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Permutation and scaling ambiguities are relevant issues in tensor decomposition and source separation algorithms. Although these ambiguities are inevitable when working on real data sets, it is preferred to eliminate these uncertainties for evaluating algorithms on synthetic data sets. As shown in the paper, the existing performance indices for this purpose are either greedy and unreliable or computationally costly. In this paper, we propose a new performance index, called CorrIndex, whose reliability can be proved theoretically. Moreover, compared to previous performance indices, it has a low computational cost.

Theoretical results and computer experiments demonstrate these advantages of

CorrIndex compared to other indices.

Introduction

Permutation and scaling ambiguities are relevant issues in some applications such as tensor decomposition [START_REF] Comon | Tensors: a brief introduction[END_REF] and Blind Source Separation (BSS) [START_REF] Comon | Handbook of Blind Source Separation: Independent component analysis and applications[END_REF].

By scaling, we mean multiplication by diagonal matrix with non-zero entries, which may be complex in the most general case. Firstly, these two ambiguities are inherent in tensor representations, by definition of tensors [START_REF] Comon | Tensors: a brief introduction[END_REF]. Secondly, in BSS, statistical independence is not affected by scaling or permutation of the sources [START_REF] Comon | Handbook of Blind Source Separation: Independent component analysis and applications[END_REF]. A mixing (or demixing) matrix can then only be estimated up to these ambiguities under the independence assumption. Although it is impossible to eliminate these ambiguities when working with real data sets, where the original parameters are not available, it is feasible to get rid of these uncertainties in evaluating algorithm performance on synthetic data sets. Furthermore, reasonable comparisons on synthetic data sets are very helpful to choose adequately an appropriate algorithm to be applied on real data sets. Therefore, in order to report reasonably the performance indices of existing algorithms on synthetic data sets where the desired parameters are accessible, it is important to employ proper methods to measure the performances.

Assume that the original and estimated components have been normalized, then the only remaining ambiguities are the permutation and scaling with complex numbers of unit modulus. The existing approaches to measure the performances of the algorithms of BSS and tensor decomposition can be classified in three main categories: "greedy approaches", "graph-based methods" and "invariant indices". Greedy approaches [START_REF] Fu | Block-randomized stochastic proximal gradient for low-rank tensor factorization[END_REF][START_REF] Comon | Tensor decompositions, alternating least squares and other tales[END_REF][START_REF] Coloigner | Line search and trust region strategies for canonical decomposition of semi-nonnegative semi-symmetric 3rd order tensors[END_REF][START_REF] Battaglino | A practical randomized cp tensor decomposition[END_REF] try to assign the most correlated components estimated by an algorithm, and then compute the error of estimation or decomposition. Although most of these methods return back an estimated permutation as well as a performance index, they are not reliable in noisy conditions. In other words, the reported index by these kinds of methods depends directly on the manner of computing and analyzing the correlation matrix.

Graph-based methods [START_REF] Kuhn | The hungarian method for the assignment problem[END_REF][START_REF] Galil | Efficient algorithms for finding maximal matching in graphs[END_REF][START_REF] Munkres | Algorithms for the assignment and transportation problems[END_REF] are originated from the well-known optimal assignment problem [START_REF] Duan | Linear-time approximation for maximum weight matching[END_REF], which is itself a particular case of the optimal transport problem [START_REF] Peyré | Computational optimal transport: With applications to data science[END_REF]. Although these kinds of methods have the guarantee to find the optimal permutation, they are computationally expensive (as we shall see, the minimum cost is O(8N 3 ) with a correlation matrix of size N × N ), especially when the correlation matrix is large.

However, the viewpoint of a third category, namely invariant indices [START_REF] Comon | Independent component analysis, a new concept?[END_REF][START_REF] Moreau | A one stage self-adaptive algorithm for source separation[END_REF][START_REF] Amari | A new learning algorithm for blind signal separation[END_REF], differs from the latter approaches. These invariant indices measure the performance regardless of permutation and scaling, and yield an index that can directly be used to compare algorithms. The reported indices of [START_REF] Comon | Independent component analysis, a new concept?[END_REF][START_REF] Moreau | A one stage self-adaptive algorithm for source separation[END_REF][START_REF] Amari | A new learning algorithm for blind signal separation[END_REF] are invariant to permutation and scaling, and the index of [START_REF] Comon | Independent component analysis, a new concept?[END_REF] provides the guarantee of a zero distance between estimated and original matrices up to column permutation and scaling, when the obtained index is zero. Nevertheless, the index of [START_REF] Comon | Independent component analysis, a new concept?[END_REF] is not bounded from above. More importantly, the upper bounds of indices of [START_REF] Moreau | A one stage self-adaptive algorithm for source separation[END_REF][START_REF] Amari | A new learning algorithm for blind signal separation[END_REF] have not been investigated, and it seems that these bounds are not easy to interpret. In addition, these methods are in the literature of source separation, and the indices introduced therein utilize the inverse (or pseudoinverse) of the mixing matrix, which may involve an additional computational burden.

