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ARTICLE OPEN

Non-glide effects and dislocation core fields in BCC metals
Antoine Kraych1,2, Emmanuel Clouet 2, Lucile Dezerald 3, Lisa Ventelon2, François Willaime 4 and David Rodney1*

A hallmark of low-temperature plasticity in body-centered cubic (BCC) metals is its departure from Schmid’s law. One aspect is that
non-glide stresses, which do not produce any driving force on the dislocations, may affect the yield stress. We show here that this
effect is due to a variation of the relaxation volume of the 1=2h111i screw dislocations during glide. We predict quantitatively non-
glide effects by modeling the dislocation core as an Eshelby inclusion, which couples elastically to the applied stress. This model
explains the physical origin of the generalized yield criterion classically used to include non-Schmid effects in constitutive models of
BCC plasticity. We use first-principles calculations to properly account for dislocation cores and use tungsten as a reference BCC
metal. However, the methodology developed here applies to other BCC metals, other energy models and other solids showing non-
glide effects.

npj Computational Materials           (2019) 5:109 ; https://doi.org/10.1038/s41524-019-0247-3

INTRODUCTION
As stated in 1983 by Christian in the title of his seminal review
paper,1 the low-temperature plasticity of body-centered cubic
(BCC) metals shows “surprizing features” that, more than 30 years
later, are still far from understood. Chief among them is the
breakdown of the Schmid law, the fact that contrary to close-
packed metals like face-centered cubic (FCC) metals, the plastic
yield of BCC metals at low temperatures does not depend only on
the resolved shear stress, i.e., the component of the applied stress
tensor that produces a shear in the slip plane and along the slip
direction. In BCC metals, the yield stress depends not only on the
orientation of the shear plane, resulting in the so-called twinning/
antitwinning (T/AT) asymmetry, but also on components of the
stress tensor that do not drive plastic deformation, called non-
glide stresses. It is well-established that non-Schmid effects are
due to the core properties of screw dislocations with a 1=2h111i
Burgers vector that are responsible for the low-temperature plastic
deformation of BCC metals.2,3 The breakdown of the Schmid law is
ubiquitous among BCC metals and has been reported both
experimentally4–9 and in atomic-scale computer simulations of
screw dislocations.10–14

So far, non-Schmid effects have been modeled phenomenolo-
gically using a generalization of the Schmid law, where the critical
stress is written as a linear combination of the stresses that affect
dislocation motion.15 In the case of BCC metals, four shear stresses
have been found important:16–19 two stresses resolved in
nonparallel planes containing the dislocation Burgers vector to
account for the T/AT asymmetry, and two stresses resolved
perpendicularly to the Burgers vector for non-glide effects. The
generalized yield criterion then depends on a critical stress and
three phenomenological parameters that have been fitted on
atomistic simulations.14,16,20–22 Criteria accounting for more non-
glide stresses have also been proposed.29,32 Generalized yield
criteria have been used successfully in kinetic Monte Carlo,23

dislocation dynamics,24–26 and crystal plasticity21,27–30,32 simula-
tions. However, the physics behind these yield criteria remains
unclear and daunting questions remain unanswered: in particular,
can the phenomenological parameters be linked to properties of

the screw dislocation? Is there a physical justification for the
success of a linear combination of stresses?
Recently, the T/AT asymmetry was physically connected to the

systematic departure of the gliding dislocation trajectory away
from the straight path connecting equilibrium positions.31

Projecting the applied shear stress onto the deviated trajectory
rather than the average glide plane resulted in a modified Schmid
law that has the same functional form as the yield criterion. In this
way, the phenomenological parameter usually used to express the
T/AT asymmetry was explained as reflecting the deviation angle of
the dislocation trajectory from the average glide plane.31

Non-glide effects have been studied through atomistic simula-
tions based on interatomic potentials.2,10,13,14,18,32 Their origin was
attributed to a coupling between the applied stress tensor and the
edge components of the dislocation core field, but the argument
remained qualitative and no formal link was ever demonstrated.10

