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ARTICLE INFO ABSTRACT

Keywords: The prediction of noise and vibrations generated by geared systems remains a challenging field of
Gear transmission error study. The analysis of such systems is computationally demanding mainly due to the large size of
Flexible multibody modelling the finite element model used to describe the system and the nonlinear behaviour arising from the
Decomposition method contact between the gear teeth. As a consequence, very few models have been proposed to han-
Spur gear with holes dle lightweight gears which are widespread in current industrial designs. Lightweight gears lead
Gear body design to a strong modification of the gear compliance, and therefore the contact force distribution. The

static transmission error and the mesh stiffness fluctuations are thus influenced by these changes.
In this paper, a 2D decomposition method is proposed to compute the static transmission error
of gears with holes in the gear blanks without heavy computational effort. The original method-
ology relies on the substructuring of the holed gear blank from the gear teeth. It is applied on
several spur gear systems with holed gear blanks and compared with a fully flexible multibody
method. The validity of the approach is assessed in terms of static transmission error and mesh
stiffness fluctuations. Moreover a parametric study is carried out using the 2D decomposition
method in order to analyse the influence of holes regarding their position and number.

1. Introduction

The issues related to energy consumption and air pollution have increased the need for on-board mass reduction.
This requirement concerns in particular drivelines equipped with gear transmissions. The proposed solutions to de-
crease the gear mass consists in using composites [6, 7] or removing material from the gear blanks by employing thin
rim or holes [16]. This paper focuses on the specific relevance of introducing holes in the gear blanks. However, mass
reduction may compromise the integrity of the structure and the vibroacoustic performances. Thus, it is of paramount
importance to verify that adding holes does not increase the gear mesh excitation and the resulting whining noise. It
is well-known that the main excitation source generated by the gear operation is the static transmission error (STE).
It generates dynamic mesh forces which are transmitted to the housing through wheel bodies, shafts and bearings.
Housing vibratory state is related to the radiated whining noise [5]. The STE is defined as the difference between the
actual position of the driven gear and the position it would occupy if the gear pair were perfectly conjugate [24]. It can
be expressed along the gear line of action as 6(6):

6(01) = Ry0, — Ry, 0, (D

where 6, and 6, are respectively the angular position of the driving wheel with Z; teeth and the driven wheel with
Z, teeth. The STE stems from manufacturing errors (unintended modifications), micro-geometry deviations (intended
modifications) and tooth deformations. These deformations arise from local tooth contact (hertzian-like deformation),
tooth bending and shear, and global deformation which induces shafts misalignment and modifies the location of the
contact lines. If we assume identical teeth, axisymmetric gear bodies, no eccentricity and no pitch errors, the STE
exhibits periodic fluctuation at the mesh frequency f,,. If only one wheel presents eccentricity defect or a holed gear
blank, the fundamental frequency corresponds to the rotating frequency of the considered wheel f| or f,. If both
driving and driven wheels have eccentricity defects or holes, the fundamental frequency of the STE f, is associated to
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the period Tj) needed to re-establish contact between a particular tooth of the driving wheel and a particular tooth of
the driven wheel.

1 S i

SRR A A ”
Nomenclature
Matrices and vectors hy Dedendum
1 Unity column vector I Radius of holes
e(0,) Initial gap vector X Profil shift coefficient
u Vector of generalized displacements A, Amount of tip relief modification
p(0,) Distributed load L Length of tip relief modification
C Damping matrix F Transmitted load
H(6,) Symmetric semi-positive compliance matrix T Output torque
K Stiffness matrix H, Harmonic orders
M Mass matrix N, Number of holes
F Vector of external force

ext R Radial position of holes

F,, Vector of nonlinear force

Ry Base radius
Scalars

Z Number of teeth
a Pressure angle

Subscripts and superscripts
6(0,) Static transmission error

ed Edge
€ Gap criteria
. . h Holes
K Penalty stiffness coefficient
. in Inside
A Lagrange multiplier
€ Contact ratio gb Gear blank

k(6,) Mesh stiffness wh Without holes

m Gear module Abbreviations

a Center distance DoF  Degree of freedom

by Face width FE Finite element

Som Mesh frequency NVH Noise, vibration and harshness
Gap distance STE  Static transmission error

