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Abstract

Permutation and scale ambiguity are relevant issues in tensor decomposition

and source separation algorithms. Although these ambiguities are inevitable

when working on real data sets, it is preferred to eliminate these uncertainties

for evaluating algorithms on synthetic data sets. The existing methods and

measures for this purpose are either greedy and unreliable or computationally

costly. In this paper, we propose a new performance index, called CorrIndex,

whose reliability can be proved theoretically. Moreover, compared to the previ-

ous methods and measures, it has the lowest computational cost. By providing

two theorems and a table of comparisons, we will show these advantages of

CorrIndex compared to other measures.

Keywords: Assignment, Bipartite graph, Blind Source Separation, ICA,

Permutation ambiguity, Tensor decomposition, Hungarian algorithm, Optimal
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1. Introduction

Permutation and scale ambiguity are relevant issues in some applications

such as tensor decomposition [1] and source separation [2]. Firstly these two
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ambiguities are inherent in tensor representations, by definition of tensors [1].

Secondly, in Blind Source Separation, statistical independence is not affected5

by scaling or permutation of the sources [2]. A mixing matrix can then only be

obtained up to these ambiguities under the independence assumption. Although

it is impossible to eliminate these ambiguities when working with real data

sets, where the original parameters are not available, it is feasible to get rid of

these uncertainties in evaluating algorithm performance on synthetic data sets.10

Furthermore, reasonable comparisons on synthetic data sets are very helpful

to choose adequately an appropriate algorithm to be applied on real data sets.

Therefore, in order to report reasonably the performance indices of existing

algorithms on synthetic data sets where the desired parameters are accessible,

it is important to employ proper methods to measure the performances.15

Assume that the original and estimated components have been normalized,

and the only remaining ambiguity is the permutation. The existing approaches

to measure the performances of algorithms of source separation and tensor de-

composition can be classified in three main categories: “greedy approaches”,

“graph-based methods” and “invariant measures”. Greedy approaches [3, 4, 5, 6]20

try to assign the most correlated components estimated by an algorithm, and

then compute the error of estimation or decomposition based on the achieved

permutation. Although these methods return back the estimated permutation

as well as performance index, they are not reliable in noisy conditions. In other

words, the reported index by these kinds of methods depends directly on the25

manner of computing and analyzing the correlation matrix.

Graph-based methods [7, 8, 9] are originated from the well-known optimal

assignment problem [10], which is itself a particular case of the optimal transport

problem [11]. Although these kinds of methods have the guarantee to find the

optimal permutation, they are computationally expensive, especially when the30

size of the correlation matrix is larger than 10× 10.

However, the viewpoint of a third category, namely invariant measures [12,

13, 14], differs from the latter approaches. These invariant indices measure the

performance regardless of permutation, and yield an index that can directly be
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used to compare algorithms. The reported indices of [12, 13, 14] are invariant35

to permutation, and the index of [12] will guarantee a zero gap up to permu-

tation between estimated and original variables, if the obtained index is zero.

Nevertheless, the methods of [12, 13, 14] are in the literature of source separa-

tion, and the indices introduced therein utilize the inverse (or pseudo-inverse) of

the mixing matrix, which involves a high computational burden, and becomes40

intractable for large scale data. In addition, the index of [12] is not bounded

from above.

In this paper, we introduce a new performance index, called CorrIndex,

which can be considered to belong to the category of “invariant measures”.

CorrIndex is based on some correlation matrix (in fact scalar products), and45

because of that it does not lead to a high computational cost since matrix

inversion is avoided. In addition, not only CorrIndex is invariant to permutation,

but also it will guarantee a zero gap up to the permutation if CorrIndex = 0.

Therefore, compared to greedy methods, CorrIndex is more reliable. Moreover,

compared to graph-based methods and other invariant measures, it requires the50

lowest computational cost.