In this paper, we studied critically other performance indices to point out their drawbacks such as being optimistic or pessimistic. Moreover, we introduce a new performance index, called CorrIndex, which can be considered to belong to the category of "invariant indices". CorrIndex is based on some correlation matrix (in fact scalar products), and hence, it does not lead to a high computational cost since matrix inversion is avoided. In addition, not only CorrIndex is invariant, but also it provides an interpretable upper bound and guarantees a zero distance up to column permutation and scaling if CorrIndex = 0 (a more formal definition of this distance will be subsequently given). Hence, compared to greedy methods, CorrIndex is more reliable. Moreover, compared to graphbased methods and other invariant indices, it requires the lowest computational cost. More importantly, CorrIndex is not limited to BSS after pre-whitening: it applies to tensor decompositions as well, contrary to other similar indices proposed in [START_REF] Comon | Independent component analysis, a new concept?[END_REF][START_REF] Moreau | A one stage self-adaptive algorithm for source separation[END_REF][START_REF] Amari | A new learning algorithm for blind signal separation[END_REF]. This paper is organized as follows. In Section 2, the problem is formulated and a brief review of previous methods and indices is provided. The proposed index, CorrIndex, and its comparison with other existing indices is presented in Section 3. Section 4 proposes experimental results with discussion. Eventually, the remarks of Section 5 concludes the paper. Λ is a diagonal matrix with unit modulus entries and W is an additive noise.

A critical survey

Let A = [a 1 , a 2 , . . . , a N ] ∈ C M ×N and A = [â 1 , â2 , . . . , âN ] ∈ C M ×N
More formally, the goal is to measure the gap defined below:

0 (A, A) = min σ,Λ AP σ Λ -A 2 F (1)
This gap can be computed with or without estimating permutation σ explicitly.

Seeking the optimal permutation σ can be written as the following optimization problem:

argmin σ 1 2 N n=1 a n -âσ(n) 2 2 = argmax σ N n=1 |a H n âσ(n) |. (2) 
Let C ij = |a H i âj |, and denote by C the matrix whose entries are C ij . Then, if the columns of A and A are normalized by their L 2 norms, we have 0 ≤ C ij ≤ 1.

In the sequel, three main approaches of measuring the distance between A and A appeared in the literature are reviewed.

Methods based on correlation matrix

2.1.1. Greedy approach of [START_REF] Fu | Block-randomized stochastic proximal gradient for low-rank tensor factorization[END_REF] In this approach, âj is assigned to a i if C ij has the maximum value in the j th column of C. This straightforward approach has two drawbacks. On one hand, if two or more maximum values occurred in the same row, a reasonable assignment could not be concluded. This happens for instance in far-field antenna array processing when sources are angularly close, in the presence of noise [START_REF] Sahnoun | Joint source estimation and localization[END_REF].

On the other hand, the delivered index is not reliable, since, even if the index is zero, one cannot guarantee A = AP σ Λ. The following toy numerical example illustrates this problem.

Assume that in an experiment matrix C is:

C =     
0.8 0.3 0.1 0.85 0.9 0.5 0.5 0.2 0.7

     . (3) 
The concluded assignment by this method is (â 1 , a 2 ), (â 2 , a 2 ), (â 3 , a 3 ) which is obviously not acceptable because column a 2 is selected twice. Computing the square error via

1 2 3 n=1 a n -âσ(n) 2 
2 by considering the assumption of normalized a n and âσ(n) with respect to L 2 norm and by substituting the values of |a H i âj | from C ij , one obtains 3 -0.85 -0.9 -0.7 = 0.55, which is less than the exact error, 3 -0.8 -0.9 -0.7 = 0.60 (the exact error is given in Section 2.3 with the optimal permutation). This example shows that this algorithm outputs a matrix P that may not be a permutation. This index is always optimistic since it searches in a set of assignments larger than Perm(N ). In fact, if a set A contains a set B, i.e. B ⊆ A, then

min x∈A f (x) ≤ min x∈B f (x) (4) 
for any function f (x). Therefore, the reported error is always smaller than or equal to the exact error based on the optimal assignment.

2.1.2. Greedy approach of [START_REF] Comon | Tensor decompositions, alternating least squares and other tales[END_REF][START_REF] Coloigner | Line search and trust region strategies for canonical decomposition of semi-nonnegative semi-symmetric 3rd order tensors[END_REF] In order to avoid a non-acceptable assignment, after detecting the maximum value of each column of C, its row and column can be removed for the rest of the algorithm. In other words, if in j th column of matrix C, C ij is the maximum value, then the i th row and j th column of C will be ignored in the search of the next maximum value.