h, Addendum STE,, Peak-to-peak STE amplitude

The STE is also responsible for an internal parametric excitation associated with the mesh stiffness fluctuation
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k(6;). It exhibits the same frequency components as the STE fluctuation. For each driving angular position 6, the
mesh stiffness is defined as the derivative of the transmitted load F relative to the STE 6(8,) [5]:

oF

= 96(0)) )

k(0
Classical approaches used to compute the static transmission error and the mesh stiffness fluctuations are based on
the equation describing the static equilibrium of the gear pair for a set of successive positions of the driving wheel ;.
The contact is assumed to occur on the theoretical contact lines which are identified thought a kinematic analysis of
the system [1, 3, 17, 28]. The gear tooth flexibility is described using a compliance matrix H(6,) obtained with finite
element or semi-analytical models [9]. The hertzian-like local deformation is taken into account thanks to additional
contributions deduced from Hertz theory and added to H(6;). Tooth flank modifications and manufacturing errors are
introduced as an initial gap e(é;) between the discretized contact lines. Misalignment and deviation induced by the
global deformation of the entire gear train are introduced at this stage. For each position 6, and for a given transmitted
normal load F, the equation describing the gear mesh contact is formulated in matrix form as follows:

H(#,).p(0;) = 6(0)).1 — e(6)) @
1" po,)=F

with:
2 Hi(0)p;0)) +5(0)) > e;(0)) )
Dj >0

In this constrained problem, the column vector 1 has all its components equal to 1, the column vector p and the scalar
function 6(0,) are respectively the unknown distributed load and the unknown STE. The solutions p(6;) and 6(6,) are
obtained using an optimization method. For instance, a modified simplex method was used by Conry et al. in [8].
Some authors studied the influence of an elastic gear body on the tooth flexibility and the STE fluctuation. Weber and
Banascheck [23] proposed a model to estimate the gear body-induced tooth deflection. The tooth is assumed to be
rigid and the wheel body is modeled as an elastic half plane. Sainsot [18] extended the previous model by developing
a semi-analytical formula for which the elastic half plane is replaced by a solid disk. The assumptions behind these
methods entail an overestimation of the mesh stiffness. Rigaud et al. [17] assessed the influence of cylindrical and
thin-rimmed elastic gear bodies on the STE. For cylindrical gear bodies, they reported a modification of the mean value
without significant influence on the fluctuation. However, designing thin-rimmed gear bodies and taking into account
interactions between adjacent teeth lead to a modification of both the mean value and the fluctuation of the STE.
Some improvements have been made in the last few years in order to include lightweight gear bodies in the static
transmission error analysis. Guilbert et al. [11, 12, 13] proposed a condensed finite element sub-structure connected
to a lumped parameter model. They paid attention to the mesh interface model to connect a lumped parameter with a
FE model. The contact occurs on the theoretical contact lines and the flexibility of the gear teeth is described through
several independent stiffness distributed along the line of action. The effects of a thin rim wheel or holes in the gear
blanks were assessed [10]. The presence of holes modulates the STE. Additionally, Shweiki [19] used several nonlinear
FE simulations with high detailed model of the meshing gears to estimate the STE fluctuations. Cappellini [4] and
Shweiki [20] also combined a FE approach and an analytical representation of the gear mesh stiffness to investigate
the behaviour of lightweight gears. The total deformation of the gear induced by the gear mesh contact is modelled as
a global contribution coming from the tooth deflection, mainly bending and shear, and a local nonlinear hertzian-like
deformation. Active tooth pair are divided into multiple slices along the width and the contact points are considered
to lie on the rigid involute profile. They also decreased the computation time of the global deformation by performing
a model order reduction obtained from a series of linear static analyses where a normal load is applied on selected
nodes belonging to theoretical contact lines [4]. Hou ef al [14] investigate the effect of thin rimmed gears on the
NVH performance. As Rigaud they show that thin rim in the gear blanks modifies the mean and the peak-to-peak
value of the STE. This modification is used to optimize the thin-rimmed gears and to reduce the gear mass about 25%
and the dynamic mesh forces about 68%. Moreover, a recent fully flexible multibody approach has been proposed to
compute the STE for any kind of gears, especially gears with thin rim bodies or holes [2]. It consists of a complete
FE model without restrictive assumptions concerning the mesh contact. A FE-based contact with a surface-to-surface
detection and an augmented lagrange multiplier formulation is used. The proposed model is enabled to detect additional
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frequency components induced by the presence of holes in the gear blanks. Among previous works, the most advanced
strategies allow the computation of the transmission error of gears with holes but, when no assumption are made on the
contact detection phase, the simulation requires a large computational effort to perform the analysis over a fundamental
period of the STE. Simulations can last for several days due to the nonlinearity and the large number of degrees-of-
freedom. Parametric studies become prohibitive.