This paper is organized as follows. In Section 2, the problem is formulated

and a brief review of previous methods and measures is provided. The proposed

index, CorrIndex, and its comparison with other existing measures is presented

in Section 3. Eventually, the remarks of Section 5 concludes the paper.55

2. Problem formulation and Related works

Let A = [a1,a2, . . . ,aN ] ∈ RM×N+ and Â = [â1, â2, . . . , âN ] ∈ RM×N+ be

the original and estimated matrices respectively. Let denote the group of per-

mutations of N elements by Perm(N), and denote by P σ the matrix associated

with the permutation σ ∈ Perm(N).60

Assume Â = AP σ + W , where the columns of A and Â are normalized

and W is an additive noise. The goal is to measure the gap between Â and

A up to a permutation indeterminacy. This measuring can be done with or

3



without estimating P σ. Seeking the optimal σ, can be written as the following

optimization problem:

argmin
σ

1

2

N∑
n=1

‖an − âσ(n)‖22 = argmax
σ

N∑
n=1

aTn âσ(n). (1)

Let Cij = aTi âj , and denote by C the matrix whose entries are Cij . Then,

if the columns of A and Â are normalized by their L2 norms, we have that

0 ≤ |Cij | ≤ 1. In the sequel, three main approaches of measuring the distance

between A and Â appeared in the literature will be reviewed.

2.1. Methods based on correlation matrix65

In this class of methods, the goal is to associate each column of Â with

the most correlated one in A. In other words, the association is based on C.

According to the manner of selecting these pairs of columns, different approaches

have been developed.

2.1.1. Maximum of each column [3]70

âj is assigned to ai if Cij has the maximum value in the jth column of C.

This straightforward approach has two drawbacks. On one hand, if two or more

maximum values occurred in the same row, a reasonable assignment could not

be concluded. On the other hand, the delivered measure is not reliable, since,

even if the measure is zero, one cannot guarantee Â = AP σ. The following toy75

numerical example illustrates well this problem.

Assume that in an experiment matrix C is:

C =


0.8 0.3 0.1

0.85 0.9 0.5

0.5 0.2 0.7

 . (2)

The concluded assignment by this method is (â1,a2), (â2,a2), (â3,a3) which

is obviously not acceptable because column a2 is selected twice. Computing

the square error via 1
2

∑3
n=1 ‖an − âσ(n)‖22 by considering the assumption of

normalized an and âσ(n) with respect to L2 norm and by substituting the values80
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of aTi âj from Cij , one obtains 3− 0.85− 0.9− 0.7 = 0.55, which is less than the

exact error, 3 − 0.8 − 0.9 − 0.7 = 0.60 (the exact error is given in Section 2.3

with the optimal permutation).

This measure can be proved to be always optimistic since it searches over

a set of assignments larger than Perm(N). Therefore, the reported error based85

on its delivered assignment is always less than or equal to the exact error based

on the optimal assignment.

2.1.2. Greedy approach [4, 5]

In order to avoid a non-acceptable assignment, after detecting the maximum

value of each column of C, its row and column can be removed for the rest of the90

algorithm. In other words, if in jth column of matrix C, Cij is the maximum

value, then the ith row and jth column of C will be ignored in the search of the

next maximum value.

This is a greedy approach, since the index depends on the order of choosing

the maximum values. For example, if this greedy algorithm is applied on matrix95

C expressed in (2), the resulted assignment will be (â1,a2), (â2,a1), (â3,a3)

provided that the columns are swept from left to right. However, if the columns

are swept in the opposite way, the assignment will be (â1,a1), (â2,a2), (â3,a3).

Compared to the optimistic measure, the error output by this greedy approach

by sweeping from left to right, 3 − 0.85 − 0.3 − 0.7 = 1.15, is larger than the100

exact error, 3− 0.8− 0.9− 0.7 = 0.60, while by sweeping from right to left, the

reported error equals to the exact error 0.6.

This measure can be proved to be always pessimistic, since, by imposing a

column ordering, this greedy approach searches over a set of assignments smaller

than Perm(N). Therefore, the reported error based on its delivered assignment105

is always larger than or equal to the exact error based on the optimal assignment.

2.1.3. Score measure [6]

This index, which is also known as congruence [15], is customized for tensors

and is applied to evaluate the performance of a tensor decomposition in terms
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of estimating all the loading matrices together. For instance, this measure for110

a third order tensor T = JA1,A2,A3K is calculated based on the correlation

matrix C = C1 � C2 � C3, where � is the Hadamard product (element-wise

product) and Ci , AT
i Âi, i = 1, 2, 3. This measure is also greedy, since the

assignment is concluded based on the maximum values of C, which have been

chosen in a way explained in 2.1.2, and the corresponding score is an average of115

these selected values.

2.2. Methods based on graph matching

The optimal assignment (or optimal transport) problem is an old, well-known

and fundamental combinatorial optimization problem [8, 9, 11]. Harold Kuhn

in 1955 developed and published the first polynomial time algorithm for optimal120

assignment problems, and he named it “Hungarian method” [7]. In 1957, James

Munkres completed the algorithm by providing a constructive procedure for the

Hungarian method [9], and the complexity of the algorithm was O(N4).

