces. An important step towards a general solution is currently being investigated
on the basis of the recent works of Claeys and Hiptmair [7] in which a distinct approach is used
through the multi-trace formalism and a convenient definition of some function spaces defined
on the skeleton of the DDM decomposition. This path has been extended in the PhD thesis of
Parolin [21] and in [9, 8]. However, in this work, we are interested in DDM based on high order
transmission conditions such as the ones that are commonly used in numerical DDM softwares, see
[3, 20, 22]. To the best of our understanding, none of the works quoted above can provide a sound
mathematical treatment of the cross-point issues for such DDM with high order transmission
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conditions. The most notable outputs of our construction are a new global energy defined on the
skeleton of the DDM decomposition and a new notion of compatibility for the coupling of DDM
at cross-points. Even if it is completely out of the scope of the present work, it is imaginable that
the multi-trace formalism could also benefit of the tools developed herein.

This work is concerned only with the mathematical structure of the algorithms. The reader
interested by numerical results can consult our previous work [12] where numerical illustrations
are provided for simpler problems with external and internal corners. These can be seen as a
particular case of our theory, see Section 4.1.

The model problem considered will be the Helmholtz equation written in an open bounded
domain Ω ⊂ R2 with regular boundary Γ = ∂Ω. The Helmholtz equation models time-harmonic
acoustic waves and is representative of most time-harmonic linear equations. The complex valued
unknown is u ∈ H1(Ω) weak solution of{

∆u+ ω2u = f in Ω,
∂nu− iωu = 0 on Γ, (1)

where n is the outgoing unit normal vector to Ω and the right hand side f models a source
with frequency ω > 0. The domain Ω is partitioned into a finite number N of non-overlapping
polygonal open subdomains denoted as Ωi, that is

Ω =
N⋃
i=1

Ωi, and Ωi ∩ Ωj = ∅ for j 6= i.

The boundary of a subdomain Ωi is split in two parts: the exterior part Γi := ∂Ωi ∩ Γ and the
interior part Σi := ∂Ωi \ Γi. The exterior normal vector is ni. We consider only cross-points,
and not corners, to avoid notational complications since the broken line case has already been
treated in our previous work [12]: for the sake of clarity, we make the hypothesis that ∂Ωi ∩ ∂Ωj
is a straight line for i 6= j when it is not empty. The interior part of the boundary can thus be
decomposed into straight lines Σi = ∪i,jΣij , for Σij := ∂Ωi ∩ ∂Ωj . As a convention, we associate
the normal vector ni to Σij , making a difference between Σij and Σji. The skeleton of the
decomposition is now defined by

Σ :=
⋃
i,j

Σij .

Each interior edge is contained twice, with opposite orientations. A function space that plays an
important role in our analysis is the H1-broken Sobolev space on the skeleton

H1
br(Σ) :=

{
v ∈ L2(Σ) such that v|Σij

∈ H1(Σij) for all i 6= j
}
.

The natural exchange operator over the skeleton

Π: L2(Σ)→ L2(Σ)

is defined such that (Πv) |Σij
= v|Σji

for all v ∈ L2(Σ). The operator Π is isometric in L2(Σ), as
well as its restriction to H1

br(Σ).
For a collection of ui ∈ H1(Ωi), 1 ≤ i ≤ N , we denote the Dirichlet trace on an edge Σij

as uij := ui|Σij
∈ L2(Σij). Assuming that some recurrence relations in the DDM guarantees

extra-regularity on ui, one can also define the Neumann trace on each edge ∂ni
uij := (∂ni

ui) |Σij
∈

L2(Σij). The Neumann traces will actually be more regular in our approach, see Remark 1. These
local traces and normal derivative traces are then recast as vectors: we define global notations
that correspond to the collection of Dirichlet and Neumann data on the skeleton

uΣ := ⊕
i,j
uij ∈ L2(Σ) and ∂nuΣ := ⊕

i,j
∂ni

uij ∈ L2(Σ). (2)
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Similarly, we define vectors of Dirichlet and Neumann data on the exterior boundary Γ = ∪iΓi

uΓ := ⊕iui|Γi ∈ L2(Γ) and ∂nuΓ := ⊕i∂niui|Γi ∈ L2(Γ). (3)

Now, to approximate the solution u and its restrictions ui = u|Ωi
in each subdomain, the DDM

relies on the computation of iterates

upi ∈ H
1(Ωi) 1 ≤ i ≤ N, p ≥ 0. (4)

The question is how to define good transmission operators between subdomains. Extending the
work on corners [12], we consider here transmission operators written as second order differential
operators in the tangential direction ti, defined such that (ni, ti) be a local direct basis. On the
skeleton, the transmission condition is written in differential form as(

1− 1
2ω2 ∂titi

)
∂niu

p+1
ij − iωup+1

ij = −
(

1− 1
2ω2 ∂tjtj

)
∂nju

p
ji − iωupji on Σij . (5)

A first remark is that ∂titi
= ∂tjtj

, and the tangential differential operators are the same. More
important for the development of our technique, a second remark is that the operator 1− 1

2ω2 ∂titi

is symmetric and non negative when restricted to functions with compact support contained in
the edge ∂Ωi ∩ ∂Ωj :

1− 1
2ω2 ∂titi =

(
1− 1

2ω2 ∂titi

)∗
≥ 0, in D (∂Ωi ∩ ∂Ωj) . (6)

This differential operator comes from [12], where it has been shown that it is a second order
approximation of artificial radiation conditions on flat exterior boundaries.

The goal of this work is to add cross-point conditions to (5). It will define a global transmission
operator T : L2(Σ)→ L2(Σ), and we will rewrite and complete (5) in the abstract form

(∂n − iωT )up+1
Σ = − (Π∂n + iωTΠ)upΣ. (7)

Hence the abstract formulation of the family of domain decomposition iterative processes studied
in this work:

Initialize u0
i ∈ H1(Ωi) for all i.

Iterating on p ∈ N, compute up+1
i ∈ H1(Ωi) for all i, solutions of

(
∆ + ω2)up+1

i = f in Ωi, ∀i,
(∂n − iωT )up+1

Σ = − (Π∂n + iωTΠ)upΣ on Σ,
(∂n − iω)up+1

Γ = 0 on Γ.
(8)

Remark 1 (Propagation of regularity). Provided the normal derivatives are square integrable at
the initial iteration

(
∂ni

u0
i

)
|Σij
∈ L2(Σij) for all i 6= j, then the square integrability of the normal

derivatives is propagated by the iterative process (8). Therefore, adding the regularity condition
∂nu

0 ∈ L2(Σ) at the initial stage is enough to guarantee that ∂nu
p ∈ L2(Σ) for all p ≥ 0.

The operator T constructed in Section 2.2 will actually have more regularity

T
(
L2(Σ)

)
⊂ H1

br(Σ).

In this case, adding the regularity condition ∂nu
0 ∈ H1

br(Σ) at the initial stage is enough to
guarantee that

∂nu
p ∈ H1

br(Σ) for all p ≥ 0. (9)
This requirement is natural if one considers a variational formulation in the space H1

br(Σ) for the
differential identity (6).
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Remark 2. By definition, one has that Π∂n = ∂nΠ. However, since T is a global operator on
the skeleton Σ, Π and T a priori do not commute and ΠT 6= TΠ. The study of the modified
commutation property ΠT = T ∗Π will be key for this work.

Provided the operator T is defined in a consistent way, most of the iterative DDM already
quoted in the literature [3, 6, 9, 14, 17, 20, 21, 22, 8] can be recast under the form (8). The
original DDM for the Helmholtz equation [1, 10, 11] corresponds to the simplest choice T = IΣ.

We now sketch the organization and main results of this work.

• In Section 2 we derive a simple family of cross-point conditions to supplement the operator
formulation (5) and we set up a mathematical framework for the analysis of general operators
T which have cross-point contributions. The operator T appears as the solution of a variational
problem written on the skeleton Σ, and T 6= T ∗ in the general case. A norm related to T is
defined. This norm is global on the skeleton, but equivalent to the H1

br(Σ) norm. The key
estimate of Lemma 11 shows an isometry result for this special norm, provided the cross-point
matrices have a special compatible structure.

• Next, Section 3 is devoted to proving the convergence of the DDM for the cross-point ma-
trices under the compatibility property. For the sake of simplicity, the proof of Theorem 19
concentrates on the under-relaxed version of (8).

• Finally, in Section 4, we show that it is possible to use plane waves to calculate cross-point
matrices which verify the compatibility property. For these cross-point matrices, convergence
of the under-relaxed DDM is guaranteed by Theorem 19.