Clouet et al.33–35 have shown that the core field corresponds to a
short-range dilatation, and can be modeled in anisotropic
elasticity by introducing along the dislocation line force dipoles
represented by their dipolar moment tensor, or equivalently, a
core eigenstrain tensor.36 However, a quantitative link between
the dislocation core field and non-glide effects remains to be
established.
We show here that non-glide effects result from a variation of

the core eigenstrain tensor along the dislocation glide trajectory
and can be quantitatively predicted from the elastic coupling
between the applied stress tensor and the core eigenstrains.
Moreover, we show that the generalized yield criterion derives
from a linearization of the dislocation core energy dependence on
the applied stress tensor. We employ density functional theory
(DFT) first-principles calculations to properly account for disloca-
tion core properties. We consider tungsten, mainly because non-
Schmid effects have been studied in this metal using both
classical21 and bond-order20 potentials, thus allowing for compar-
ison between energy models. However, the methodology devel-
oped here is general and can be applied to all BCC metals and
other solids showing non-glide effects.
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RESULTS
Peierls barrier under a non-glide pure shear stress
We model the energetics of glide of 1=2h111i screw dislocations
using the same methodology as in Ref., 31 which relies on three-
dimensional periodic boundary conditions.37 As illustrated in Fig. 1,
a dipole of straight screw dislocations is introduced along the
Z-axis of the simulation cell. Both dislocations are initially relaxed
in their minimum-energy easy core configuration. The left
dislocation in Fig. 1 has a Burgers vector ½0; 0;�b� with b ¼ffiffiffi
3

p
=2a0 (a0 is the lattice parameter) when its line is oriented

toward Z > 0. This dislocation is moved to an adjacent easy core
position and the corresponding minimum-energy path is com-
puted using the nudged elastic band (NEB) method38 (see the
Methods section and Supplementary Section 1 for details). We
note that the supercell is invariant by translation in the Z direction,
and all results are therefore independent of the cell size in this
direction, which can be reduced to a single Burgers vector. The
energy profile shows a barrier, known as the Peierls barrier, which
reflects the intrinsic resistance of the BCC lattice to the glide of the
screw dislocation. The trajectory followed by the dislocation core
in the XY plane perpendicular to the dislocation lines is obtained
from the variation of the internal stress tensor along the path.31,37

We will come back to this point below.
There are different types of non-glide stresses that have in

common to produce no Peach–Koehler force on the dislocations.
We start with the case of a pure shear perpendicular to the
dislocation Burgers vector considered in previous works.10,13,18

When this shear is applied at 45° of the dislocation glide plane, the
stress tensor, expressed in the cartesian basis B shown in Fig. 1
with the X-, Y-, and Z-axes parallel to ½112�, ½110�, and ½111�,
respectively, is:

Σ ¼
�σ 0 0

0 σ 0

0 0 0
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75

B

: (1)

This stress tensor is applied by deforming the simulation cell
according to anisotropic linear elasticity. The resulting core
trajectories and energy barriers for different magnitudes of σ are
shown in Fig. 2a and b. The core trajectories systematically deviate
from the average horizontal ð110Þ glide plane of the dislocation.
This deviation has been connected with the T/AT asymmetry31

and will be included in our analysis below, when we consider the
coupled effect of non-glide and resolved shear stresses. Figure 2a
also evidences that the core trajectory is remarkably unaffected by
the non-glide stress. A similar insensitivity of the core trajectory
was observed under resolved shear stresses in Ref. 31

The energy barriers in Fig. 2b show a pronounced non-glide
effect. We note first that since non-glide stresses do not produce a
Peach–Koehler force on the moving dislocation, the initial and
final configurations have the same energy. We recover also that
the lattice resistance increases, i.e. the Peierls barrier is higher,
when the ð110Þ glide plane is in compression and the orthogonal
ð112Þ plane is in tension, that is when Σ22 ¼ �Σ11 ¼ σ < 0.
Conversely, the energy barrier decreases and glide is facilitated
when σ > 0 and the glide plane is in tension. This effect has been
systematically observed in studies based on interatomic
potentials.10,13,14,18

In the following, the Peierls barrier in absence of applied stress
is noted VPðXÞ and is expressed as a function of the dislocation
core position along the X-axis (the initial easy core position is used
as a reference with X ¼ Y ¼ 0).