The optimal assignment problem can also be considered as a special case

of Maximum Weighted Matching (MWM), which is a well-known problem in125

graph theory, for which several polynomial time algorithms exist [8]. Actually,

the optimal assignment problem can be modeled by a bipartite [8] graph which

includes two disjoint and independent sets of vertices without any odd-length

cycle, and every edge connects a vertex from one set to another. To be more

precise, two sets of columns of A and Â can be considered as sets of vertices of a130

bipartite graph which are fully connected to each other. Matrix C contains the

weights of each edge in this graph. For the special case of bipartite graphs, as

is the case in the above optimal transport problem, there are also several more

efficient algorithms [8, 10]. The cost of such algorithms depends on the number

of vertices, v, and edges, e. A naive implementation costsO(ev2) [8, 16], or, after135

refinements, two other algorithms cost O(v3) and O(ev log v) [10, 17, 16]. There

are some approximate algorithms as well which costO(e
√
v) orO(e) [18, 10]. For

the corresponding bipartite graph of the optimal assignment problem described

at the beginning of Section 2, v = 2N and e = N2. Therefore, the best exact
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and approximate MWM algorithm cost O(8N3) and O(N2) respectively.140

2.3. Methods based on optimal permutation

Suppose that instead of searching for the optimal permutation (described at

the beginning of Section 2), we consider the following optimization problem [11]:

P ? = argmin
P∈RN×N

+

∑
i,j

DijPij s.t. P1N = P T
1N = 1N , (3)

where D = −C, 1N is a vector of ones of dimension N and the superscript ?

denotes the optimal solution. In other words, we look for a bistochastic matrix,

i.e. a square matrix of non-negative real numbers, whose rows and columns

have unit L1 norm [19]. By vectorizing (concatenating columns) P and D, (3)

can be rewritten in the standard form of linear program [11, Sec. 3.1]:

p? = argmin
p∈RN2

+

dTp s.t. Qp = 12N , (4)

where Q = [1TN � IN , IN �1TN ]T ∈ R2N×N2

, IN and � denote the identity

matrix of size N and the Kronecker product, respectively. Yet, from Birkhoff’s

Theorem, the set of bistochastic matrices is a polyhedron1 whose vertices are

permutations [20, Theorem 8.7.1]. On the other hand, a fundamental theorem145

of linear programming [21, Theorem 2.7] tells that the minimum of a linear

objective in a non-empty polytope (i.e. a finite polyhedron) is reached at a

vertex of the polytope. This permits to relax the search for a permutation into

(3) or (4): in fact, looking for the best bistochastic matrix will eventually yield

a permutation.150

For example, the optimal permutation in experiment (2) is the identity ma-

trix, and therefore, the exact error according to 1
2

∑3
n=1 ‖an − âσ(n)‖22 by con-

sidering the assumption of normalized an and âσ(n) with respect to L2 norm

and by substituting the values of aTi âj from Cij is 3− 0.8− 0.9− 0.7 = 0.6.

1convex by definition.
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In 1947, George B. Dantzig invented the simplex method [22] which finds155

an optimal solution by traversing the edges between vertices on a polyhedron

set. Besides the simplex method, some other interior point methods have been

introduced which move through the interior of the feasible region. In 1979,

Ellipsoid method [23] of this family has been developed which costs O(q6), where

q is the size of unknown vector in the linear programming problem. Recently,160

in 2019 and 2020, by improving the needed matrix multiplications, the running

time has been reduced to O(q2+
1
6 ) [24] and O(q2+

1
18 ) [25]. Therefore, as q = N2

in (4), the lowest complexity to find the optimal permutation of the problem

described at the beginning of Section 2 by the means of linear programming

is approximately O(N4). In addition, Auction algorithm [11, 26] provides a165

sub-optimal solution which costs O(N2) [26].

2.4. Measures invariant to permutation

Methods described in Section 2.1 aim at estimating the permutation first,

and then measure the error based on the estimated permutation. As it is men-

tioned in Section 2.1, these kinds of methods may return non-acceptable results,170

and there is no guarantee that Â = AP σ, even if the measures they output are

zero. In addition, the algorithms of Section 2.2 behave better but become very

costly for large values of N .

However, in the literature of source separation [2], some indices have been

proposed to measure the gap between original and estimated mixing matrices175

without needing to find the corresponding permutation [12, 13, 14]. Moreover,

the measure of [12] guarantees that the gap is zero if and only if Â = AP σ.