This is a greedy approach, since the index depends on the order of choosing the maximum values. For example, if this greedy algorithm is applied on matrix C expressed in (3), the resulted assignment will be (â 1 , a 2 ), (â 2 , a 1 ), (â 3 , a 3 ) provided that the columns are swept from left to right. However, if the columns are swept in the opposite way, the assignment will be (â 1 , a 1 ), (â 2 , a 2 ), (â 3 , a 3 ).

Compared to the optimistic index, the error output by this greedy approach by sweeping from left to right, 3 -0.85 -0.3 -0.7 = 1.15, is larger than the exact error, 3-0.8-0.9-0.7 = 0.60, while by sweeping from right to left, the reported error equals to the exact error 0.6.

By imposing a column ordering, this greedy approach searches a set of assignments smaller than Perm(N ): following (4), one can conclude that the error measurement is always pessimistic. Therefore, the reported error is always larger than or equal to the exact error based on the optimal assignment.

2.1.3. Score measure [START_REF] Battaglino | A practical randomized cp tensor decomposition[END_REF] This index, which is also known as congruence [START_REF] Stegeman | Using the simultaneous generalized schur decomposition as a candecomp/parafac algorithm for ill-conditioned data[END_REF], is customized for tensors and is applied to evaluate the performance of a tensor decomposition in terms of estimating all the loading matrices (defined below) together. Let us explain the permutation ambiguity by means of a tensor decomposition example called Canonical Polyadic (CP) [START_REF] Comon | Tensors: a brief introduction[END_REF]. The CP decomposition of a third order tensor of rank 2 admits the following form:

T I×J×K = 2 r=1 a (1) r ⊗ a (2) r ⊗ a (3) r , (5) 
where ⊗ denotes the outer (tensor) product, and a

r , a

(2) r and a

(3) r are some vectors of size I, J and K, respectively. Equation ( 5) can be represented in a compact form as T = A (1) , A (2) , A (3) , where

A (i) = [a (i) 1 , a (i)
2 ] is called the mode-i loading matrix of T . Observe that the permuted version of loading matrices, i.e.

A (i) p = [a (i) 2 , a (i) 
1 ], i = 1, 2, 3, results in the same tensor as T in [START_REF] Coloigner | Line search and trust region strategies for canonical decomposition of semi-nonnegative semi-symmetric 3rd order tensors[END_REF].

The score measure of the tensor T = A (1) , A (2) , A (3) is calculated based on the correlation matrix C = C (1) C (2) C (3) , where is the Hadamard product (element-wise product) and

C (k) ij |a (k) i H â(k) j |, k = 1, 2, 3.
This index is also greedy, since the assignment is concluded based on the maximum values of C, which have been chosen in a way explained in Section 2.1.2, and the corresponding score is an average of these selected values.

Methods based on graph matching

The optimal assignment (or optimal transport) problem is an old, wellknown and fundamental combinatorial optimization problem [START_REF] Galil | Efficient algorithms for finding maximal matching in graphs[END_REF][START_REF] Munkres | Algorithms for the assignment and transportation problems[END_REF][START_REF] Peyré | Computational optimal transport: With applications to data science[END_REF]. The first polynomial time algorithm for optimal assignment problems is the "Hungarian method" [START_REF] Kuhn | The hungarian method for the assignment problem[END_REF] also known as "Kuhn-Munkres" [START_REF] Munkres | Algorithms for the assignment and transportation problems[END_REF][START_REF] Tichavsky | Optimal pairing of signal components separated by blind techniques[END_REF], and the complexity of the algorithm is O(N 4 ) [START_REF] Munkres | Algorithms for the assignment and transportation problems[END_REF]. This algorithm has been employed in [START_REF] Tichavsky | Optimal pairing of signal components separated by blind techniques[END_REF] for an optimal pairing of the sources in BSS.

The optimal assignment problem can also be considered as a special case of Maximum Weighted Matching (MWM), which is a well-known problem in graph theory, for which several polynomial time algorithms exist [START_REF] Galil | Efficient algorithms for finding maximal matching in graphs[END_REF]. The best exact [START_REF] Duan | Linear-time approximation for maximum weight matching[END_REF][START_REF] Dinic | An algorithm for the solution of the assignment problem[END_REF][START_REF] Dijkstra | A note on two problems in connexion with graphs[END_REF] and approximate [START_REF] Gabow | Faster scaling algorithms for network problems[END_REF] MWM algorithms cost O(8N 3 ) and O(N 2 ), respectively.