2 Mathematical framework
In order to construct the operator T that will be used to formulate the DDM as in (8), we
start from the variational formulation associated to the second order tangential operators from
(6) coupled with the mixed boundary conditions (11). A sesquilinear form a and its associated
operator T are obtained subsequently by integrating by parts.

2.1 Preliminary considerations on cross-points
As already stated, a cross-point is a node of the skeleton of the decomposition in polygonal
subdomains that lies at the intersection of 3 or more subdomains. We will consider only
interior cross-points. A cross-point thus lays at the intersection of at least two edges Σij and
Σk`, 1 ≤ i, j, k, ` ≤ N , where i 6= j 6= k 6= `. Let NX be the number of cross-points of the
decomposition. They are indexed independently of the surrounding subdomains to form the
set X := {xr ∈ R2, 1 ≤ r ≤ NX} ∈ (R2)NX . The number of subdomains around a node xr
is dr := card{i, xr ∈ ∂Ωi}. The edges around a node xr are referenced to by pairs (ij) where
xr ∈ Σij . There are 2dr of them (with Σij and Σji counting separately) and their ensemble is
denoted Er. Finally, at a cross-point xr, we define the unit vector τ ij tangential and outwardly
directed to Σij for (ij) ∈ Er. These notations are illustrated on Figure 1 for 3 subdomains.

Weak formulations associated to differential operators need to be completed by boundary
conditions to be well-posed. Let ui ∈ H1(Ωi) for 1 ≤ i ≤ N . Let ϕ = ∂nuΣ on the skeleton as
defined in (2), and let us assume the regularity (9) that is ϕ ∈ H1

br(Σ). Define ϕij = ∂ni
uij on

each edge Σij . The iteration (5) is based on second order tangential derivatives of ϕij . Therefore
we are interested in a linear combination of the traces ϕij(xr) and of the outgoing tangential
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Figure 1: Some definitions around a cross point xr

derivatives ∂τ ijϕij(xr) on all edges intersecting at xr. Precisely, in this work, we assume that

∂τ ijϕij(xr) +
∑

(k`)∈Er

αrij,k`ϕk`(xr) = 0, ∀(ij) ∈ Er. (10)

That is the outgoing tangential derivative at xr is expressed here as a linear combination of the
traces, and the coefficients αrij,k` ∈ C of the linear combination are unknowns at this stage of the
construction. Define the vector ϕr ∈ C2dr of Dirichlet traces of ϕ at xr over all Σij intersecting at
xr, assembled in a given order. Similarly, define the vector ∂τϕr ∈ C2dr of the outgoing tangential
derivative traces. They are vectors of size 2dr since every physical edge is counted twice in the
skeleton. With these notations, the system of linear relations (10) rewrite

∂τϕr +Arϕr = 0, (11)

with the matrix Ar ∈M2dr
(C) containing the unknowns (αrij,k`)ij,k`.

Two natural requirements appear for the definition of the coefficients αrij,k` ∈ C. A first
requirement is that the associated DDM is well posed and convergent. Proving that this
requirement holds is the main contribution of this work. The construction of the tools which
justify the well-posedness of the DDM starts in this section. A second requirement is the optimality
of coefficients αrij,k` ∈ C in terms of accuracy for certain family of particular solutions, and this
issue is examined in the last section.
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2.2 Definition of T

Define the form a(·, ·) such that for all ϕ,ψ ∈ H1
br(Σ)

a(ϕ,ψ) =
N∑

i,j=1

∫
Σij

(
ϕijψij + 1

2ω2 ∂ti
ϕij∂ti

ψij

)
dσ + 1

2ω2

NX∑
r=1

(Arϕr, ψr)C2dr . (12)

We make the assumption that Ar has pure imaginary coefficients, which will be justified on
examples in Section 4, and that it is skew-hermitian

Ar = iHr, where Hr = (Hr)T ∈M2dr (R). (13)

Our results also hold for more general complex hermitian matrices Hr = (Hr)∗ ∈M2dr
(C).

As a consequence of (13), the sesquilinear form a is coercive in L2(Σ) and in H1
br(Σ){

‖ϕ‖2L2(Σ) ≤ Re a(ϕ,ϕ),
‖ϕ‖2H1

br(Σ) ≤ max{1, 2ω2}Re a(ϕ,ϕ),
(14)

where Re z denotes the real part of z ∈ C.
The variational problem for a given v ∈ L2(Σ) is{

Find ϕ ∈ H1
br(Σ) such that

a(ϕ,ψ) = (v, ψ)L2(Σ), ∀ψ ∈ H1
br(Σ). (15)

This problem is well posed, there exists a unique solution ϕ ∈ H1
br(Σ). The strong form of this

problem writes on the edges Σij

− 1
2ω2 ∂titi

ϕij + ϕij = vij . (16)

Definition 3. Let T : L2(Σ)→ L2(Σ) be the operator such that Tv = ϕ, where ϕ is the solution
to the problem (15) for v ∈ L2(Σ).

By definition of ϕ in (15), one has the continuous embedding T (L2(Σ)) ⊂ H1
br(Σ). One even

has more regularity since (16) shows that ϕ is in the space H2
br(Σ), where

H2
br(Σ) :=

{
v ∈ L2(Σ) such that v|Σij

∈ H2(Σij) for all i 6= j
}
.

Therefore one also has the continuous embedding T (L2(Σ)) ⊂ H2
br(Σ). The operator T is thus

compact.
The adjoint operator with respect to the sesquilinear product in L2(Σ) is T ∗ : L2(Σ)→ L2(Σ).

If the cross-point matrices are non zero at least at one cross-point xr (Hr 6= 0), then T ∗ 6= T . It
is from this point that our analysis diverges from the entire literature, except from our previous
paper on corners [12].

Proposition 4. It holds that

1. ‖T‖L2(Σ) ≤ 1.

2. T + T ∗ > 0.
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Proof. Let ψ = ϕ = Tv in (15): it follows that a(Tv, Tv) = (v, Tv)L2(Σ). Therefore, ‖Tv‖2L2(Σ) ≤
|a(Tv, Tv)| ≤ ‖v‖L2(Σ)‖Tv‖L2(Σ), and the bound is obtained.

Using the definitions of T and T ∗ as well as (14), one has that

1
2(v, (T + T ∗)v)L2(Σ) = Re(v, Tv)L2(Σ) = Re a(Tv, Tv) ≥ ‖Tv‖2L2(Σ). (17)

Now assuming T+T ∗ is not positive means that there exists v ∈ L2(Σ)\{0} such that (T+T ∗)v = 0.
The inequality (17) then yields that Tv = 0, which in turn implies that T ∗v = 0 and that for all
ψ ∈ H1

br(Σ)
(v, ψ)L2(Σ) = a(Tv, ψ) = 0.

Since H1
br(Σ) is densely embedded in L2(Σ), the relation (v, ψ)L2(Σ) = 0 actually holds for all

ψ ∈ L2(Σ). Taking ψ = v, it yields the contradiction v = 0. The operator T + T ∗ is hence
positive.

We now define a∗, the sesquilinear form such that for all ϕ,ψ ∈ H1
br(Σ)

a∗(ϕ,ψ) =
N∑

i,j=1

∫
Σij

(
ϕijψij + 1

2ω2 ∂tiϕij∂tiψij

)
dσ − i

2ω2

NX∑
r=1

(Hrϕr, ψr)C2dr .

By construction, one has that a∗(ϕ,ψ) = a(ψ,ϕ).
Since a∗ has the same structure as a, except that Hr is changed in −Hr, it defines an operator

R : L2(Σ)→ L2(Σ) such that ϕ = Rv is the solution of the problem{
Find ϕ ∈ H1

br(Σ) such that
a∗(ϕ,ψ) = (v, ψ)L2(Σ), ∀ψ ∈ H1

br(Σ),

which inherits all properties of T stated above.

Lemma 5. One has R = T ∗.

Proof. Take v, w ∈ L2(Σ). One has

a∗(Rv, Tw) = a(Tw,Rv)⇐⇒ (v, Tw)L2(Σ) = (w,Rv)L2(Σ) ⇐⇒ (v, Tw)L2(Σ) = (Rv,w)L2(Σ) .

It shows that R = T ∗.

Lemma 6. The ranges of T and of T ∗ are dense in H1
br(Σ).

Proof. The proof follows a classical scheme in functional analysis. It is a combination of spectral
decomposition and coercive and compact decomposition [5]. The proof relies on the structure of
the sesquilinear form, and is therefore done only for T . The result for T ∗ follows.

Define the H1
br(Σ) hermitian scalar product derived from the hermitian part of a

a1(ϕ,ψ) :=
N∑

i,j=1

∫
Σij

(
ϕijψij + 1

2ω2 ∂tiϕij∂tiψij

)
dσ, ∀ϕ,ψ ∈ H1

br(Σ).