Eigenstrain model of the dislocation core field and coupling with
the applied stress
As illustrated in Fig. 1, screw dislocations in BCC metals induce a
short-range dilatation field in addition to the Volterra elastic
field.33 We account for this core field by modeling the dislocation
core as a cylindrical Eshelby inclusion of surface S0 and eigenstrain
tensor.39–41 The effect on stresses and energies depends only on

the relaxation volume tensor Ω, the product of the inclusion
volume with the eigenstrain. Since we model straight infinite

dislocations, Ω is defined here per unit length of dislocation. We

express it per Burgers vector, Ω ¼ b � S0ϵ�, as done for the Peierls
barriers in Fig. 2b.
In the easy core position, the dislocation is a center of threefold

symmetry. This symmetry imposes that the core eigenstrain tensor
is diagonal with equal components perpendicular to the disloca-

tion: Ω ¼ diagðΩ11;Ω11;Ω33Þ. The lattice expansion due to the
easy core is therefore isotropic in the plane perpendicular to the
dislocation line, as also seen in Fig. 1. We will see below that in this
case, there is no coupling with the pure shear in Eq. (1). However,
along the path away from the initial and final easy core
configurations, the threefold symmetry is broken. As a conse-
quence, Ω11 and Ω22 may be different and the tensor may no
longer be diagonal. We have checked, however, (see Supplemen-
tary Section 2) that the components Ω13 and Ω23 are small and can
be neglected, at least in tungsten. We will use this simplification
here and will consider a relaxation volume tensor of the form:

ΩðXÞ ¼
Ω11 Ω12 0

Ω12 Ω22 0

0 0 Ω33
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Fig. 1 Schematic view of the simulation cell and core eigenstrain model. The cell contains a dipole of screw dislocations separated by a cut
surface A shown in green and a Burgers vector 1=2½111�. Atoms in different ð111Þ planes appear in different colors. The arrows show the edge
displacements produced by the dislocation cores in the ð111Þ plane (magnified by a factor 50). These fields are modeled by representing the
dislocation core as a cylindrical Eshelby inclusion schematically represented on the right-hand side
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Following Eshelby’s theory,40,42 if an eigenstrain develops in a
system subjected to an applied stress tensor Σ, the energy of the
system is changed by the work of the applied stress over the
inclusion. This implies that when a dislocation is displaced under
the applied stress Σ, the enthalpy per Burgers vector varies as:

ΔHðXÞ ¼ VPðXÞ þ ΣijbiΔAjðXÞ � ΣijΔΩijðXÞ; (3)

where Δ symbols were added to indicate that we consider
variations with respect to the initial easy core configuration. In the
above equation, the first term on the right-hand side is the Peierls
barrier in absence of applied stress. The second term is the work of
the Peach–Koehler force, where ΔA is the variation of the dipole
cut-surface vector (see Fig. 1). In the present calculations, we
displace the left dislocation, such that ΔA ¼ b � ðY;�X; 0Þ with
ðX; YÞ the dislocation position with respect to its initial easy core
position. When applying the non-glide stress of Eq. (1), this term is
zero. The third term is the coupling between the applied stress
tensor and the dislocation core eigenstrain and corresponds to a
linear dependence of the enthalpy on the applied stress tensor. In
case of the pure shear given by Eq. (1), this last term takes the
form �σðΔΩ22 � ΔΩ11Þ and may therefore be nonzero only if the
in-plane components of Ω are different. Note also that Eq. (3) does
not account for the change of elastic interaction between the
mobile and immobile dislocations of the dipole. This yields the
enthalpy of an isolated dislocation and is consistent with the DFT
calculations that are corrected for this energy variation using
anisotropic elasticity (see the Methods section).
To compute Ω, we take advantage of the fact that, if the energy

barriers are computed in simulation cells of fixed shape, a
variation of the cut surface of the dipole and/or of the relaxation

volume tensor of the moving dislocation induces a variation of the
stress tensor:33

Δσij ¼ Cijkl

b � S bkΔAl � ΔΩklð Þ: (4)

The cut-surface term has only XZ and YZ components, where Ω
was found negligible. As detailed in Supplementary Section 2, this
allows to obtain separately ΔA and the four nonzero components
of the relaxation volume tensor. The variation of ΔA was used in
Fig. 2a to plot the dislocation core trajectories.
The eigenstrain model proposed here is general and does not

require any assumption about which stresses affect dislocation
mobility. Only the amplitude of the core eigenstrains controls the
influence of the corresponding stress components. In the
following, we apply this model to tungsten, which will be treated
as an anisotropic metal, with no simplification related to its near
elastic isotropy.