The approach proposed in this paper aims at overcoming the time cost limitation while preserving a multibody
formulation. It consists in separating the gear body deformation and the tooth deformation when computing the trans-
mission error. The periodic displacement field of the gear body with holes is computed by transmitting and enforcing
instantaneous operating contact conditions at the gear body edge. The approach offers significant improvements in
terms of computing time compared with a fully multibody approach. The behaviour of a large variety of lightweight
gears can be thus assessed through parametric studies. The STE and the mesh stiffness fluctuations are the physical
quantities used to validate the proposed methodology.

The paper is structured as follows: first, the flexible multibody approach used as the reference model is briefly described
in section 2. The 2D decomposition procedure is detailed in section 3. Then the novel methodology is validated by
comparing the results with those obtained with the fully flexible multibody approach in section 4. Finally, the effect
of number and radial position of holes is evaluated by carrying out a parametric study.

2. Flexible multibody model

This section presents the original elastic multibody formulation recently proposed in [2] which is used as the
reference model. The flexible multibody model solves a frictionless contact problem within the FE method. Indeed,
gear bodies including teeth are discretized by FE method. The mesh is refined in the contact area with linear hexahedron
elements.

In this paper, the approach is used in 2D. The FE-based contact between the gear teeth is solved by using a surface-
to-surface algorithm. The surface-to-surface contact detection prevents the interpenetration of the target body into
the contact body. No a priori assumptions are made concerning the gear contact existence and location. The contact
problem is modelled with an augmented lagrangian formulation [15, 21]. This description is a compromise between
lagrange multiplier and penalty methods, which enables a mastered enforcement of the impenetrability constraint while
improving the convergence of the algorithm. The mathematical formulation of the noonsmooth mechanics is given by
the Signorini conditions [25, 26, 27]:

820
F, >0 Vi, (6)
g&F, =0

Gap function g; is associated to every contact node i and corresponds to the distance between the contact and the target
surfaces along the normal direction. F; is the contact force acting on the target surface. It is expressed as:

Fl =xg/ + 1/ (7)

]

k is the penalty stiffness coefficient set to 1017, /1{ is the iterative lagrange multiplier at the iteration j associated to
the contact node i which is updated until the gap function g{ is sufficiently small (i.e dl.j < ¢, typically e = 1072)
[15, 21]. Equation (6) implies that all contacts must be compressive. The constraints g; > 0 and g; F; = O represent
the impenetrability and complementarity conditions. The contact forces F; > 0 are generated only when the gear tooth
contact occurs (g; = 0), while the contact forces are zero (F; = 0) when the gear tooth contact is lost (g; > 0).

These Signorini conditions are then included in the discretized equation of motions of the gear pairs. Formally, the

equation of motion for the gear dynamics is expressed as follows:
Mii+ Ca+Ku+F, (u)=F,, ®)

where u contains the generalised displacement of each degree-of-freedom and M, C, K are respectively the mass,
damping and stiffness matrices. F,,, is the vector of external forcing. In order to access to the static transmission
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error, the multibody gear simulation is performed in the quasi-static regime by setting a low rotation speed of the
driving gear (1 rpm) using the ANSYS Mechanical ® solver. The analysis is structured as follows:

o firstly, the gear backlash is covered by a rotation of the driving wheel in order to establish the contact at an initial
state,

e then, the output torque is applied to the driven wheel while maintaining the driving wheel,

o finally, a rotation of the driving wheel is performed over a period corresponding to the fundamental period of
the static transmission error.

Control nodes are defined at each gear centre to apply boundary conditions and to measure the time varying driving
and driven gear angles (6, 60,). The static transmission error 6(#,) is then computed along the line of action and the
mesh stiffness k(6,) is approximated by a numerical differentiation of the transmitted load F versus 6(6;). The contact
procedure used in the flexible multibody approach is summarized in Fig. 1.