Methods based on optimal permutation

Searching for the optimal permutation σ, i.e. for the optimal permutation matrix P , described at the beginning of Section 2, can be viewed as finding some entries of C such that no pair among them lies in the same row or column, while the sum of these entries is maximum. One can formulate this as the following optimization problem [START_REF] Peyré | Computational optimal transport: With applications to data science[END_REF]:

P = argmin P ∈R N ×N + i,j D ij P ij s.t. P 1 N = P T 1 N = 1 N , (6) 
where D = -C, 1 N is a vector of ones of dimension N and the superscript denotes the optimal solution. In other words, we look for a bistochastic matrix, i.e. a square matrix of non-negative real numbers, whose rows and columns have unit L 1 norm [START_REF] Marshall | Inequalities: theory of majorization and its applications[END_REF]. By vectorizing (concatenating columns) P and D into vectors d and p, (6) can be rewritten in the standard form of linear program [START_REF] Peyré | Computational optimal transport: With applications to data science[END_REF]Sec. 3.1]:

p = argmin p∈R N 2 + d H p s.t. Qp = 1 2N , (7) 
where vertex of the polytope. This permits to relax the search for a permutation into (6) or ( 7): in fact, looking for the best bistochastic matrix will eventually yield a permutation and this is the whole power of the method.

Q = [1 T N I N , I N 1 T N ] T ∈ R 2N ×N 2 ,
For example, by employing MWM or the linear program described above, the optimal permutation in experiment (3) is the identity matrix.

Recently, by improving some required computational steps, the running time of implementing the linear programming algorithms has been reduced to O(q 2+ 1 6 ) [START_REF] Cohen | Solving linear programs in the current matrix multiplication time[END_REF] and O(q 2+ 1 18 ) [START_REF] Lee | Solving empirical risk minimization in the current matrix multiplication time[END_REF], where q is the size of unknown vector in the linear programming problem. Therefore, as q = N 2 in (7), the lowest complexity to find the optimal permutation of the problem described at the beginning of Section 2 by the means of linear programming is approximately O(N 4 ). In addition, in [START_REF] Peyré | Computational optimal transport: With applications to data science[END_REF][START_REF] Khosla | Revisiting the auction algorithm for weighted bipar-410 tite perfect matchings[END_REF], authors proposed sub-optimal solutions, called Auction algorithms, which costs O(N 2 ) [START_REF] Khosla | Revisiting the auction algorithm for weighted bipar-410 tite perfect matchings[END_REF].

1 convex by definition.

Indices invariant to permutation

Methods described in Section 2.1 try first to estimate the permutation, and then measure some distances based on the estimated permutation. As it is seen in Section 2.1.1, these kinds of methods may actually not return a permutation, and there is no guarantee that 0 (A, A) = 0 even if the indices they output are zero. Conversely, the algorithms of Section 2.2 behave better (in terms of returning optimal permutation) but may become very costly for large values of N .

However, in the literature of source separation [START_REF] Comon | Handbook of Blind Source Separation: Independent component analysis and applications[END_REF], some indices have been proposed to measure the gap (based on their own definition of gap) between original and estimated mixing matrices without needing to find the corresponding permutation [START_REF] Comon | Independent component analysis, a new concept?[END_REF][START_REF] Moreau | A one stage self-adaptive algorithm for source separation[END_REF][START_REF] Amari | A new learning algorithm for blind signal separation[END_REF]. Moreover, these indices are zero if and only if 0 (A, A) = 0, which offers a valuable guarantee. The indices proposed in [START_REF] Comon | Independent component analysis, a new concept?[END_REF][START_REF] Moreau | A one stage self-adaptive algorithm for source separation[END_REF][START_REF] Amari | A new learning algorithm for blind signal separation[END_REF] are based on S = A -1 A (or S = A † A for non-square A). The details of these indices are as follows.

Comon index [12]

Comon's index is a combination of L 1 and L 2 norms, and is calculated as:

1 (S) = N i=1 N j=1 |S ij | -1 2 + N j=1 N i=1 |S ij | -1 2 , N i=1 N j=1 |S ij | 2 -1 + N j=1 N i=1 |S ij | 2 -1 .
In [START_REF] Comon | Independent component analysis, a new concept?[END_REF], it has been proved that 1 is invariant to permutation, i.e. 1 (A, A) = 1 (A, AP Λ). Moreover, it has been shown that 1 (A, A) = 0 if and only if A = AP σ Λ, where σ is the optimal permutation. However, 1 can increase enormously, depending on the values of matrix S, hence, this index is not bounded from above.

Moreau-Macchi index [13]

The index proposed in [START_REF] Moreau | A one stage self-adaptive algorithm for source separation[END_REF] measures a gap between matrix S and a permutation matrix. It is defined as:

2 (S) = N i=1   N j=1 |S ij | 2 (max k |S ik |) 2 -1   + N j=1 N i=1 |S ij | 2 (max k |S kj |) 2 -1 .
Dividing by the maximum value (e.g. (max k |S ik |) 2 ) provides an upper bound for 2 unlike 1 .