Define the sesquilinear form a2 := (a− a1)/i.
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• One defines the associated solution operator S : L2(Σ)→ H1
br(Σ) such that

a1(Sv, ψ) = (v, ψ)L2(Σ), ∀ψ ∈ H1
br(Σ). (18)

This operator is compact in L2(Σ) by compact embedding of H1
br(Σ) ⊂ L2(Σ), and is also

self-ajdoint. There exists a Hilbertian family of eigenfunctions (vn)n∈N ∈ H1
br(Σ) that span L2(Σ)

such that Svn = µnvn for a decreasing family of positive eigenvalues µn ↘ 0. The eigenfunctions
are chosen orthonormal in L2(Σ). Since a1(vn, ψ) = 1

µn
(vn, ψ)L2(Σ) for all ψ ∈ H1

br(Σ), one has

√
a1(ψ,ψ) =

∑
n≥0

1
µn
|(ψ, vn)L2(Σ)|2

1/2

, ∀ψ ∈ H1
br(Σ). (19)

One obtains S(L2(Σ))
H1

br(Σ)
= H1

br(Σ), which is the relation we seek but for S instead of T . The
rest of the proof is dedicated to show that T − S is a compact operator.

• Define the operator Q : H1
br(Σ)→ H1

br(Σ) such that

a1(Qϕ,ψ) = a2(ϕ,ψ), for all ψ ∈ H1
br(Σ).

Due to the continuity of the trace operator, Q is bounded from H1
br(Σ) into H1

br(Σ). For
ϕ ∈ H1

br(Σ), denote φ = Qϕ. It holds by definition that

N∑
i,j=1

∫
Σij

(
φijψij + 1

2ω2 ∂ti
φij∂ti

ψij

)
dσ = 1

2ω2

NX∑
r=1

(Hrϕr, ψr)C2dr , ∀ψ ∈ H1
br(Σ).

The functions φij are solutions of − 1
2ω2 ∂titiφij + φij = 0 in each Σij with boundary conditions

at the end points of Σij provided by ∂τφr = Hrϕr. Therefore φij is bounded in H2
br(Σ), and the

operator Q is compact in H1
br(Σ).

• Let v ∈ L2(Σ). We denote by I the identity operator in H1
br(Σ). For all ψ ∈ H1

br(Σ), one has
that

a1 ((I + iQ)Tv − Sv, ψ) = a1(Tv, ψ) + ia2(Tv, ψ)− a1 (Sv, ψ)
= a(Tv, ψ)− a1 (Sv, ψ)
= (v, ψ)L2(Σ) − (v, ψ)L2(Σ)

= 0.

Therefore (I + iQ)Tv − Sv for all v ∈ L2(Σ). So (I + iQ)T = S.

• We now prove that I+ iQ has a bounded inverse in H1
br(Σ). Since Q is compact, it is sufficient

to check that if (I + iQ)ϕ = 0 for ϕ ∈ H1
br(Σ), then ϕ = 0. And indeed, we have in this case

0 = a1((I + iQ)ϕ,ψ) = a1(ϕ,ψ) + ia2(ϕ,ψ) = a(ϕ,ψ), ∀ψ ∈ H1
br(Σ),

which implies that ϕ = 0. So one has T = (I + iQ)−1S.

• Finally, T (L2(Σ))
H1

br(Σ)
= (I + iQ)−1S(L2(Σ))

H1
br(Σ)

= (I + iQ)−1H1
br(Σ) = H1

br(Σ), where
the closure is taken with respect to the norm in H1

br(Σ).
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2.3 A norm based on the spectral decomposition of T + T ∗

The ideas behind the following definitions take their origin from [12]. They are based on the fact
that the operator T + T ∗ induces a norm in L2(Σ) which is particularily well adapted to the
study of stable DDMs.

From Lemma 6, one has the inclusion (T+T ∗)(L2(Σ)) ⊂ H1
br(Σ), which is compactly embedded

in L2(Σ). So T + T ∗ > 0 is a self-adjoint compact operator of L2(Σ). Therefore, referring to [5],
it admits a spectral decomposition. Let (un)n∈N ⊂ H1

br(Σ) be the Hilbertian basis such that for
all n,m ∈ N,(

T + T ∗

2

)
un = λnun, (un, um)L2(Σ) = δnm and span{un}n∈N

L2(Σ)
= L2(Σ). (20)

The eigenvalues satisfy 1 ≥ λn ≥ λn+1 > 0 according to Proposition 4, and λn converges towards
zero as n goes to infinity. This leads to the definition of the operator

(
T+T∗

2

)−1
: L2(Σ)→ L2(Σ)

such that
(
T+T∗

2

)−1
un = 1

λn
un and to the definition of the space

H1
T (Σ) :=

{
u ∈ L2(Σ), |||u||| <∞

}
,

endowed with the norm |||·||| defined as

|||u||| :=

∑
n≥0

∣∣(u, un)L2(Σ)
∣∣2

λn

1/2

, ∀u ∈ L2(Σ).

The hermitian scalar product in H1
T (Σ) is denoted

〈u, v〉 :=
∑
n≥0

1
λn

(u, un)L2(Σ)(v, un)L2(Σ) =
((

T + T ∗

2

)−1
u, v

)
L2(Σ)

, ∀u, v ∈ H1
T (Σ).

As a consequence, H1
T (Σ) is a Hilbert space.

Theorem 7. One has H1
T (Σ) = H1

br(Σ) with equivalence of norms.

This result is not completely surprising. Indeed, on the one hand, if all cross-point matrices are
zero, i.e. Hr = 0 for all r, then the sesquilinear form (12) comes down to a1, which is equivalent
to the H1

br hermitian scalar product, and T = S = S∗ = T ∗. On the other hand, if Hr 6= 0 for
some r, then T ∗ 6= T but the coupling at cross-points is a compact perturbation of the integral
parts. The main difference between the two norms is that the H1

br(Σ) norm is local because it
can be localized on every interface, while the H1

T (Σ) norm is global since the eigenfunctions un
are global on the skeleton Σ.

The new norm is particularily adapted to the study of DDMs, as the isometry Lemma 11 will
show.

The proof of the Theorem is divided in two steps which are Lemma 8 and Lemma 10. The
first step is devoted to the continuous embedding H1

T (Σ) ⊂ H1
br(Σ), the easiest one. The reverse

continuous embedding H1
br(Σ) ⊂ H1

T (Σ) is proved in the second step.

Lemma 8 (First part of Theorem 7). One has H1
T (Σ) ⊂ H1

br(Σ) with ‖u‖H1
br(Σ) ≤ C|||u||| for all

u ∈ H1
T (Σ), for C > 0 a numerical constant.
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Proof. Take u ∈ H1
T (Σ), that is u ∈ L2(Σ) with

∑
n≥0

1
λn
| (u, un)L2(Σ) |2 < ∞. Define the

approximation uN ∈ H1
T (Σ) by truncation of the series

uN :=
N∑
n=0

(u, un)L2(Σ)un, ∀N ∈ N.

The sequence (uN )N∈N is a Cauchy sequence in H1
T (Σ): for M > N ≥ 0, one has

∣∣∣∣∣∣uM − uN ∣∣∣∣∣∣2 =
∑
n≥0

1
λn

∣∣∣∣∣∣
(

M∑
m=N+1

(u, um)L2(Σ)um, un

)
L2(Σ)

∣∣∣∣∣∣
2

=
M∑

n=N+1

1
λn
| (u, un)L2(Σ) |

2.

We now prove that it is also a Cauchy sequence in H1
br(Σ). For M > N ≥ 0, define v :=(

T+T∗

2

)−1
(uM − uN ). One has that

v =
M∑

n=N+1
(u, un)L2(Σ)

(
T + T ∗

2

)−1
un =

M∑
n=N+1

1
λn

(u, un)L2(Σ)un,

so that it follows((
T + T ∗

2

)
v, v

)
L2(Σ)

=
(
uM − uN ,

(
T + T ∗

2

)−1
(uM − uN )

)
L2(Σ)

=
∣∣∣∣∣∣uM − uN ∣∣∣∣∣∣2. (21)

Due to definition of the sesquilinear form (12), it also holds((
T + T ∗

2

)
v, v

)
L2(Σ)

= Re
(
(Tv, v)L2(Σ)

)
= Re (a(Tv, Tv)) ≥ 1

max {1, 2ω2}
‖Tv‖2H1

br(Σ),

and similarly((
T + T ∗

2

)
v, v

)
L2(Σ)

= Re
(
(T ∗v, v)L2(Σ)

)
= Re (a∗(T ∗v, T ∗v)) ≥ 1

max {1, 2ω2}
‖T ∗v‖2H1

br(Σ).