': Start J

¥

/ Displacement /

L i

Signorini conditions

Update Lagrange
multiplier

Y

A

Contact pressure

Update gap
1
9i
false
true

i Forces .:'
|
( Stop )

Figure 1: Flow chart of the contact procedure

The procedure can be applied to a gear pair with holes in the gear blanks. However, the fundamental frequency
of the STE no longer corresponds to the mesh frequency f,, because the fundamental frequency f, is decreased due
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to the presence of holes. This phenomenon leads to time consuming simulations. It thus becomes difficult to conduct
parametric studies at the design stage. In this context, an original decomposition method is proposed in order to reduce
the computational time cost while preserving numerical accuracy. The next section presents, assesses and discusses
the decomposition method.

3. The proposed original decomposition method for gears with holes

This section describes the strategy used to decompose the deformation of the gear body with holes and the defor-
mation induced by the contact between gear teeth. The proposed method is mostly based on the assumption that the
tooth deflection is not coupled to the deformation of the gear body, so that its behaviour can be accounted for with an
additional flexibility. The following developments present the substructuring of gears with identical and equidistant
holes in the gear blanks. The objective is to estimate the instantaneous deformation of the holed gear blank and the
gear teeth. The system is decomposed into two substructures as shown in Fig. 2. The first one referred to as "gb",
represents only the elastic holed gear body with a radius R,,. The second one, labelled "wh", is the complementary
part of the gear pair where the holed gear blank is replaced by a rigid wheel.

The decomposition method presented in this section takes only into account rotation around shaft axis which means
that a possible twist of the tooth flank in the plane of action is neglected. This constitutes the main limitation of the
proposed method, although it can be extended to 3D rotations with additional research. It still provides a significant
computational time reduction when studying gears without thin-rimmed bodies.

Elastic

O
O-0O
— ol@Je
O O O
"Full multibody system" "wh" "gb"

Figure 2: Decomposition of gear pair with holes

The decomposition method is thus structured as follows:

o Firstly, the flexible multibody approach described in section 2 is applied to the second substructure "wh". For
this substructure, the simulation is performed over one mesh period since the holed gear blank is not considered.
The substructure is discretized by the FE method. The equation of motion of substructure "wh" is expressed as
follows:

M, i + Copnliyen + Kopptiy + F2, (. 0)) = £, ©)
The resulting static transmission error named J,,,(6,) is:

8,n(0)) = Ry — R, 01" (10)
0;”}’,6‘2”1 are respectively the angular displacement measured at the centre of the driving and driven gears.

o Next, the quasi-static motion of the full multibody system shown in Fig 2 corresponding to an amplitude 2z /N,
is discretized in 16 angular positions. For each angular position, the fully multibody method is applied and
the tangential displacement field at the interface between "wh" and "gb" is extracted. This displacement is
then introduced as an imposed displacement on the substructure "gb" while applying the output torque at the
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centre. Considering u;’z and uzg, the displacements of the DoF located inside and at the interface of "gb", the
deformation of "gb" is obtained by using the static relationship:

[Kin,in Kin,ed] u’g’}; = <flgr;)> (11)
Ked,in Ked,ed uzb 0

“;nb(gl,z) =K;, (fl;b - Kin,eduzi(gl,z)) (12)

in,in

So,

For each angular position, the angular deformation at the centre of "gb" referred to as 8¢ b 1.2) is retrieved. We
assume that this displacement is periodic at 2z / N,. 981’(01,2) is thus formulated as a trigonometric function:

b 27[0] 2
0%°(0,,) = A+ Bcos . (13)
’ Nh

The curve is displayed in Fig. 3.

6°(6,,,)
A
0O
0
050
:f - -
1
1
1
2 > 012
0 Nh

Figure 3: Angular deformation retrieved at the centre of "gb"

The resulting contribution along the line of action of the gear body with holes 5,,(6, ,) is defined as:
04p(012) = R,0%%(0, ) (14)

e Finally, substructures "wh" and "gb" allow the computation of the deflection 5,,,(6;) and 6,,(6,), respectively.
The static transmission error of the gear pair with holes 6,(6,) is computed as:

0p(01) = 6,,,(61) + 645(6, 2) (15)

The mesh stiffness of the gear pair with holes kj(6;) is obtained with a numerical differentiation of the trans-
mitted load F versus 6,,(6,), according to eq. (3).