Amari index [14]

This performance index takes the form:

3 (S) = N i=1   N j=1 |S ij | max k |S ik | -1   + N j=1 N i=1 |S ij | max k |S kj | -1 .
The only difference between Amari and Moreau-Macchi index is the power 2 which exists in 2 . Therefore, calculating 3 is less costly compared to 2 . In addition, as for 2 , the division by the maximum value (e.g. max k |S ik |) provides an upper bound for 3 .

An accurate investigation of indices reviewed in this section reveals that 1 is not bounded from above. Furthermore, the upper bounds on 2 and 3 have not been studied in [START_REF] Moreau | A one stage self-adaptive algorithm for source separation[END_REF][START_REF] Amari | A new learning algorithm for blind signal separation[END_REF], so that their upper bound cannot be easily interpreted.

In order to obtain interpretable upper bounds and to reduce computational cost, one may think of replacing S = A † A by C, but in this case the property that i = 0 is equivalent to 0 = 0, for i ∈ {1, 2, 3} does not hold anymore.

Our proposed index: CorrIndex

In this section, we introduce, "CorrIndex", which is based on a correlation matrix. Remind that we define C = |A H A|, where A ∈ C M ×N and A ∈ C M ×N and modulus is understood entrywise. In addition, we assume that the columns of A and A are normalized by their L 2 norms.

Basically, if 0 (A, A) = 0, N entries of C are one, since |a n | = |â n | and the columns of A and A are normalized to unit L 2 norms. Remember that it is desired that a performance index is zero if and only if 0 (A, A) = 0. In order to satisfy these basic requirements in the matrix case, i.e. M > 1, CorrIndex is defined as follows:

CorrIndex(C) = 1 2N N i=1 | max k C ik -1| + N j=1 | max k C kj -1| . (8) 
The if CorrIndex = 0 (cf. Proposition 2). In addition, according to [START_REF] Galil | Efficient algorithms for finding maximal matching in graphs[END_REF], it is obvious that if the distance between A and A is zero, then CorrIndex = 0. Therefore, the two requirements mentioned above are simply satisfied by [START_REF] Galil | Efficient algorithms for finding maximal matching in graphs[END_REF]. Further, CorrIndex is invariant to permutation and scaling (cf. Proposition 1).

Remark: It can be also observed that CorrIndex is bounded: 0 ≤ CorrIndex ≤ 1.

According to (8), unlike 2 and 3 , the upper bound of CorrIndex is easier to interpret when M > 1, since it is achieved when entries of C are minimal (i.e the largest possible angular distance between A and A). In particular, when M ≥ 2N , C = 0 when all the columns of A and A are orthogonal to each other, which yields CorrIndex = 1. Next, as proved below, the zero lower bound is meaningful, since it corresponds to 0 = 0.

The one-row case: On the other hand in the row vector case, i.e. M = 1, as CorrIndex is based on (2), we should return back to the basic minimization of finding optimal assignment (σ), which is a restatement of (2) as follows:

argmin σ 1 2 N n=1 (a n -âσ(n) ) 2 . (9) 
In order to respect [START_REF] Munkres | Algorithms for the assignment and transportation problems[END_REF] and to consider the scaling ambiguity, a new matrix

C with entries C ij = (|a i | -| a j |)
2 is used to define CorrIndex for row vectors:

CorrIndex(C) = 1 2N N i=1 min k C ik + N j=1 min k C kj . (10) 
Comparing ( 8) and [START_REF] Duan | Linear-time approximation for maximum weight matching[END_REF] reveals that "max" and "1" have been replaced with "min" and "0", respectively, which helps benefit from the same properties as [START_REF] Galil | Efficient algorithms for finding maximal matching in graphs[END_REF] in the vector case.

In the following, it is shown that CorrIndex is invariant to scaling and permutation, i.e. CorrIndex(A, A) = CorrIndex(A, AP Λ). Moreover, it is shown that CorrIndex(C) = 0 if and only if A = AP σ Λ, i.e. 0 (A, A) = 0.

Proposition 1. CorrIndex is invariant to permutation and scaling:

CorrIndex(A, A) = CorrIndex(AP Λ, A) = CorrIndex(A, AP Λ). ( 11 
)
Proof. 

CorrIndex(A, A) = 0 ⇐⇒ A = AP σ Λ. ( 12 
)
Proof. Firstly, if A = AP σ Λ, then max k C ik = 1, ∀i and max k C kj = 1, ∀j.

Thus CorrIndex(A, A) = 0. Secondly, we prove the converse. If CorrIndex(A, A) = 0, then it implies that max k C ik = 1, ∀i and max k C kj = 1, ∀j. From these two equalities, it can be inferred that there is at least one 1 in each column and

row of C. Let us assume C ij = |a H i âj | = 1.
According to the Cauchy-Schwarz inequality and the assumption of normalized columns of A and A, we have

|a H i âj | ≤ a i âj ,
where the equality of two sides occurs if and only if a i = âj .