Application of the eigenstrain model in tungsten
The components of the relaxation volume tensor computed along
the Peierls barrier in tungsten in absence of applied stress are
shown in Fig. 3a. We see that ΔΩ11 and ΔΩ22, which account for
the in-plane dilatation of the dislocation core, vary with opposite
signs and are symmetric with respect to the middle of the path. In
contrast, ΔΩ12, which represents an in-plane shear of the core, is
antisymmetric. As illustrated in Fig. 3b, the core deformation is
therefore elliptical and tilted to the right on one side of the path
and to the left on the other side. ΔΩ33 is also symmetric on either
sides of the path and negative, which implies a contraction of the
core parallel to its line direction. However, ΔΩ33 remains small
compared with ΔΩ11 and ΔΩ22. Both the symmetry of ΔΩii
(i ¼ 1; 2; 3) and antisymmetry of ΔΩ12 result from the dyad
symmetry of the BCC lattice around the ½110� axis. This symmetry
imposes that, in absence of applied stress, the dislocation path is
symmetric with respect to the Y-axis, and the energy barrier is an
even function. The dilatation terms, which also satisfy the dyad
symmetry, must therefore also be symmetric even functions. On
the other hand, the in-plane shear breaks the symmetry and has
its sign reversed when the symmetry is applied. It is therefore an
antisymmetric, odd function, equal to zero in the saddle
configuration, midway along the path.
Returning to Eq. (3), we can now predict how the Peierls barrier

varies under a non-glide stress. We note that the stress variations
due to the core eigenstrains induce a correction to the dislocation
enthalpy in Eq. (3) of the form ð1=2ÞΔσijΔΩij . However, jΔσijj<
150MPa (see Supplementary Fig. S2) and jΔΩijj< 1Å

3
b�1 (see Fig. 3),

yielding a correction below 5 10−4 eV b−1, negligible compared
with the Peierls barrier.
We fitted VP and the components of Ω as continuous functions

using Fourier series and used Eq. (3) to predict the dislocation
energy under non-glide stresses. The result is shown as solid lines
in Fig. 4a, where we find an almost perfect agreement with the
DFT calculations performed for the same applied stresses. In Fig.
4b, we consider other non-glide stresses, the pressure

(Σ ¼ �P=3 diagð1; 1; 1Þ) and a tension along the dislocation line,

Σ ¼ diagð0; 0; Σ33Þ. We find that, in tungsten, with both the DFT
calculations and the eigenstrain model, these stresses do not
produce any noticeable effect on the Peierls barrier. The reason is
that the corresponding eigenstrain components, although non-
zero, are small.
We note that the above predictions do not require any

adjustable parameter since the Peierls barrier and relaxation
volume tensor are computed on the path with no applied stress
and are then used to predict enthalpy barriers under stress. This
very good agreement also implies that the core eigenstrain tensor
is not affected by the applied stress in the range considered here,

Fig. 2 DFT calculation of the dislocation core trajectory and energy
barrier under a non-glide pure shear stress. a Dislocation trajectory
and (b) energy barrier between easy core configurations when no
stress is applied (black data and curve) and when either a positive
(blue) or a negative (red) non-glide pure shear stress is applied. The
symbols are the result of NEB DFT calculations using σ ¼ ±1:2 GPa
taken as an example. The colored regions show typical regions of
variation of the energy barrier when σ is either positive or negative.
In (b), the dislocation position X along the ½112� direction is scaled
by the distance between Peierls valleys, d

A. Kraych et al.
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or in other words, that the polarization of the dipolar moment
tensor of the core is negligible.