The decomposition procedure allows the computation of the STE for a large variety of holed gear blanks. The com-
putational time reduction comes from the fact that it is not necessary to solve the gear mesh contact over a fundamental
period of the STE. The estimation of the deformation of the holed gear blank apart of the full multibody system is the
key. It permits to keep the resolution of the nonlinear analysis over a mesh period. Figure 4 outlines the decomposition
procedure, which can be extended to deal with a gear pair design with holes in both gear blanks by adding another
substructure.
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¥ X\

Extraction of the tangential displacement Computation of the STE over one mesh
over a period 21t/Np, and application of up® period considering "wh"
as an imposed displacement on "gb"

Elastic

ed
Uh
- O,
Rigid
Deformation of the gear body Deformation of the gear pair
with holes 8gp without holes 6yyh

Deformation of the gear pair
with holes: &p = 8gp + dwh

Figure 4: Flow chart of the decomposition procedure

4. Numerical validations

The decomposition procedure is applied on three different test cases in order to show the large variety of gears that
can be analyzed. The STE and mesh stiffness fluctuations are validated by comparing results with those obtained using
the fully flexible multibody simulation described in section 2.

4.1. Decomposition procedure applied to different test cases

The gear characteristics of the different test cases are presented in Table 1. The first corresponds to a reverse gear
pair with the same number of holes in the driving and driven wheels. The second corresponds to a gear pair with holes
only in the driven wheel. The third corresponds to a reducer gear pair with holes only in the driven wheel. Designs
of the different test cases are shown in Fig. 5. Gear pairs have also intentional removal of material along the tooth
profile corresponding to a linear tip relief with length L = 1.75 mm and amount A,, = Suym. This micro-geometric
tooth modification is introduced to minimize the STE for an output torque 7" = 115 N m for the reverse gear pairs and
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T = 160 N m for the reducer gear pair.

Name | Designation | Case 1 | Case 2 | Case 3 | Unit
- | - | Gear1 Gear2 | Gear1 Gear2 | Gearl Gear2 | -
Module m 2 2 2 mm
Number of teeth zZ 50 50 50 50 29 85 -
Pressure angle a 20 20 20 deg
Base radius R, 46.984 46.984 | 46984 46.984 | 27.251 79.874 | mm
Profile shift coefficient X 0 0 0 0 0 0 -
Addendum h, 2 2 2 2 2 2 mm
Dedendum hy 2.5 2.5 2.5 2.5 2.5 2.5 mm
Face width by 20 20 20 20 20 20 mm
Center distance a 100.5 100.5 118.5 mm
Tip relief modification ‘
Length L 1.75 1.75 1.75 1.75 1.75 1.75 mm
Amount A, 5 5 5 5 5 5 um
Lightweighting ‘
Number of holes N, 8 8 - 10 - 6 -
Radius of holes rp 10 10 - 7.5 17.5 mm

Table 1: Gear characteristics of the different test cases

Figure 5: Test case 1: (a) reverse gear pair with 8 holes on driving and driven gears. Test case 2: (b) reverse gear pair
with 10 holes closer to the teeth on the driven gear only. Test case 3: (c) reducer gear pair with 6 holes.

Figures 6, 7 and 8 displays the time evolutions and the amplitude spectra of STE and mesh stiffness for the three
test cases. The harmonic orders H,, are identified with respect to the output frequency. Amplitude spectra of STE and
mesh stiffness show components at the mesh frequency H, and its harmonics H; 7, . They also show component at
harmonic Hy, induced by holes designed in the driven wheel. For the reverse gear corresponding to the test case with
holes in the driving gear, no additional component is observed because the number of holes is the same as those of the
driven wheel. Amplitudes of components are identical for the fully elastic multibody method and the decomposition
method.

Spectra also show sidebands around harmonics of the mesh frequency, Hy 7, ,,y, . for the fully elastic multibody
simulation because the number of holes N, is not a submultiple of the number of teeth Z,, but their amplitudes are
negligible compared to those of Hy, and H; 7, . These sidebands are not observed for the STE spectra computed with
the decomposition method. Nevertheless, they arise from the mesh stiffness spectra because this one is computed from
a numerical differentiation of the transmitted load F relative to STE, according to eq. (3).
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Figure 6: Test case 1: time evolution of the STE (a) and the mesh stiffness (b) for an output torque T = 115N m.
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Figure 7: Test case 2: time evolution of the STE (a) and the mesh stiffness (b) for an output torque T = 115N m.
Amplitude spectrum of STE fluctuation (c) and mesh stiffness fluctuation (d). ==decomposition method, ==fully flexible