Since such a conclusion holds for all other associated pairs of columns of A and

A, therefore, A = AP σ Λ.

As mentioned before, it is hard to assess the relative error made on loading matrices in tensor decompositions, because of scaling and permutation ambiguities [START_REF] Comon | Tensors: a brief introduction[END_REF]. So as to overcome these ambiguities, we can use CorrIndex as a performance on estimating loading matrices. However, if we report CorrIndex on each loading matrix separately, it would be an optimistic index, since implicitly a different permutation would be permitted for each loading matrix.

In order to have a more reliable performance index, we can apply CorrIndex to a matrix X, built upon loading matrices stacked one below the other. In other words, for the tensor described in (5), CorrIndex(X, X) applies to:

X =      A (1)
A ( 2)

A (3)      , X =      A (1)
A ( 2)

A (3)      .

Discussion and computer results

A multi-aspect comparison between CorrIndex and other reviewed methods has been carried out, and is reported in Table 1, where the methods of Section 2.1 and 2.2 are referred by "Greedy" and "Graph", respectively. The number of multiplications of each stage, i.e. computing the input matrix (C = |A H A| or S = A † A), estimating the permutation and computing the index, are reported.

In addition, the last column of Table 1 ("Significance of upper bound") indicates if the upper bound makes sense, i.e. returning the maximum index value for the largest distance between A and A. According to Table 1, it is inferred that CorrIndex has the lowest computational complexity compared to the others in terms of the number of multiplications besides its theoretical guarantee, its invariance to permutation and scaling ambiguity and its meaningful bounds.

In the rest of this section, we report either the relative error (for the greedy and graph-based methods) which is defined in [START_REF] Moreau | A one stage self-adaptive algorithm for source separation[END_REF] or the indices i (Moreau-Macchi, Amari, . . . ). As greedy and graph-based methods estimate the permutation, we report the relative error between normalized A and A, by means of estimated matrix P , as follows:

relative error = A -AP F A F , (13) 
where . F denotes the Frobenius norm. Remind that P is aimed at being a permutation matrix, but that it might not be (see Section 2.1.1). 

Greedy O(N 2 M ) 0 O(2M N ) No Graph O(N 2 M ) O(8N 3 ) O(2M N ) Yes Linprog O(N 2 M ) O(N 4 ) O(2M N ) Yes Comon [12] O(11N 3 ) - O(2N 2 ) No Moreau-Macchi [13] O(11N 3 ) - O(2N 2 ) No Amari [14] O(11N 3 ) - O(2N ) No CorrIndex O(N 2 M ) - 1 Yes
The index and computation time of each index in a numerical experiment is reported in Table 2 to evaluate the methods practically. This experiment is executed on a laptop with a processor of 3.1 GHz Intel Core i5, 16 GB RAM, running macOS Mojave and MATLAB 2019a.

In order to show the drawbacks of greedy methods, this experiment is done on some matrices, A ∈ R M ×N , whose columns are highly correlated. For this purpose, a correlation matrix, R N ×N , of the columns of A is designed such that its diagonal and off-diagonal entries are 1 and γ, respectively, where γ is an arbitrary mutual coherence constant among the columns of A. Then, by considering the Cholesky decomposition of R, i.e. R = L T L, and a random orthogonal matrix U M ×N (U can be obtained by the QR decomposition of a random matrix), we set A = U L.

A is generated by permuting randomly the columns of A and adding a noise matrix, W , of the same size as A with i.i.d. entries of Gaussian distribution with zero mean and unit variance, and weighted by the parameter δ. The variance δ 2 of the additive noise is adjusted such that we reach a desired Signal to Noise Ratio (SNR) defined as: SNR = 10 log 10 i,j A(i, j) 2 i,j δ 2 W (i, j) 2 .

(

) 14 
At the end, the columns of A and A are normalized. In the experiment of Table 2, M = 150, N = 100, with the mutual coherence constant γ = 0.75, δ = 0.1 (which is equivalent to SNR = -1.76 dB), and

U is an orthogonal matrix obtained by concatenating the first N left-singular vectors of a random matrix whose entries are chosen randomly from a uniform distribution on (0, 1). The reported values are averaged over 50 realizations.

The indices obtained by greedy methods and reported in Table 2 explicitly

show the effect of coherence of input matrix on these types of methods. For instance, according to the performed experiment, greedy methods either report less (37%) or larger (105%) error than the exact index (86%). Note that as greedy methods try first to estimate permutation P , and then calculate the error between matrices AP and A; hence, the indices computed by greedy methods may be compared to the exact error computed by graph-based methods. However, comparing other indices such as CorrIndex with the exact error does not make sense, since these indices are intrinsically different from [START_REF] Moreau | A one stage self-adaptive algorithm for source separation[END_REF].