So one can write

‖uM − uN‖2H1
br(Σ) =

∥∥∥∥(T + T ∗

2

)
v

∥∥∥∥2

H1
br(Σ)

≤ 1
2

(
‖Tv‖2H1

br(Σ) + ‖T ∗v‖2H1
br(Σ)

)
≤ C2

((
T + T ∗

2

)
v, v

)
L2(Σ)

, (22)

for the numerical constant C2 := max{1, 2ω2}. Combining (21) with (22) yields

‖uM − uN‖H1
br(Σ) ≤ C

∣∣∣∣∣∣uM − uN ∣∣∣∣∣∣.
The sequence (uN )N∈N is therefore also a Cauchy sequence in H1

br(Σ). It immediately follows
from the completeness of these spaces that H1

T (Σ) ⊂ H1
br(Σ) with the explicit bound ‖u‖H1

br(Σ) ≤
C|||u|||.

10



The proof of the reverse embedding requires more technical material: in Lemma 9, we prove
that in addition to being compact and self-adjoint, the operator T+T∗

2 has a particular structure
that can be interpreted as a compact perturbation of the Helmholtz solution operator S defined
in (18).

As in the proof of Lemma 6, we split the sesquilinear form a = a1 + ia2, where

a1(ϕ,ψ) =
N∑

i,j=1

∫
Σij

(
ϕijψij + 1

2ω2 ∂ti
ϕij∂ti

ψij

)
dσ, ∀ϕ,ψ ∈ H1

br(Σ),

a2(ϕ,ψ) = 1
2ω2

NX∑
r=1

(Hrϕr, ψr)C2dr , ∀ϕ,ψ ∈ H1
br(Σ).

Both a1 and a2 are hermitian. The first sesquilinear form a1 is coercive in H1
br(Σ).

It is convenient to introduce the square root S 1
2 of the solution operator S to a1 (see (18)).

Referring to the quantities defined in Lemma 6, it is the operator S 1
2 : L2(Σ)→ L2(Σ) such that

S
1
2 vn = µ

1
2
nvn, ∀n ∈ N. (23)

Parseval’s identity, relations (23) and (19) and the coercivity of a1 yield

‖v‖2L2(Σ) =
∑
n≥0

∣∣∣(v, vn)L2(Σ)

∣∣∣2 =
∑
n≥0

1
µn

∣∣∣∣(S 1
2 v, vn

)
L2(Σ)

∣∣∣∣2 = a1(S 1
2 v, S

1
2 v).

Since the sesquilinear form a1 defines an equivalent norm in H1
br(Σ) the operator S 1

2 is an
isomorphism between L2(Σ) and H1

br(Σ).
The inverse operator S− 1

2 : H1
br(Σ)→ L2(Σ) is defined by

S−
1
2 vn = µ

− 1
2

n vn, ∀n ∈ N.

By construction, one has the identity a1(ϕ,ψ) = (S− 1
2ϕ, S−

1
2ψ)L2(Σ) for all ϕ,ψ ∈ H1

br(Σ).
Finally, we define the operator K : L2(Σ)→ L2(Σ) such that

(Ku, v)L2(Σ) = a2(S 1
2u, S

1
2 v), ∀u, v ∈ L2(Σ).

For all u, v ∈ L2(Σ) and for a given continuity constant C > 0 of the sesquilinear form a2, one has

(Ku, v)L2(Σ) = a2(S 1
2u, S

1
2 v) ≤ C‖S 1

2u‖H1
br(Σ)‖S

1
2 v‖H1

br(Σ) ≤ C‖u‖L2(Σ)‖v‖L2(Σ).

The operator K is therefore bounded from L2(Σ) to L2(Σ). Lastly, we note that K∗ = K in
L2(Σ).

Lemma 9. One has the identity T+T∗

2 = S
1
2
(
I +K2)−1

S
1
2 .

Proof. Let u, v ∈ L2(Σ). By definition of S 1
2 and of a, a1 and a2, it follows

(S 1
2u, v)L2(Σ) = (u, S 1

2 v)L2(Σ) = a(Tu, S 1
2 v) = a1(Tu, S 1

2 v) + ia2(Tu, S 1
2 v).

One introduces the truncation of Tu ∈ H1
br(Σ)

Tu|N =
N∑
n=0

(Tu, vn)H1
br(Σ) µnvn =

N∑
n=0

(Tu, vn)H1
br(Σ)

vn
‖vn‖2H1

br(Σ)
,

11



such that lim
N→∞

‖Tu− Tu|N‖H1
br(Σ) = 0 by definition. Therefore, one has the decomposition

(S 1
2u, v)L2(Σ) = a1(Tu− Tu|N , S

1
2 v) + a1(Tu|N , S

1
2 v) + ia2(Tu, S 1

2 v),

where a1(Tu− Tu|N , S
1
2 v) →

N→∞
0. The operator S is a bijection in the finite dimensional space

span{vn}Nn=0. Therefore, the operator S−1 is correctly defined in this space. So one can write

a1(Tu|N , S
1
2 v) + ia2(Tu, S 1

2 v) = a1(SS−1Tu|N , S
1
2 v) + ia2(S 1

2S−
1
2Tu, S

1
2 v)

= (S−1Tu|N , S
1
2 v)L2(Σ) + i(KS− 1

2Tu, v)L2(Σ)

= (S− 1
2Tu|N , v)L2(Σ) + i(KS− 1

2Tu, v)L2(Σ).

Hence (S 1
2u, v)L2(Σ) = ((I + iK)S− 1

2Tu, v)L2(Σ) for all u, v ∈ L2(Σ), and S
1
2 = (I + iK)S− 1

2T ,
so that

(I + iK)−1
S

1
2 = S−

1
2T. (24)

The inverse operator (I + iK)−1 is correctly defined, since (I + iK)−1 =
(
I +K2)−1 (I − iK)

and
I +K2 = I +K∗K ≥ I,

so that the operator I +K2 is coercive and continuous in L2(Σ) and has a continuous inverse in
L2(Σ) according to the Lax-Milgram theorem.

Referring to Lemma 5, a similar formula holds for the operator T ∗. One obtains

(I − iK)−1
S

1
2 = S−

1
2T ∗. (25)

Adding (24) to (25), one gets S− 1
2 (T + T ∗) = 2

(
I +K2)−1

S
1
2 . Applying 1

2S
1
2 to this relation

yields the claim.

Lemma 10 (Second part of Theorem 7). One has H1
br(Σ) ⊂ H1

T (Σ) with |||u||| ≤ C‖u‖H1
br(Σ) for

all u ∈ H1
br(Σ), for C > 0 a numerical constant which depends on the operator K.

Proof. Let ε > 0. The operator T+T∗

2 + εI is coercive, continuous and with continuous inverse in
L2(Σ). One also has that (T+T∗

2 + εI)un = (λn + ε)un for all n ∈ N.
Let u ∈ H1

br(Σ). Then, for vε the solution of(
T + T ∗

2 + εI

)
vε = u,

it follows that

(vε, u)L2(Σ) =
∑
n≥0

1
λn + ε

|(u, un)L2(Σ)|2. (26)

According to Lemma 9, one has that

(vε, u)L2(Σ) = (vε, (S
1
2 (I +K2)−1S

1
2 + εI)vε)L2(Σ)

= (S 1
2 vε, (I +K2)−1S

1
2 vε)L2(Σ) + ε‖vε‖2L2(Σ).

One gets the upper and lower bounds

‖S 1
2 vε‖L2(Σ)‖S−

1
2u‖L2(Σ) ≥ (vε, u)L2(Σ) ≥ α‖S

1
2 vε‖2L2(Σ),
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where α is the coercivity constant associated to (I +K2)−1. Since u ∈ H1
br(Σ), according to the

definition of S− 1
2 , one has that ‖S− 1

2u‖L2(Σ) ≤ C̃‖u‖H1
br(Σ). Hence for all ε > 0

‖S 1
2 vε‖L2(Σ) ≤

C̃

α
‖u‖H1

br(Σ). (27)

Combining (26) to (27) yields the uniform upper bound∑
n≥0

1
λn + ε

∣∣(u, un)L2(Σ)
∣∣2 ≤ C2‖u‖2H1

br(Σ), ∀ε > 0,

where C2 := C̃/α. Taking ε → 0+, one obtains that u ∈ H1
T (Σ) with the explicit bound

|||u||| ≤ C‖u‖H1
br(Σ).