Critical resolved shear stress for uniaxial loading
We now consider the case of a uniaxial tension or compression, as
done in previous works.10,13,18 The stress tensor produces a
resolved shear stress, which is maximum in a plane making an
angle χ with respect to the ð110Þ glide plane (see inset in Fig. 5a).
Using the fact that, at least in tungsten, neither a pressure nor a
tension along the dislocation line affect the Peierls barrier, we can
show (see Supplementary Section 3) that, in the frame rotated by
χ, the non-glide stress produced by the uniaxial stress tensor is
equivalent to a pure shear as in Eq. (1). In the frame B, the applied
stress tensor is written as:

Σ ¼
�σ cos 2χ �σ sin 2χ τ sin χ

�σ sin 2χ σ cos 2χ �τ cos χ

τ sin χ �τ cos χ 0

2

64

3

75

B

: (5)

The applied resolved shear stress is �τ with τ > 0 to produce a
Peach–Koehler force on the moving (left) dislocation in the X > 0
direction. We show in Fig. 4c examples of Peierls barriers
computed with DFT for different values of τ and σ and χ ¼ 0. As
before, Eq. (3) is used to predict the Peierls barriers, now including
the work of the Peach–Koehler force. The predictions, shown as
solid lines in Fig. 4c, follow again very closely the DFT data. Similar
overall agreement was obtained for different values of σ and χ
(see Supplementary Section 4).
The agreement between Eq. (3) and the DFT data is accurate

enough to use Eq. (3) instead of a numerical fit to extract the
activation enthalpy, ΔH�ðχ; τ; σÞ, i.e. the maximum of the enthalpy
barrier for a given triplet ðχ; τ; σÞ. Examples are shown as symbols
in Fig. 5a for χ ¼ 0. However, while the DFT calculation of ΔH� can
only be run for a finite number of ðχ; τ; σÞ triplets, Eq. (3) yields a
continuous mapping of ΔH�, which allows us to interpolate
between the DFT data in Fig. 5a. As expected, the activation
enthalpy decreases as τ increases. The critical resolved shear stress

at which the enthalpy barrier vanishes is the Peierls stress, τP,
which is reported as symbols in Fig. 5b for the various values of χ
and σ considered in the DFT calculations. We recover here the
generally accepted features of the departure from Schmid’s law:
(1) the Peierls stress is asymmetric and is lower in the twinning
region where χ < 0 compared with the antitwinning region where
χ > 0 and (2) the Peierls stress increases when the shear plane is in
compression, i.e. when σ < 0 and decreases when the shear plane
is in tension, i.e. σ > 0.
The Peierls stresses in Fig. 5b can be expressed analytically from

Eq. (3) in the limit where σ is small enough to perform a first-order
expansion. Details are given in Supplementary Section 5, and we
only summarize here briefly the main steps. When the stress
tensor in Eq. (5) is applied, the dislocation enthalpy per Burgers

Fig. 4 Prediction of the effect of non-glide stresses on Peierls
barriers. Comparison between the NEB DFT data (symbols) and
predictions from the core eigenstrain model (solid lines) in cases of
(a) pure shears perpendicular to the dislocation line (Eq. (1)), (b) a
pressure and a traction along the dislocation line, and (c) under both
resolved and non-glide stresses (σ=−1.2 GPa)

Fig. 3 Variation of the core eigenstrains along the Peierls barrier (a)
and the corresponding stress-free core deformations along the
dislocation trajectory (b). Symbols in (a) are DFT calculations, solid
lines are fits using Fourier series. The deformations in (b) are scaled
by a factor 2

A. Kraych et al.
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vector in Eq. (3) becomes:

ΔHðXÞ ¼VPðXÞ � τb2X
cosðχ � αÞ

cosðαÞ
� σ½ cosð2χÞΔΩeðXÞ � sinð2χÞΔΩtðXÞ�;

(6)

where we introduced ΔΩe ¼ ΔΩ22 � ΔΩ11, which describes the
ellipticity of the core deformation, and ΔΩt ¼ 2ΔΩ12, its tilt. In
agreement with previous work,31 we assimilated the dislocation
trajectory to a zig-zag line inclined by an angle α with respect to
the ð110Þ glide plane. The work of the Peach–Koehler force may
then be rewritten as the second term of the right-hand side of
Eq. (6). Also, in agreement with the paths shown in Fig. 2 and in
Ref., 31 we assume that the trajectory and the angle α do not
depend on the applied stress, i.e. neither on σ nor τ. For given
values of χ and σ, the Peierls stress τP is reached when the
enthalpy barrier disappears. There exists then an unstable position
X� such that ΔH0ðX�Þ ¼ ΔH00ðX�Þ ¼ 0. It can be shown (see
Supplementary Section 5) that, to first order in σ, we have:

τPðχ; σÞ ¼ cosðαÞ
b2

V 0
PðX0Þ � σ cosð2χÞΔΩ0

eðX0Þ � sinð2χÞΔΩ0
tðX0Þ

� �

cosðχ � αÞ ;

(7)

where X0 is the inflexion point on the Peierls barrier such that
V 00ðX0Þ ¼ 0. Using trigonometry detailed in Supplementary Sec-
tion 5, this expression can be rewritten in exactly the same form as
the generalized yield criterion proposed by Vitek et al.:16

τPðχ; σÞ ¼ τ�CR � σ½a2 sinð2χÞ þ a3 cosð2χ þ π=6Þ�
cosðχÞ þ a1 cosðχ þ π=3Þ ; (8)

with τ�CR proportional to V 0
PðX0Þ, a1 ¼ � sinðαÞ=cosðα� π=6Þ, a2

proportional to ΔΩ0
eðX0Þ=

ffiffiffi
3

p � ΔΩ0
tðX0Þ, and a3 proportional to

ΔΩ0
eðX0Þ. The value of the parameters can therefore be computed

solely from the Peierls barrier, the dislocation trajectory and the
core eigenstrains, all computed in absence of applied stress. The
parameters thus obtained are listed in Table 1, and the predicted
variations of the Peierls stress as a function of χ and σ are shown
as solid lines in Fig. 5b. An almost perfect agreement is obtained
with the nonlinear predictions obtained by extrapolating Eq. (6) to
zero. Table 1 also lists parameters published in the literature for
tungsten and obtained by fitting Eq. (8) on atomistic calculations
of the Peierls stress based on a bond-order potential (BOP)20 and
an embedded atom method (EAM) potential.21

The fact that we can recover the generalized yield criterion from
a physical energy model justifies why such a criterion provides an
accurate description of the Peierls stress. It also allows to

understand physically the meaning of each parameter. In
particular, as reported in Ref., 31 the parameter a1 which accounts
for the T/AT asymmetry is a function of α only, and thus reflects
the deviation of the dislocation trajectory between easy core
configurations. Also, a2 and a3 are linked to the core deformation.
More precisely, a3, which is proportional to ΔΩ0

eðX0Þ, reflects the
ellipticity of the in-plane core dilatation, while a2 being propor-
tional to ΔΩ0

eðX0Þ=
ffiffiffi
3

p � ΔΩ0
tðX0Þ, depends on both the ellipticity

and tilt of the dislocation core.
We have shown that the present eigenstrain model is equivalent

to the yield criterion in Eq. (8) when the latter is applicable, i.e. when
a uniaxial stress tensor is applied and the pressure and tensile stress
along the dislocation line do not affect dislocation mobility. Equation
(3) is however more general and can be linearized keeping all the
terms. The resulting criterion is equivalent to the formulation
proposed by Lim et al.,29 with a straightforward link between their
phenomenological parameters and the core eigenstrains. With the
notations of Ref., 29 we have c1 ¼ � tanα, c2 ¼ ΔΩ0

12ðX0Þ=b2,
c3 ¼ ΔΩ0

22ðX0Þ=b2, c4 ¼ ΔΩ0
11ðX0Þ=b2, and c5 ¼ ΔΩ0

33ðX0Þ=b2. Simi-
larly, Koester et al.32 extended Eq. (8) to consider cases where
Σ11 ≠ Σ22 and introduced new parameters related to the present
framework as a4 ¼ ΔΩ0

22ðX0Þ=b2, a5 ¼ ΔΩ0
11ðX0Þ=b2, and

a6 ¼ ΔΩ0
33ðX0Þ=b2.