The details of these measures are as follows.
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2.4.1. Comon measure [12]

If A is a square matrix, by defining S = A−1Â, Comon measure is calculated

as:

ε1(S) =

N∑
i=1

|
N∑
j=1

|Sij | − 1|2 +

N∑
j=1

|
N∑
i=1

|Sij | − 1|2,

N∑
i=1

|
N∑
j=1

|Sij |2 − 1|+
N∑
j=1

|
N∑
i=1

|Sij |2 − 1|.

In [12], it has been proved that ε1 is invariant to permutation, i.e. ε1(A, Â) =180

ε1(A, ÂP ). Moreover, it has been shown that ε1(A, Â) = 0 if and only if

Â = AP σ, where σ is the optimal permutation. Note that one could replace

A−1 by A† when the mixing matrix A is not square.

2.4.2. Moreau-Macchi measure [13]

This index measures the distance between matrix S = A−1Â (or S = A†Â

for non-square A) and a permutation matrix. It is defined as:

ε2(S) =

N∑
i=1

(

N∑
j=1

|Sij |2

(maxk |Sik|)2
− 1) +

N∑
j=1

(

N∑
i=1

|Sij |2

(maxk |Skj |)2
− 1).

2.4.3. Amari measure [14]185

This performance index is also based on S = A−1Â (or S = A†Â for

non-square A) and takes the form:

ε3(S) =

N∑
i=1

(

N∑
j=1

|Sij |
maxk |Sik|

− 1) +

N∑
j=1

(

N∑
i=1

|Sij |
maxk |Skj |

− 1).

The only difference between Amari and Moreau-Macchi measure is the power 2

which exists in ε2.

An accurate investigation of measures reviewed in this section reveals that

not only calculating these indices are costly, but also computing A−1 or A† is

computationally expensive, since they become intractable in high dimension and190

their accuracy depends on the conditioning of A. In addition, ε2 = 0 and ε3 = 0

do not guarantee the zero gap between A and Â, i.e. Â = AP σ. Furthermore,
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ε1 is not bounded from above. One may think of replacing S = A†Â by C =

AT Â, but in this case the second property of ε1, which guarantees that ε1 = 0

is equivalent to Â = AP σ, does not hold anymore.195

3. Our proposed measure: CorrIndex

In this section, we introduce our index, “CorrIndex”, which is based on

correlation matrix C = AT Â, where A ∈ RM×N+ and Â ∈ RM×N+ . In addi-

tion, assume that the columns of A and Â are normalized by their L2 norms.

CorrIndex is defined as follows:

CorrIndex(C) =
1

2N

[
N∑
i=1

|max
k
|Cik| − 1|

+

N∑
j=1

|max
k
|Ckj | − 1|

]
. (5)

In the following, it will be shown that CorrIndex is invariant to permutation,

i.e. CorrIndex(A, Â) = CorrIndex(A, ÂP ). Moreover, it will be shown that

CorrIndex(C) = 0 if and only if Â = AP σ. It can be also observed that

CorrIndex is bounded: 0 ≤ CorrIndex ≤ 1, where the upper bound is achieved200

when all the columns of A and Â are orthogonal to each other.

Theorem 1. CorrIndex is invariant to permutation:

CorrIndex(A, Â) = CorrIndex(AP , Â) = CorrIndex(A, ÂP ). (6)

Proof. Assume that C1 = AT Â and C2 = (AP )T Â. It is obvious that C2 =

P TC1, and since CorrIndex is invariant to the row permutation according to (5),

the proof is complete. The same proof applies to C3 = AT ÂP , because of the

invariance of CorrIndex to column permutation.205

Theorem 2. Suppose that A ∈ RM×N+ and Â ∈ RM×N+ . CorrIndex(A, Â) = 0

if and only if Â can be written as a permuted version of A:

CorrIndex(A, Â) = 0 ⇐⇒ Â = AP . (7)
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Proof. First, if Â = AP , then maxk Cik = 1,∀i and maxk Ckj = 1,∀j. Thus

CorrIndex(A, Â) = 0. Second, we prove the converse. If CorrIndex(A, Â) = 0,

then it implies that maxk Cik = 1,∀i and maxk Ckj = 1,∀j. From these two

equalities, it can be inferred that there is at least one 1 in each column and

row of C. Let us assume Cij = aTi âj = 1. According to the Cauchy–Schwarz210

inequality and the assumption of normalized columns of A and Â, we have

|aTi âj | ≤ ‖ai‖‖âj‖, where the equality of two sides occurs if and only if ai = âj .