2.4 Application to the stability of DDM
The interest of the norm |||·||| is highlighted in the next result for functions which solve the
homogeneous f = 0 Helmholtz equation in all subdomains.
Lemma 11. Let ui ∈ H1(Ωi) for 1 ≤ i ≤ N be a collection of solutions to the homogeneous
Helmholtz equation in each subdomain. Assume ∂nuΣ ∈ H1

br(Σ). The following formal equality
holds

|||∂nuΣ − iωTuΣ|||2 + ‖∂nuΓ − iωuΓ‖2L2(Γ) = |||∂nuΣ + iωT ∗uΣ|||2 + ‖∂nuΓ + iωuΓ‖2L2(Γ).

Proof. Define ∆ as the substraction of the right hand side to the left hand side. It holds

∆ = |||ωTuΣ|||2 − |||ωT ∗uΣ|||2 − 2 Re 〈∂nuΣ, iω(T + T ∗)uΣ〉 − 4 Re (∂nuΓ, iωuΓ)L2(Γ)

= ω2 (〈TuΣ, TuΣ〉 − 〈T ∗uΣ, T
∗uΣ〉)− 2 Re 〈∂nuΣ, iω(T + T ∗)uΣ〉 − 4 Re (∂nuΓ, iωuΓ)L2(Γ)

= ω2

((T + T ∗

2

)−1
TuΣ, TuΣ

)
L2(Σ)

−

((
T + T ∗

2

)−1
T ∗uΣ, T

∗uΣ

)
L2(Σ)


− 2 Re

((
T + T ∗

2

)−1
∂nuΣ, iω(T + T ∗)uΣ

)
L2(Σ)

− 4 Re (∂nuΓ, iωuΓ)L2(Γ)

= 2ω2 ((T ∗(T + T ∗)−1T − T (T + T ∗)−1T ∗)uΣ, uΣ
)
L2(Σ)

− 4 Re (∂nuΣ, iωuΣ)L2(Σ) − 4 Re (∂nuΓ, iωuΓ)L2(Γ) .

One also has the identity

T ∗(T + T ∗)−1T − T (T + T ∗)−1T ∗ = (T ∗ + T )(T + T ∗)−1T − T (T + T ∗)−1(T + T ∗)
= 0.

Therefore

∆ = −4 Re
(

(∂nuΣ, iωuΣ)L2(Σ) + (∂nuΓ, iωuΓ)L2(Γ)

)
= −4 Re

(
iω
∑
i

∫
∂Ωi

∂ni
uiui

)

= −4 Re
(

iω
∑
i

∫
Ωi

(
|∇ui|2 − ω2|ui|2

))
= 0.
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Next we consider the iterative solution of the abstract DDM (8), under a fundamental
compatibility assumption on T .

Definition 12. We say that operator T is compatible if ΠTΠ = T ∗, or equivalently if TΠ = T ∗Π.

Under the compatibility assumption, DDM (8) can be rewritten as
(
∆ + ω2)up+1

i = f in Ωi for all i,
(∂n − iωT )up+1

Σ = −Π (∂n + iωT ∗)upΣ on Σ,
(∂n − iω)up+1

Γ = 0 on Γ.
(28)

The importance of the compatibility condition is evidenced with the energy

Ep := |||(∂n − iωT )upΣ|||
2
. (29)

Proposition 13. Assume that T verifies the compatibility condition from Definition 12, and that
at each stage of the algorithm (28) up ∈ ⊕iH1(Ωi) and ∂nu

p
Σ ∈ H1

br(Σ). Then, algorithm (28) is
stable in the sense that its energy is decreasing: Ep+1 = Ep − 4ω2 ‖up‖2L2(Γ).

Proof. By definition of the DDM (28) and of the energy (29) one has

Ep+1 =
((

T + T ∗

2

)−1
(∂n − iωT )up+1

Σ , (∂n − iωT )up+1
Σ

)
L2(Σ)

=
((

T + T ∗

2

)−1
Π (∂n + iωT ∗)upΣ,Π (∂n + iωT ∗)upΣ

)
L2(Σ)

.

One also has Π(T + T ∗)Π = T + T ∗, so that Π(T + T ∗)−1Π = (T + T ∗)−1, hence

Ep+1 =
((

T + T ∗

2

)−1
(∂n + iωT ∗)upΣ, (∂n + iωT ∗)upΣ

)
L2(Σ)

= |||(∂n + iωT ∗)upΣ|||
2
.

Applying Lemma 11 gives

Ep+1 = Ep + ‖∂nu
p
Γ − iωupΓ‖

2
L2(Γ) − ‖∂nu

p
Γ + iωupΓ‖

2
L2(Γ)

= Ep − 4ω2‖up‖2L2(Γ),

and the result is proven.

It now remains to identify sesquilinear forms a and cross-point matrices Hr such that the
compatibility condition on the associated operator T from Definition 12 is satisfied.

Lemma 14. Assume a∗(ϕ,ψ) = a(Πϕ,Πψ) for all ϕ,ψ ∈ H1
br(Σ). Then ΠTΠ = T ∗.

Proof. Let v ∈ L2(Σ) and ϕ = Tv, and let ψ ∈ H1
br(Σ) . One has a(ϕ,ψ) = (v, ψ), therefore the

hypothesis implies

a(Π(Πϕ),Π(Πψ)) = (v, ψ) =⇒ a∗(Πϕ,Πψ) = (v, ψ).

Equivalently, one has a∗(Πϕ,ψ) = (v,Πψ), which in turn implies that a∗(Πϕ,ψ) = (Πv, ψ). It
follows that ΠTv = Πϕ = T ∗Πv for any v ∈ L2(Σ), so that ΠTΠ = T ∗.

14



Let xr be a cross-point. We define the local indices i1, . . . , idr corresponding to the counter-
clockwise count of the surrounding subdomains, where i1 = min1≤n≤dr{in}. For practical reasons,
we choose to order the elements of ϕr ' ∂nuΣ(xr) as follows:

ϕr =
((
ϕin,in−1(xr)

)dr

n=1 ,
(
ϕin−1,in(xr)

)dr

n=1

)
'

((
∂ninuin,in−1(xr)

)dr

n=1 ,
(
∂nin−1uin−1,in(xr)

)dr

n=1

)
,

(30)

where i0 := idr
. An illustration is provided in Figure 3 for three subdomains. Let Πr be the local

exchange operator around the node xr.

Lemma 15. With the convention (30), one has

Πr =
(

0 Idr

Idr
0

)
. (31)

Proof. Indeed Πr exchanges ϕin,in−1(xr) and ϕin−1,in(xr) for all 1 ≤ n ≤ dr.

Lemma 16. Assume ΠrHrΠr = −Hr for all corners xr. Then ΠTΠ = T ∗.

Proof. Let ϕ,ψ ∈ H1
br(Σ). One has

a(Πϕ,Πψ) =
∑
i,j

∫
Σij

(
ϕijψij + 1

2ω2 ∂ti
ϕij∂ti

ψij

)
dγ + i

NX∑
r=1

(HrΠrϕr,Πrψr)C2dr

= a∗(ϕ,ψ) + i
NX∑
r=1

((Hr + ΠrHrΠr)ϕr, ψr)C2dr .

The last term vanishes due to the assumption, and Lemma 14 yields the claim.

3 Convergence of the under-relaxed DDM
In this Section we assume that the compatibility condition from Definition 12 is verified by T .
We introduce a parameter of under relaxation 0 < α ≤ 1. The DDM writes

(
∆ + ω2)up+1 = f in Ωi for all i,

(∂n − iωT )up+1
Σ = −αΠ (∂n + iωT ∗)upΣ + (1− α) (∂n − iωT )upΣ on Σ,

(∂n − iω)up+1
Γ = 0 on Γ.

(32)

For α = 1 we recover DDM (28), but in this Section we will prove the convergence of DDM (32)
for α < 1.

Lemma 17. Let u0
i ∈ H1(Ωi) for all 1 ≤ i ≤ N , and ∂nu

0
Σ ∈ H1

br(Σ). Then, the homogeneous
relaxed DDM (32) with f = 0 is well defined at all stages p ∈ N, with upi ∈ H1(Ωi) for all
1 ≤ i ≤ N and ∂nu

p
Σ ∈ H1

br(Σ). Moreover, there exists C > 0 such that the following uniform in
p estimate holds

N∑
i=1
‖upi ‖H1(Ωi) + ‖∂nu

p
Σ‖H1

br(Σ) ≤ C|||∂nu
p
Σ − iωTupΣ|||. (33)
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Proof. We start by proving that u1 can indeed be calculated from u0. It is the solution to the
weak formulation in the space ⊕Ni=1H

1(Ωi)
Find u1 = (u1

i )Ni=1 ∈ ⊕iH1(Ωi) such that for all v = (vi)Ni=1 ∈ ⊕iH1(Ωi),
N∑
i=1

(∫
Ωi

(
∇u1

i · ∇vi − ω2u1
i vi
)
− iω

∫
∂Ωi∩Σ

(Tu1)ivi − iω
∫
∂Ωi∩Γ

u1
i vi

)
=

N∑
i=1

∫
∂Ωi∩Σ

givi,

(34)
where the right hand side g ∈ H1

br(Σ) is defined in each ∂Ωi ∩ Σ by

gi :=
(
−αΠ (∂n + iωT ∗)u0

Σ + (1− α) (∂n − iωT )u0
Σ
)
, 1 ≤ i ≤ N.