DISCUSSION
We have shown that non-glide effects on 1=2h111i screw
dislocations in tungsten modeled by DFT calculations are due to
the elastic coupling between the applied stress tensor and the
anisotropic variation of the dilatation induced by the dislocation
core during glide. We modeled this dilatation using eigenstrains.
This approach shows that, while symmetry imposes that the core

Fig. 5 Activation enthalpy and Peierls stress. a Examples of variation of the activation enthalpy with resolved shear stress for various non-glide
pure shear stresses. b Dependence of the Peierls stress on the non-glide stress σ and the angle χ between the plane of maximum shear and
the horizontal ð110Þ glide plane, as illustrated in the inset of (a). In (a), the solid lines are predictions from the eigenstrain model, while the
symbols correspond to the values of τ and σ considered in the DFT calculations. The symbols in (b) were obtained by extrapolating the core
eigenstrain model to zero activation enthalpy for various values of χ and σ. The solid lines are predictions from Eq. (7)

Table 1. Parameters τ�CR, a1 , a2 , and a3 of the generalized yield
criterion for tungsten (Eq. (8)) predicted in this work from DFT
calculations and the eigenstrain model (Eq. (7)) and fitted on atomistic
calculations of the Peierls stress in previous studies based on
interatomic potentials

τ�CR (GPa) a1 a2 a3

Present study (DFT+eigenstrain model) 2.47 0.40 0.06 0.25

Gröger et al.20 (BOP) 4.5 0 0.56 0.75

Cereceda et al.21 (EAM) 2.92 0.938 0.71 4.43
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dilates isotropically in the plane perpendicular to the dislocation
line when the dislocation is in its equilibrium core configuration,
away from this configuration, the deformation is anisotropic and
tilted as illustrated in Fig. 3b. These core deformations, which
couple to the applied stress tensor, affect the energy barrier and in
turn the Peierls stress. One consequence is that the systematic
softening of the Peierls stress observed when the glide plane is in
tension10,13,14,18 is due to the extension of the dislocation core
perpendicular to the glide plane reflected by the variation of ΔΩ22
in Fig. 3a.
The model in Eq. (3) is general, and does not make any

assumption about the nature of the non-glide stresses. In the case
of tungsten considered here, we have shown that tractions and
compressions parallel to the dislocation line and pressure have a
negligible effect on dislocation glide. There is however no
fundamental reason, such as symmetry, to ensure that this is
necessarily the case. From Eq. (3), a traction/compression parallel
to the dislocation line couples to the dislocation energy through

ΔΩ33, a pressure couples through TrðΔΩÞ=3, and a pure shear
along the X- and Y-axes through ΔΩ22 � ΔΩ11. We can see from
Fig. 3 that neither of the first two terms is zero. They are however

small compared with the third term, with roughly ΔΩ33 �
�TrðΔΩÞ � �ðΔΩ22 � ΔΩ11Þ=8 for tungsten. For a given ampli-
tude of applied stress, a pure shear has therefore an effect about
eight times larger than either a traction/compression parallel to
the dislocation line or a pressure, which explains why the Peierls
barriers appears unaffected in Fig. 4b.
We have also shown that, when non-glide effects are limited to

pure shears perpendicular to the dislocation line, the present
eigenstrain model leads to a generalized yield criterion in Eq. (7)
with the same functional form as the classical criterion in Eq. (8).
This allows to understand the physical origin of this criterion. First,
the linear combination of two resolved shear stresses,
τ cosðχÞ þ a1τ cosðχ þ π=3Þ, which accounts for the T/AT asym-
metry, is mathematically equivalent to a projection of the resolved
shear stress τ on an inclined plane, which corresponds to the
deviated dislocation trajectory. Second, the linear combination of
stresses resolved perpendicularly to the Burgers vector,
a2σ sinð2χÞ þ a3σ cosð2χÞ, which accounts for non-glide effects,
is a consequence of the linear coupling between the applied stress
tensor and the core eigenstrains.
We have determined the parameters to describe non-Schmid

effects for the first time from DFT. It is important to stress that these
parameters are obtained from a single NEB calculation, the Peierls
barrier in absence of applied stress, from which we deduce the
Peierls barrier, dislocation trajectory, and core eigenstrains. These
zero-stress data are sufficient to predict the dependence of the
Peierls stress on the crystal orientation and non-glide stresses. This is
possible in particular because the dislocation core trajectory, as
defined here from the stress variation, does not depend sensitively
on the applied stress tensor, as seen in Fig. 2.
Non-Schmid parameters obtained in this work and with other