multibody method

Finally, Fig. 6, 7 and 8 confirm that the results obtained with the decomposition method are similar to those
obtained with the fully flexible multibody approach. Shapes of time evolutions, mean and root mean square values and

peak to peak amplitude are very close as reported in Table 2.
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Figure 8: Test case 3: time evolution of the STE (a) and the mesh stiffness (b) for an output torque T = 115N m.
Amplitude spectrum of STE fluctuation (c) and mesh stiffness fluctuation (d). ==decomposition method, ==fully flexible

multibody method

Test case 1 ‘ Fully flexible multibody method Decomposition method Error (%) Unit

STE mean value 24.587 24.534 0.2 um

STE rms value 0.572 0.523 8.5 um

STE peak-to-peak amplitude 2.408 2.216 8 um
mesh stiffness mean value 1.088e8 1.103e8 14 N/m
mesh stiffness rms value 6.358¢e6 6.356e6 0.03 N/m

mesh stiffness peak-to-peak amplitude 2.101e7 1.984e7 55 N/m
Test case 2 Fully flexible multibody method Decomposition method Error (%) Unit

STE mean value 13.651 13.587 0.5 um

STE rms value 0.418 0.365 12 um

STE peak-to-peak amplitude 1.843 1.688 8.4 um
mesh stiffness mean value 2.130e8 2.239e8 5 N/m
mesh stiffness rms value 2.210e7 2.263e7 24 N/m

mesh stiffness peak-to-peak amplitude 6.367¢7 6.394¢7 0.4 N/m
Test case 3 Fully flexible multibody method Decomposition method Error (%) Unit

STE mean value 15.103 15.093 0.1 um

STE rms value 10.468 0.466 04 um

STE peak-to-peak amplitude 2.222 2.129 44 um
mesh stiffness mean value 4.347e8 4.325e8 0.5 N/m
mesh stiffness rms value 3.456e7 4.345¢e7 1.5 N/m

mesh stiffness peak-to-peak amplitude 1.017e8 1.018e8 0.1 N/m

Table 2: STE and mesh stiffness comparisons between the fully flexible multibody method and the decomposition

method
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4.2. Time cost reduction

Comparisons of STE and mesh stiffness fluctuations for the different test cases prove the accuracy of the decom-
position method. Besides, high computational resources are required to compute STE and mesh stifftness fluctuations
with a fully flexible multibody method. Indeed, the method requires a fine mesh for all the gear teeth and 40 compu-
tation points over a mesh period, which means that 40 X Z, final computation points are used to describe precisely
the STE. On the other hand, for the decomposition method, only teeth covering the angle 2z /N, need a fine mesh
and 16 computation points are retained to reconstruct the trigonometric angular deformation of the substructure "gb".
Moreover, 40 computation points are added to the latter for the computation of the STE of the substructure "wh". As a
consequence, with the fully multibody method, the elapsed computing time is 15 hours for the reverse gear pair and 40
hours for the reducer. Whereas, for the decomposition method, 30 minutes (30 times faster) are needed for the reverse
gear pair and 40 minutes (60 times faster) for the reducer.

5. A parametric study of the effect of number and radial position of holes in gear blanks

The time cost reduction associated with the decomposition procedure allows parametric analysis. In the following
section, the objective is to analyze the influence of number and radial position of holes on the static transmission error
and mesh stiffness fluctuations.

5.1. Problem statement

A standard gear without holes is considered as a reference test case. It consists of a spur gear with characteristics
Z,=2,=50,m=2mm, a = 20°, bf = 20mmand a = 100.5 mm. A tip relief modification with amount A,, = 5um
and length L = 1.75 mm is introduced in the tooth profile to smooth the gear meshing. It leads to a minimization of
the STE fluctuation for an operating output torque 7,,, = 115N m. Fig. 11 shows that the corresponding peak-to-
peak amplitude is STE,, = 1ym. Fig. 10 shows that the peak-to-peak amplitude is larger for a lower output torque
(STE,, = 2um for T,,, = 20N m). Then, the holed configurations are created from the standard gear by designing
holes in the driven gear body to reduce the gear mass by 25% as presented in the Fig 9. For instance, a configuration
with N, eight holes at a radial position R = 34 mm from the centre of the gear is labelled 8R34. A holed gear blank
is introduced only for the driven gear to reduce the number of suitable configurations. The size of holes is defined to
maintain a constant mass for all designed gear pairs. The radial position and the number of holes are chosen to preserve
the structural integrity of the gear pair. The selected gears are then labelled by (v') and notified in Table 3.