Since such a conclusion holds for all other associated pairs of columns of A and

Â, therefore, Â = AP σ.

4. Discussion and computer results215

A multi-aspect comparison between CorrIndex and other reviewed methods

has been done in Table 1, where the methods of Section 2.1 and 2.2 are re-

ferred by “Greedy” and “Graph” respectively. The number of multiplications

of each stage, i.e. computing the input matrix (C = AT Â or S = A†Â), es-

timating the permutation and computing the index, is reported. In addition,220

the “Guarantee” part in Table 1 indicates whether the method provides some

mathematical theorems of optimality and invariance or not. According to Ta-

ble 1, it is inferred that CorrIndex has the lowest computational complexity

compared to the others in terms of the number of multiplications. Moreover,

CorrIndex is invariant to permutation, and CorrIndex = 0 guarantees zero gap225

up to permutation between A and Â.

The index and computation time of each measure in a numerical experiment

is reported in Table 2 to evaluate the methods practically. This experiment is

executed on a laptop with a processor of 3.1 GHz Intel Core i5, 16 GB RAM,

running macOS Mojav and MATLAB 2019a. In order to show the drawbacks of230

greedy methods, this experiment is done on some matrices, A ∈ RM×N+ , whose

columns are highly correlated. For this purpose, a correlation matrix, RN×N ,

of the columns of A is designed such that its diagonal and non-diagonal entries

are 1 and m respectively, where m is an arbitrary mutual coherence constant

11



Table 1: The number of multiplications of computing each stage of CorrIndex and other

methods

Method C or S Permutation Index Guarantee

Greedy O(N2M) 0 1 7

Graph O(N2M) O(8N3) 1 X

Linprog O(N2M) O(N4) 1 X

ε1 O(11N3) - O(2N2) X

ε2 O(11N3) - O(2N2) 7

ε3 O(11N3) - O(2N) 7

CorrIndex O(N2M) - 1 X

among the columns of A. Then, by considering the Cholesky decomposition of235

R, i.e. R = LTL, and a random orthogonal matrix UM×N (U can be obtained

by the QR decomposition of a random matrix), we set A = UL. Â is earned by

permuting the columns of A and adding Gaussian noise with standard deviation

δ. At the end, the columns of A and Â are normalized. In the experiment of

Table 2, M = 150, N = 100,m = 0.75, δ = 0.1, and U is the first N left-singular240

vectors of a random matrix whose entries are chosen randomly from uniform

distribution on (0, 1). The reported values are averaged over 50 realizations.

The reported measures by greedy methods in Table 2 explicitly show the

effect of coherence of input matrix on these types of methods. For instance,

according to the performed experiment, greedy methods either report less (0.36)245

or larger (1.04) error than the exact measure (0.73). As can be seen in Table 2,

not only CorrIndex is the fastest measure, but also it reports the closest index to

the exact measure (Hungarian and Linprog). Moreover, although the problem

is ill-conditioned due to the high coherence of the columns of A and to additive

noise, CorrIndex is more reliable compared to MWM which is considered as an250

optimal measure.
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Table 2: A numerical comparison on methods measuring the gap between A150×100 and its

permuted noisy version Â

Method Index Computing time

Greedy of [3] 0.36 0.0013

Greedy of [4, 5] 1.04 0.0056

Hungarian [9] 0.73 0.0048

MWM [10] 0.85 0.0030

Linprog [11] 0.73 1.35

Comon [12] 1.8e4 0.0032

Moreau-Macchi [13] 882.84 0.0027

Amari [14] 3.2e3 0.0028

CorrIndex 0.72 0.0004

5. Conclusion

In this paper, the problem of permutation ambiguity after tensor decompo-

sition or blind source separation is addressed. It is mentioned that the previ-

ous methods and measures can be classified in three main categories: “greedy255

methods”, “graph-based methods” and “invariant measures”. These methods

are reviewed, and it is inferred that greedy methods are not reliable especially in

noisy situations. In addition, graph-based methods and invariant measures are

computationally expensive. We propose a new performance index belonging to

the class of invariant measures, called CorrIndex, which is not only reliable, but260

also according to the Table 1, has the lowest computational cost. We also pro-

vide proofs that CorrIndex is invariant to permutation, and that CorrIndex = 0

if and only if A and Â differ by a permutation of columns.
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