energy models are listed in Table 1. The BOP potential predicts
a1 ¼ 0, i.e. no T/AT asymmetry, while the EAM potential predicts
a1 � 1, i.e. a very strong T/AT asymmetry. The first case corresponds
to α ¼ 0, i.e. a flat trajectory, while the second case is α ∼ −30°, i.e. a
trajectory which passes very close to the atomic column in the
twinning region (χ < 0) in-between the easy core positions. This is a
general tendency of EAM potentials, which underestimate the
energy of the dislocation core in the vicinity of the atomic column
and may even predict a metastable split core, in contrast with DFT
calculations.43,44 In the present DFT calculations, we find an
intermediate value, α=−16° and a trajectory, which is neither flat
nor close to the split core, as seen in Fig. 2b. This value is more
negative than reported in our previous work,31 which is consistent
with the larger T/AT asymmetry predicted with the present
methodology. The BOP and EAM potentials also find larger values

of a2 and a3 than DFT. In particular, the EAM potential predicts a
very large value of a3, which physically implies a very large ellipticity
and rapid variation of the core deformation with the dislocation
position, since a3 is proportional to ΔΩ0

e. The smaller values of a2
and a3 found by DFT imply less pronounced non-glide effects. We
note that among the different parameters, the α angle and
consequently a1 are the least well defined quantitatively, in
particular in the case of curved paths reported in Fig. 2a. On the
other hand, the relaxation volumes and therefore a2 and a3 are
defined without ambiguity, since they are computed from the stress
variation along the Peierls barrier.
The present eigenstrain approach is not limited to straight

dislocations, and can be applied to kinked dislocations in order to
predict dislocation velocities at finite temperatures. In particular,
the elastic coupling term can be included in a stress-dependent
Peierls barrier and the methodology proposed in Refs. 45,46 can be
used to define a non-glide stress-dependent line tension, to
predict non-glide effects on the kink-pair formation enthalpy.
Used with a computationally efficient energy model which allows
to model long three-dimensional dislocations, the core eigenstrain
variation during kink-pair nucleation can also be computed
directly and incorporated in a dislocation mobility law.47,48 We
note finally that the present approach is not limited to pure BCC
metals and can be applied to other systems, which show non-
glide effects, such as ordered BCC alloys, as NiTi49 or Fe3Al

50 and
hexagonal metals,51,52 including twinning.53

METHODS
Dipoles of 1=2h111i screw dislocations of length b are modeled in a
monoclinic periodic supercell of 135 atoms illustrated in Fig. 1 and
described in details in Supplementary Section 1. All calculations were
performed with the Vienna ab-initio simulation package (VASP),54 using
the generalized gradient approximation with the exchange-correlation
functional of Perdew, Burke and Ernzerhof55 and the projector augmented
wave (PAW) method with a p-semicore electrons pseudopotential. We
applied a kinetic-energy cutoff of 400 eV for the plane-wave basis, a
Methfessel–Paxton electronic density broadening of 0.2 eV and a force
threshold for ionic relaxations of 5 10−3 eV Å−1. With these parameters, we
have along the crystallographic axes, C11 ¼ 504:1 GPa, C12 ¼ 205:7 GPa,
C44 ¼ 138:7 GPa. Zener anisotropy factor is A ¼ 2C44=ðC11 � C12Þ ¼ 0:93,
such that tungsten as modeled here is close to, but not exactly, elastically
isotropic. The Peierls barriers were computed using a 1 × 2 × 16 k-point
mesh in the reciprocal basis fp�

1;p
�
2;p

�
3g of the supercell periodicity vectorsfp1;p2;p3g (see Fig. 1). Computing stresses with sufficient accuracy to

extract core eigenstrains required a denser k-point mesh, 3 × 3 × 24,
generated in the close-to-orthorhombic basis fp�

1;p
�
1 þ p�

2;p
�
3g of recipro-

cal space. Minimum-energy paths were computed in cells of fixed shape
using the NEB method as implemented in VASP and a spring constant of
5 eVÅ−1. Calculations under stress were done with five images, while the
core eigenstrains were obtained with seven images and no applied stress.
The energy paths were corrected to account for the variation of elastic
interaction energy due to the change of separation between the
dislocations using the Babel package.56 The dislocation core trajectories
and eigenstrain tensor were extracted from the variation of the internal
stress tensor along the NEB path using Eq. (4), as explained above and in
Supplementary Section 2.
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