Figure 9: Schematic representation of the holed configuration

N, h
R (mm) 6 8 10
27 X X
30 X
34 X

Table 3: Gear pairs with holes retained according to the number of holes N, and their radial position R
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5.2. Effect of number and radial position of holes

The decomposition procedure is applied on the previous configurations for a low output torque 7;,,, = 20N m and
an optimal output torque T,,, = 115N m established for the standard gear pair.

As expected and compared with the standard gear pair, Fig. 10 and Fig. 11 show that STE and mesh stiffness
fluctuations present an additional low frequency component H, for all the other configurations. The amplitude of
this component H N, is related to the number of holes N, their radial position R and the output torque value considered.

The effect of the radial position of holes is illustrated by the cases "8R34", "8R30" and "8R27". Indeed, Fig. 10
and Fig. 11 show that the amplitude of the component Hy, is larger when the radius R is increased, which means
when the holes are close to the tooth root radius.

The effect of the number of holes is illustrated by the pair cases ("10R34", "8R34") and ("8R30", "6R30"). Figures
10 and 11 show for a given radial position of holes that increasing the number of holes reduces the STE fluctuations.

The effect of the output torque is also significantly identified. STE fluctuations of the standard gear pair are gov-
erned by the micro-geometry modification for a low output torque 7;,,, = 20N m. Whereas STE fluctuations are
governed by the gear deformation for the optimal output torque 7,,,, = 115N m. The amplitude of the low frequency
fluctuations associated with the H, component is thus increased.

The critical modes for which the strain energy at the gear mesh is the highest are governed by the mean value
of the mesh stiffness. Designing holes in the gear blanks decreases the mean value and the fluctuations of the mesh
stiffness (Fig. 10 and Fig. 11). As a consequence, the critical frequencies are reordered. The fluctuations of the
mesh stiffness are modified compared to the standard gear pair. These changes have thus important influence on the
parametric resonances observed for the dynamic response [22].

6. Conclusion

Designing lightweight gears through the use of holed gear blanks is widespread in industries. It helps engineers
to reach their mechanical and environmental requirements, which are mainly mass reduction and increase operating
speed. However, the structural integrity has to be preserved.

This paper proposes a 2D decomposition procedure based on the substructuring of the holed gear bodies and the
remainder of the gear pair. The approach bypasses the computation of the full nonlinear multibody system while
considering the contribution of holes. The efficiency of our approach was assessed by considering the fully multi-
body approach as a reference for the computation of static transmission error and the mesh stiffness fluctuations. The
decomposition procedure reduces considerably the elapsed computing time, which enables fast parametric studies of
gears with holes. Thanks to a parametric study, this work features the effects of holed gear blanks on the static trans-
mission error and the mesh stiffness fluctuations. It shows that different effects appear according to the radial position
and number of holes and the output torque considered. An additional low frequency component corresponding to the
existence of holes is observed. Then, the amplitude of the component Hy, is increased with the operating output
torque and with the radial position R. On the other hand, increasing the number of holes for a given radial position R,
reduce the STE fluctuations. The mean values of the different mesh stiffness are reduced compared with the standard
gear pair and the fluctuations are significantly modified. Holes in gear blanks can be thus a design strategy to reduce
the mesh stiffness mean value and fluctuations. The observed effects cannot be set apart because they have important
consequences on the parametric and dynamic responses.

Our ongoing research focuses on the extension of the 2D decomposition method to 3D in order to deal with he-
lical gears with thin-rimmed bodies and holes in the gear blanks. 3D rotations will be quantified and added to the
decomposition procedure in order to consider possible twist of the gear body.
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Figure 10: Time evolution of the STE and the mesh stiffness for an output torque T =20N m: (a,b) standard gear, (c,d)
case 8R34, (e,f) case 10R34, (g,h) case 6R30, (i,j) case 8R30, (k,I) case 8R27.
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Figure 11: Time evolution of the STE and the mesh stiffness for an output torque T = 115N m: (a,b) standard gear,
(c,d) case 8R34, (e,f) case 10R34, (g,h) case 6R30, (i,j) case 8R30, (k,I) case 8R27.
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