As can be seen in Table 2, CorrIndex is the fastest index. In addition, The experiment of Table 2 corresponds to an inaccurate estimation of A (i.e. SNR = -1.76), and all the performance indices (perhaps except the greedy method of [START_REF] Fu | Block-randomized stochastic proximal gradient for low-rank tensor factorization[END_REF] which yields 37%) demonstrate convincingly the fact that estimation is not accurate. In order to evaluate the indices in the opposite situation (accurate estimation), we perform another experiment with the same setting as that of Table 2 except that A is a permuted noiseless version of A 150×100 with γ = 0.95. The result of this experiment is reported in Table 3.

As it can be interpreted from the reported indices in Table 3, the greedy method of [START_REF] Comon | Tensor decompositions, alternating least squares and other tales[END_REF][START_REF] Coloigner | Line search and trust region strategies for canonical decomposition of semi-nonnegative semi-symmetric 3rd order tensors[END_REF] does not report zero relative error between A and A which is not correct. However, in spite of highly correlated columns of A, all indices (except the greedy method of [START_REF] Comon | Tensor decompositions, alternating least squares and other tales[END_REF][START_REF] Coloigner | Line search and trust region strategies for canonical decomposition of semi-nonnegative semi-symmetric 3rd order tensors[END_REF]) demonstrate zero distance between A and A which is true. Comparing Table 2 and Table 3 reveals that the greedy methods are much more sensitive to the correlation of the columns than other indices. As mentioned before, CorrIndex is based on (2) which tries to minimize the least square error between A and A. Therefore, if the distance between A and A increases due to the additive noise in A, CorrIndex will return a larger value. To show this fact in practice, we performed an experiment whose result is depicted in Fig. 1. Generating a random matrix A of dimension 6 × 4, A is obtained by permuting its columns and by adding a noise matrix, W , of the same size as A with independent and identically distributed (i.i.d.) entries of Gaussian distribution with zero mean and unit variance, and weighted by the parameter δ. The variance δ 2 of the additive noise is adjusted such that we reach a desired SNR as described in [START_REF] Amari | A new learning algorithm for blind signal separation[END_REF]. In Table 2, we show the effect of mutual coherence and noise on the results of each index. However, Fig. 2 investigates the effect of noise intensity, which is measured by SNR. In this experiment, as in Table 2, we generate a random matrix A of dimension 150 × 100 with the mutual coherence constant γ = 0.75 and averaged the results over 50 realizations. Then, the matrix A is obtained by 320 permuting randomly the columns of A and by adding a noise matrix according to each SNR value. The goal of this experiment is to show the drawbacks of greedy methods, and to do this, we compare the result of the greedy methods of [START_REF] Fu | Block-randomized stochastic proximal gradient for low-rank tensor factorization[END_REF][START_REF] Comon | Tensor decompositions, alternating least squares and other tales[END_REF][START_REF] Coloigner | Line search and trust region strategies for canonical decomposition of semi-nonnegative semi-symmetric 3rd order tensors[END_REF] by one of the graph-based method (i.e. MWM [START_REF] Duan | Linear-time approximation for maximum weight matching[END_REF]) which outputs the exact error. Therefore, we can simply conclude the inaccuracy of [START_REF] Fu | Block-randomized stochastic proximal gradient for low-rank tensor factorization[END_REF][START_REF] Comon | Tensor decompositions, alternating least squares and other tales[END_REF][START_REF] Coloigner | Line search and trust region strategies for canonical decomposition of semi-nonnegative semi-symmetric 3rd order tensors[END_REF]. As the error output by MWM is exact, the difference between errors output by the greedy methods of [START_REF] Fu | Block-randomized stochastic proximal gradient for low-rank tensor factorization[END_REF][START_REF] Comon | Tensor decompositions, alternating least squares and other tales[END_REF][START_REF] Coloigner | Line search and trust region strategies for canonical decomposition of semi-nonnegative semi-symmetric 3rd order tensors[END_REF] and the one by MWM show the inaccuracy of [START_REF] Fu | Block-randomized stochastic proximal gradient for low-rank tensor factorization[END_REF][START_REF] Comon | Tensor decompositions, alternating least squares and other tales[END_REF][START_REF] Coloigner | Line search and trust region strategies for canonical decomposition of semi-nonnegative semi-symmetric 3rd order tensors[END_REF]. As it is expected, the relative error by greedy method [START_REF] Fu | Block-randomized stochastic proximal gradient for low-rank tensor factorization[END_REF] (resp. [START_REF] Comon | Tensor decompositions, alternating least squares and other tales[END_REF][START_REF] Coloigner | Line search and trust region strategies for canonical decomposition of semi-nonnegative semi-symmetric 3rd order tensors[END_REF]) is optimistic (resp. pessimistic), since its reported error is smaller (resp. larger) than the exact error. In addition, as SNR increases, this error gets larger, which demonstrates that by decreasing the additive noise, the influence of mutual coherence becomes more effective on the result of greedy methods.