The sesquilinear form (34) is bi-continuous in the space ⊕Ni=1H
1(Ωi) and can be easily decomposed

into a coercive part plus a compact part. So according to Fredholm’s alternative [5], uniqueness
of the solution is equivalent the well-posedness of this variational problem.

Uniqueness of the solution is a consequence of the positivity of T + T ∗. If gi = 0 for all
i, then by taking v = u1, one gets Re(Tu1, u1)L2(Σ) = −‖u1‖2L2(Γ). Since Re(Tu1, u1)L2(Σ) =
Re(T ∗u1, u1)L2(Σ), it follows

Re
(

(T + T ∗)
2 u1, u1

)
L2(Σ)

= −‖u1‖2L2(Γ),

and thus u1
Σ = 0 and u1

Γ = 0. Therefore the normal derivative along Σ (resp. Γ) also vanish as
∂nu

1
Σ = iωTu1

Σ + g = 0 (resp. ∂nu
1
Γ = iωu1

Γ = 0). Finally, a unique continuation principle yields
that u1 vanishes as a function in ⊕iH1(Ωi).

We now prove the inequality (33). The problem being well-posed for any g ∈ H1
br(Σ), the

open mapping theorem [5] states that there exists a constant C > 0 such that

N∑
i=1
‖u1

i ‖H1(Ωi) ≤ C‖g‖H1
br(Σ).

Combined to the continuity of the operator T and of the Dirichlet trace, it yields ‖Tu1
Σ‖H1

br(Σ) ≤
C ′‖g‖H1

br(Σ), for a given C ′ > 0, and finally, since ∂nu
1
Σ = iωTu1

Σ + g,

‖∂nu
1
Σ‖H1

br(Σ) ≤ C ′′|||g|||.

According to the equivalence of ‖g‖H1
br(Σ) and |||g||| stated in Theorem 7, the inequality (33) is

obtained for p = 1.
By iteration on p ≥ 1, the DDM is well posed at all stages, and the iterates verify (33).

Lemma 18. Consider the homogeneous relaxed DDM (32). Then the energy Ep (29) decreases

Ep+1 ≤ Ep − 4αω2 ‖u‖2L2(Γ) − α(1− α)|||Π (∂n + iωT ∗)upΣ + (∂n − iωT )upΣ|||
2
, ∀p ≥ 1. (35)

Proof. For p ≥ 1 and up defined by DDM (32), let vp ∈ ⊕iH1(Ωi) be the solution of the
non-relaxed DDM (28). One has that up+1 = αvp + (1− α)up. Therefore,

Ep+1 =
∣∣∣∣∣∣∣∣∣(∂n − iωT )up+1

Σ

∣∣∣∣∣∣∣∣∣2
= α|||(∂n − iωT ) vpΣ|||

2 + (1− α)|||(∂n − iωT )upΣ|||
2

− α(1− α)|||(∂n − iωT ) vpΣ − (∂n − iωT )upΣ|||
2
.
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Proposition 13 applies to vp and yields |||(∂n − iωT ) vpΣ|||
2 = Ep − 4ω2‖up‖L2(Γ). Thus

Ep+1 = α
(
Ep − 4ω2‖up‖L2(Γ)

)
+ (1− α)Ep − α(1− α)|||−Π (∂n + iωT ∗)upΣ − (∂n − iωT )upΣ|||

which yields the claim.

Iterating the identity (35) yields the a priori estimates

Ep ≤ E1 for all p ≥ 1, (36)

4αω2
∑
p≥1
‖up‖2L2(Γ) ≤ E

1, (37)

α(1− α)
∑
p≥1
|||(∂n − iωT )upΣ + Π (∂n + iωT ∗)upΣ|||

2 ≤ E1. (38)

The inequality (37) implies that ‖up‖L2(Γ) −→
p→∞

0. Assuming that the under relaxation parameter
is active 0 < α < 1, (38) implies that |||(∂n − iωT )upΣ + Π (∂n + iωT ∗)upΣ||| −→p→∞ 0.

Theorem 19. Under the assumptions of Lemma 17 and for 0 < α < 1, the solution of the
homogeneous relaxed DDM (32) converges weakly to zero: up ⇀ 0 in ⊕iH1(Ωi).

Proof. Due to (33), one controls
∑
i ‖u

p
i ‖H1(Ωi) + ‖∂nu

p
Σ‖H1

br(Σ) by Ep. Moreover Ep ≤ E1 (36).
Therefore, up to the extraction of subsequences, upi and ∂nu

p
Σ converge weakly towards some

given functions u∗i ∈ H1(Ωi) and ∂nu
∗
Σ ∈ H1

br(Σ). The notation ∂nu
∗
Σ for the limit of ∂nu

p
Σ is a

priori a slight abuse of notation, that will be dissipated as we will verify that it is equal to the
trace of the normal derivative of u∗ .

Since upi verifies the Helmholtz equation in Ωi, and since ∂nu
p − iωup = 0 on Γ, one has∫

Ωi

∇upi · ∇vi − ω
2upi vi =

∫
∂Ωi∩Σ

∂nj
upi vi + iω

∫
∂Ωi∩Γ

upi vi, ∀vi ∈ H1(Ωi).

One has that u∗Γ = 0 according to (37), therefore passing to the weak limit as p→∞ yields∫
Ωi

∇u∗i · ∇vi − ω2u∗i vi =
∫
∂Ωi∩Σ

∂ni
u∗i vi, ∀vi ∈ H1(Ωi).

It follows that the weak limit satisfies the homogeneous Helmholtz equation separately in all Ωi,
with ∂ni

u∗i = 0 on Γ, and
(
∂ni

u∗ij
)
ij

= ∂nu
∗
Σ, dissipating the slight abuse of notation for the limit

of ∂nu
p
Σ. Inequality (38) yields

∂nu
∗
Σ − iωTu∗Σ + Π (∂nu

∗
Σ + iωT ∗u∗Σ) = 0. (39)

We now exploit this identity to show the continuity of traces and normal derivatives over Σ, as
(39) is equivalent to

(I + Π)∂nu
∗
Σ = iωT (I −Π)u∗Σ. (40)

Going back to the definition of the operator T , one gets

a ((I + Π)∂nu
∗
Σ, ψ) = iω ((I −Π)u∗Σ, ψ)L2(Σ) , ∀ψ ∈ H1

br(Σ).

Taking ψ = (I + Π)∂nu
∗
Σ ∈ H1

br(Σ) one has

a ((I + Π)∂nu
∗
Σ, (I + Π)∂nu

∗
Σ) = iω ((I −Π)u∗Σ, (I + Π)∂nu

∗
Σ)L2(Σ)

= iω ((I + Π)(I −Π)u∗Σ, ∂nu
∗
Σ)L2(Σ)

= 0.
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The coercivity of the sesquilinear form a yields the continuity of the Neumann traces (I+Π)∂nu
∗
Σ =

0. Coming back to (40), it follows iωT (I−Π)u∗Σ = 0. The positivity of T+T ∗ yields the continuity
of the Dirichlet traces (I −Π)u∗Σ = 0.

In summary, u∗ satisfies the homogeneous Helmoltz equation in all subdomains Ωi, with a
homogeneous boundary condition on Γ, and with the continuity of its trace and normal derivative
trace over Σ. Therefore u∗ = 0. By unicity of the weak limit, the whole sequence up converges
weakly towards u∗ = 0.

By compactness one has the strong convergence of the sequence up → 0 in L2(Ωi). Refining
the proof, one can get additional properties such as the strong convergence (I + Π)∂nu

p
Σ → 0 in

L2(Σ).

4 A class of admissible matrices
In this Section, an optimality condition (46) is introduced which expresses that some outgoing
plane waves must satisfy natural linear relations at the cross-point. This condition is composed of
2dr < d2

r linear equations. After a short digression about corners where dr = 2 so that 2dr = d2
r,

we will show that it is always possible to construct admissible cross-point matrices which also
verify this condition.