Conclusion

In this paper, the problem of computing the distance between two matrices up to permutation and scaling ambiguities is addressed. This problem occurs for instance in tensor decompositions or in blind source separation. Existing performance indices are classified in three main categories: "greedy methods", "graph-based methods" and "invariant indices". These methods are reviewed, and it is inferred that greedy methods are not reliable especially in noisy situations (they are either optimistic or pessimistic). In addition, graph-based meth- 

  be the original and estimated matrices respectively, where C M ×N stands for the set of M by N complex-valued matrices. Let us denote the set of permutations of N elements by Perm(N ), and denote by P σ the matrix associated with the permutation σ ∈ Perm(N ). If the columns of A and A are normalized by their L 2 norms, scaling ambiguity reduces to post-multiplication by a diagonal matrix Λ with entries of unit modulus. Assume A = AP σ Λ + W , where the columns of A and A are normalized,

  contrary to the indices of Comon, Moreau-Macchi and Amari, CorrIndex returns a value in the bounded range [0, 1]. One could normalize the Moreau-Macchi and Amari indices in order to obtain bounded values, but the signification of such upper bounds on these indices has never been investigated.

Figure 1 :

 1 Figure 1: CorrIndex and noise. CorrIndex of a random matrix A 6×4 and its permuted noisy version A. This figure confirms the fact that the larger 0 , the larger CorrIndex.

Figure 1

 1 Figure 1 confirms the fact that the larger 0 , the larger CorrIndex. Therefore, in evaluating different decomposition methods, the one with the least CorrIndex would perform the best.

Figure 2 :

 2 Figure 2: Drawbacks of greedy methods of[START_REF] Fu | Block-randomized stochastic proximal gradient for low-rank tensor factorization[END_REF][START_REF] Comon | Tensor decompositions, alternating least squares and other tales[END_REF][START_REF] Coloigner | Line search and trust region strategies for canonical decomposition of semi-nonnegative semi-symmetric 3rd order tensors[END_REF]. Compare the relative error between a random matrix A 150×100 with the mutual coherence constant γ = 0.75 and its permuted noisy version A versus SNR reported by greedy methods of[START_REF] Fu | Block-randomized stochastic proximal gradient for low-rank tensor factorization[END_REF][START_REF] Comon | Tensor decompositions, alternating least squares and other tales[END_REF][START_REF] Coloigner | Line search and trust region strategies for canonical decomposition of semi-nonnegative semi-symmetric 3rd order tensors[END_REF] and by one of the exact indices, i.e. MWM averaged over 50 realizations.
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 2 Figure2shows the relative error (13) between A as an estimation of A.

  ods and invariant indices are computationally expensive. We propose a new performance index belonging to the class of invariant indices, called CorrIndex, whose upper and lower bounds are easy to interpret, while being computationally cheap.

Table 1 :

 1 Numbers of multiplications of computing each stage of CorrIndex and other methods

	Method	C or S Permutation	Index	Significance
				of upper bound

Table 2 :

 2 A numerical comparison on methods measuring the distance between A 150×100 with the mutual coherence constant γ = 0.75 and its permuted noisy version A with SNR = -1.76 dB averaged over 50 realizations. The index in five first rows of the table is the relative error defined in[START_REF] Moreau | A one stage self-adaptive algorithm for source separation[END_REF]. On the other hand, the four last indices of the table are defined differently and are hence not comparable.

	Method	Index Computing time (ms)	Significance
				of upper bound
	Greedy of [3]	0.37	0.9	No
	Greedy of [4, 5]	1.05	5.3	No
	Hungarian [9]	0.86	4.5	Yes
	MWM [10]	0.86	2.9	Yes
	Linprog [11]	0.86	1310	Yes
	Comon [12]	1.8e4	3.3	No
	Moreau-Macchi [13] 897.91	3.3	No
	Amari [14]	3.2e3	2.9	No
	CorrIndex	0.36	0.4	Yes

Table 3 :

 3 A numerical comparison on methods measuring the distance between A 150×100 with the mutual coherence constant γ = 0.95 and its permuted noiseless version A averaged over 50 realizations. The index in five first rows of the table is the relative error defined in[START_REF] Moreau | A one stage self-adaptive algorithm for source separation[END_REF].The four last indices of the table are defined differently and are hence not comparable.

	Method	Index	Computing time (ms)	Significance
				of upper bound
	Greedy of [3]	3.82e -17	0.89	No
	Greedy of [4, 5]	0.10	5.2	No
	Hungarian [9]	0	2.7	Yes
	MWM [10]	0	4.0	Yes
	Linprog [11]	0	1630	Yes
	Comon [12]	2.14e -13	3.3	No
	Moreau-Macchi [13]	0	4.5	No
	Amari [14]	3.35e -16	3.8	No
	CorrIndex	2.37e -16	0.59	Yes