4.1 The particular case of corners
In a previous work [12], we defined and studied similar matrices for DDM but for corners and not
cross-points. The difference is that a corner shows up at a broken interface between only two
subdomains, i.e. dr = 2, which is a priori excluded in this study. However the same formalism
applies, and it is possible to check that the corner matrices from [12] verify the general symmetry
and compatibility conditions (41).

At a corner point Qr on the boundary between two subdomains Ωi and Ωj , the interior angle
inside Ωi is denoted by θr ∈ (−2π, 0), see Figure 2. We derived in (46) the formula

(Hrϕr, ϕr)C2dr = −1
4ω

(
cos θr2

∣∣ϕ1
ij(Qr) + ϕ2

ji(Qr)
∣∣2 + cos θr

cos(θr/2)
∣∣ϕ1
ij(Qr)− ϕ2

ji(Qr)
∣∣2

− cos θr2
∣∣ϕ1
ji(Qr) + ϕ2

ij(Qr)
∣∣2 − cos θr

cos(θr/2)
∣∣ϕ1
ji(Qr)− ϕ2

ij(Qr)
∣∣2) ,

where the vector ϕr is defined by the values of ϕij and of ϕji along each segment of the broken
line (hence the superscript 1 or 2) :

ϕr =
(
ϕ1
ij(Qr), ϕ1

ji(Qr), ϕ2
ij(Qr), ϕ2

ji(Qr)
)
∈ C4.

The bilinear form has been obtained in [12] by algebraic manipulations in a way that the
optimality condition (46) is verified up to an error of order 2 for plane waves which direction
are a small variation around the angle bisector. Denoting γ := −1

4ω

(
cos θr

2 + cos θr

cos(θr/2)

)
and

δ := −1
4ω

(
cos θr

2 −
cos θr

cos(θr/2)

)
, the matrix Hr is

Hr =


γ 0 0 δ
0 −γ −δ 0
0 −δ −γ 0
δ 0 0 γ

 .

This matrix satisfies the four conditions of (41).
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Qr

Ωi

Ωj

ϕ1
ji ϕ2

ij

ϕ
2
ji ϕ

1
ij

θr

Figure 2: Description of a corner Qr lying on a broken line separating Ωi from Ωj , and corre-
sponding quantities.

4.2 The general case
We come back to cross-points where dr ≥ 3 and 2dr < d2

r.

4.2.1 Local numbering

To describe the situation, we use a local numbering around a given node xr. This numbering
is displayed in Figure 3 in the case of dr = 3 subdomains, and has already been defined in
(30). It corresonds to the operator Πr given by (31). The subdomains around the node are
reindexed as i1, i2, . . . , idr

in a counter-clockwise order. For each neighboring subdomain having
two incidental edges at xr, the normal and tangential vectors are reindexed using superscript nn
and tn for 1 ≤ n ≤ 2dr such that, for n ≤ dr, nn = nin |Σin,in−1

and nn+dr = −nin |Σin,in−1
, with

the convention i0 = idr
. The same numbering is applied to tn for 1 ≤ n ≤ 2dr. The outgoing

tangential unit vectors are also reindexed, such that for 1 ≤ n ≤ dr, τn = τ in,in−1 = −tn(xr)
and τn+dr = τ in,in+1 = tn+dr (xr).

The class of matrices Hr admissible for our construction is given by the symmetry condition
(13) along with the compatibility condition of Lemma 16

Hr :=
{
Hr ∈M2dr

(R) | Hr = HrT and ΠrHrΠrHr = −Hr
}
, 1 ≤ r ≤ NX .

Because of the chosen structure for ϕr, it is useful to decompose the matrices Hr into block
matrices

Hr =
(
Hr

1,1 Hr
1,2

Hr
2,1 Hr

2,2

)
.
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xr

Ωi1

Ωi2

Ωi3

n2

t2

n5

t5

n3

t3

n6

t6

n1

t1

n4

t4

d1

d4

d5

d2

d6 d3

τ 1 = τ 4

τ 3 = τ 6

τ 2 = τ 5

Σi2i3
Σi3i2

Σi1i3

Σi3i1

Σi1i2
Σi2i1

Figure 3: Local indexing around a cross-point (here with 3 subdomains) based on Figure 1. The
6 directions dn have here been drawned only for illustrative purpose and could be different as far
as they satisfy (42).

The condition Hr ∈ Hr is equivalent to

Hr
1,1 = Hr

1,1
T, Hr

1,2 = Hr
2,1

T, Hr
2,2 = Hr

2,2
T, (symmetry),

Hr
2,2 = −Hr

1,1 and Hr
2,1 = −Hr

1,2 (compatibility).

These five conditions can be recast into the system of four equations

Hr
1,1 = Hr

1,1
T, Hr

2,2 = −Hr
1,1, Hr

1,2 = −Hr
1,2

T, Hr
2,1 = −Hr

1,2. (41)

Remark 20. For a given r, the number of linear constraints to characterize admissible matrices
in Hr is equal to d2

r. Conditions (41) correspond to dr(dr + 1)/2 degrees of freedom to define
both Hr

1,1 and Hr
2,2 = −Hr

1,1, and to (dr − 1)dr/2 degrees of freedom to define both Hr
1,2 and

Hr
2,1 = −Hr

1,2: the sum is equal to the number of linear constraints.

4.2.2 Compatibility condition

Following a standard approach for wave problems, we choose plane waves as family of particular
solutions. We consider a collection of unitary directions dn ∈ R2 and the associated collection of
plane waves defined by

udn(x) = eiω(dn,x−xr), 1 ≤ n ≤ 2dr.
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A collection of directions is endowed to a specific node xr, but we chose not to precise it with an
r index for the sake of notational clarity. For the construction proposed below, we will choose
independent directions

dn and dn+dr linearly independent for all 1 ≤ n ≤ dr. (42)

At the node xr, one has for 1 ≤ n ≤ dr and 1 ≤ m ≤ 2dr

∂nmudn(xr) = iω (dn,nm)udn(xr) and ∂nmudn+dr (xr) = iω
(
dn+dr ,nm

)
udn(xr). (43)

For 1 ≤ n ≤ dr, one has the two relations

∂τ n∂nnudn(xr) = −∂tn∂nnudn(xr) = ω2 (dn, tn) (dn,nn)udn(xr),
∂τ n+dr ∂nn+drudn+dr (xr) = ∂tn+dr ∂nn+drudn+dr (xr) = −ω2 (dn+dr , tn+dr

) (
dn+dr ,nn+dr

)
udn(xr).

(44)

Imposing the Robin coupling conditions (10) for each plane wave udn on the boundaries of the
corresponding domain Ωin comes down to imposing{

∂τ n∂nnudn + i
∑2dr

m=1 hnm∂nmudn = 0, 1 ≤ n ≤ dr,
∂τ n+dr ∂nn+drudn+dr + i

∑2dr

m=1 hn+dr,m∂nmudn+dr = 0, 1 ≤ n ≤ dr.

for hnm := −iαnm. Using the formulas (43)-(44) one gets{
ω (dn, tn) (dn,nn) −

∑2dr

m=1 hnm (dn,nm) = 0, 1 ≤ n ≤ dr,
−ω

(
dn+dr , tn+dr

) (
dn+dr ,nn+dr

)
−

∑2dr

m=1 hn+dr,m

(
dn+dr ,nm

)
= 0, 1 ≤ n ≤ dr.

(45)
For mathematical convenience, this system (45) is rewritten in matrix form in real algebra

diag(HrEpw) = F pw, (46)

where Hr = (hnm)1≤n,m≤2dr is the unknown, Epw := (Epw
nm)1≤n,m≤2dr

where

Epw
nm := 1

iω∂nnudm(xr) = (dm,nn) , (47)

and diag(HrEpw) = ((HrEpw)nn)1≤n≤2dr is the vector of the diagonal entries of HrEpw. The
right hand side F pw contains the first elements of each line in (45). The system (46) can be
considered as an optimality condition on the unknown coefficients of Hr. We will prove in the
next paragraph that this linear system of 2dr equations for 4d2

r unknowns is solvable in real
algebra under the conditions required for stability.

4.2.3 Existence of a class of admissible matrices

The objective is to show that equation (46) can be solved with Hr ∈ Hr. We rewrite this in a
different form by introducing the linear operator Lr :M2dr

(R)→ R2dr ×M2dr
(R)×M2dr

(R)
defined by

LrH :=

 diag(HEpw)
H −HT

ΠrH +HTΠr

 , ∀H ∈M2dr
(R).
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Proving that (46) is solvable for Hr ∈ Hr is equivalent to showing that there is a solution
Hr ∈M2dr (R) to

LrH = gpw
r , (48)

where gpw
r := (F pw, 0, 0). We denote the matrix scalar product A :B of A,B ∈ M2dr

(R) as
the contraction A :B := trace(ABT). We also denote the natural scalar product in the space
R2dr ×M2dr (R)×M2dr (R), as 〈., .〉. With these notations one has

〈LrH, (a, B,C)〉 = (diag(HEpw),a) + (H −HT) :B + (ΠrH +HTΠr) :C.

The linear system has a solution if and only if gpw
r ∈ range(Lr). We use the closed range theorem

[5] which states that range(Lr) = ker(LrT)⊥, and show in what follows that gpw
r ∈ ker(LrT)⊥.

Lemma 21. The adjoint linear operator LrT : R2dr ×M2dr
(R)×M2dr

(R)→M2dr
(R) is defined

for all (a, B,C) ∈ R2dr ×M2dr (R)×M2dr (R) by

LrT(a, B,C) := diag(a)EpwT +B −BT + ΠrC + ΠrCT,

where the diagonal matrix diag(a) ∈M2dr
(R) has for diagonal the vector a.

Proof. Let H,B,C ∈M2dr
(R) and a = (an)2dr

n=1 ∈ R2dr . We want to show that

〈LrH, (a, B,C)〉 = (diag(HEpw),a) + (H −HT) :B + (ΠrH +HTΠr) :C

= H :
(

diag(a)EpwT +B −BT + ΠrC + ΠrCT
)
,

and will prove it one term after the other. For the first term, one has

(diag(HEpw),a) = trace (HEpw diag(a))

= trace
(
H
(

diag(a)EpwT
)T
)

= H :
(

diag(a)EpwT
)
.

Second, it holds that

(H −HT) :B = H :B −HT :B = H :B −H :BT = H : (B −BT).

Finally, since ΠrT = Πr, we have

(ΠrH +HTΠr) :C = (ΠrH) :C + (HTΠr) :C = (HTΠr)T :C +H : (ΠrCT)
= H : (ΠrC) +H : (ΠrCT) = H : (ΠrC + ΠrCT).

Regrouping the three relations leads to the claim.

Lemma 22. If (a, B,C) ∈ ker(LrT) then a = 0.

Proof. One has the equivalence

(a, B,C) ∈ Ker(LrT) ⇐⇒ diag(a)EpwT +B −BT + Πr(C + CT) = 0
⇐⇒ (diag(a)EpwT)T +BT −B + (C + CT)Πr = 0,

Summing these two expressions implies that

diag(a)EpwT + (diag(a)EpwT)T = −Πr(C + CT)− (C + CT)Πr. (49)
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Decomposing the symmetric matrix C + CT into blocks, it follows

(C + CT) =
(
G11 G12
G21 G22

)
where G11 = GT

11, G21 = GT
12 and G22 = GT

22. Using the structure of Πr (31), it follows from (49)
that diag(a)EpwT + (diag(a)EpwT)T has the following structure

diag(a)EpwT + (diag(a)EpwT)T =
(
K1 K2
K2 K1

)
(50)

where K1 and K2 are symmetric since

K1 = KT
1 = −G12 −G21 and K2 = KT

2 = −G11 −G22. (51)

On another hand, one has the block decompositions

diag(a)EpwT =
(

(an(dn,nm))dr
n,m=1 (an(dn,nm+dr ))dr

n,m=1
(an+dr

(dn+dr ,nm))dr
n,m=1 (an+dr

(dn+dr ,nm+dr ))dr
n,m=1

)
, (52)

and

(diag(a)EpwT)T =
(

(am(dm,nn))dr
n,m=1 (am+dr

(dm+dr ,nn))dr
n,m=1

(am(dm,nn+dr ))dr
n,m=1 (am+dr (dm+dr ,nn+dr ))dr

n,m=1

)
. (53)

Combining (50) to (51)-(53), the constraints can be written for all 1 ≤ n,m ≤ dr as

an(dn,nm) + am(dm,nn) = an+dr
(dn+dr ,nm+dr ) + am+dr

(dm+dr ,nn+dr ),
an(dn,nm+dr ) + am+dr

(dm+dr ,nn) = an+dr
(dn+dr ,nm) + am(dm,nn+dr ).

(54)

Due to the numbering (30) illustrated in Figure 3, one has the relations

nn = −ndr+n 1 ≤ n ≤ dr.

The two lines of (54) thus rewrite

an(dn,nm) + am(dm,nn) = −an+dr
(dn+dr ,nm)− am+dr

(dm+dr ,nn),
−an(dn,nm) + am+dr

(dm+dr ,nn) = an+dr
(dn+dr ,nm)− am(dm,nn),

and adding them gives for all 1 ≤ n,m ≤ dr
(amdm + am+dr

dm+dr ,nn) = −(am+dr
dm+dr + amdm,nn),

which in turn implies that amdm + am+dr
dm+dr = 0 for all 1 ≤ m ≤ dr since the nn span R2.

Finally, using the hypothesis (42), this linear combination can only be zero for am = am+dr
= 0,

which ends the proof.

Proposition 23. At a given node xr, under the conditions of Lemma 22, there exists an admissible
matrix Hr solution to the linear system LrHr = gpw

r . The solution is non unique for dr ≥ 3.

Proof. The previous Lemma yields that ker(LrT) ⊂ {0} ×M2dr
(R) ×M2dr

(R). So the right
hand side gpw

r = (bpw
r , 0, 0) is orthogonal to ker(LrT), which implies that there always exists an

admissible matrix Hr solution to the linear system LrHr = gpw
r .

For dr ≥ 3, the space Hr, which corresponds to the space of matrices such that LrH = (a, 0, 0)
for any a ∈ R2dr has dimension d2

r, as stated in Remark 20. On the other hand, the number of
linear equations imposed by taking a = 0 is 2dr, see (46). It implies there exists a linear vector
subspace of dimension d2

r − 2dr > 0 which yields the right hand term gpw
r .

23



5 Conclusion
We have developed a framework for the construction of convergent DDMs with transmission
operators T which satisfy T 6= T ∗. Nevertheless, many problems remain open at the end of this
study. A non exhaustive list follows which can be the topic of future researches.

• With this approach, it is not guaranteed that the algorithms will converge faster. A sound
study and numerical tests would be necessary.

• The transmission operators T do not satisfy the matching requirements in terms of functional
analysis of the multi-trace theory [7, 9]. The question remains to know is it would be possible to
construct operators T such that T 6= T ∗ that also realize the multi-trace formalisms bijections.

• A solution verifying the compatibility relations was obtained in the last Section, under the
requirement that dn and dn+dr are independent directions. It seems natural to ask whether
taking one direction per edge dn = ±dn+dr would also be suitable.

• The multidimensional extension is of course of interest and challenging.

• The Maxwell extension is also challenging, especially working with the functional spaces Hdiv
and Hrot.

• Heterogeneous media also raises new questions: how should the transmission operator be
modified? How will the convergence be affected?
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[10] B. Després. Décomposition de domaine et problème de Helmholtz. C. R. Acad. Sci. Paris
Sér. I Math., 311(6):313–316, 1990.

[11] B. Després. Domain decomposition method and the Helmholtz problem. In Mathematical and
numerical aspects of wave propagation phenomena (Strasbourg, 1991), pages 44–52. SIAM,
Philadelphia, PA, 1991.

[12] B. Després, A. Nicolopoulos, and B. Thierry. Corners and stable optimized domain
decomposition methods for the helmholtz problem. https://hal.archives-ouvertes.fr/hal-
02612368/document, 2020.

[13] C. Farhat, P. Avery, R. Tezaur, and J. Li. FETI-DPH: a dual-primal domain decomposition
method for acoustic scattering. J. Comput. Acoust., 13(3):499–524, 2005.

[14] M. J. Gander and F. Kwok. Best Robin parameters for optimized Schwarz methods at cross
points. SIAM J. Sci. Comput., 34(4):A1849–A1879, 2012.

[15] M. J. Gander and F. Kwok. On the applicability of Lions’ energy estimates in the analysis
of discrete optimized Schwarz methods with cross points. In Domain decomposition methods
in science and engineering XX, volume 91 of Lect. Notes Comput. Sci. Eng., pages 475–483.
Springer, Heidelberg, 2013.

[16] M. J. Gander and K. Santugini. Cross-points in domain decomposition methods with a finite
element discretization. Electron. Trans. Numer. Anal., 45:219–240, 2016.

[17] M. Lecouvez, B. Stupfel, P. Joly, and F. Collino. Quasi-local transmission conditions for
non-overlapping domain decomposition methods for the helmholtz equation. Comptes Rendus
Physique, 15(5):403 – 414, 2014. Electromagnetism / Électromagnétisme.
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