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1 Introduction

1.1 Literature review

In the work, we investigate boundary stabilization of a class of linear first-order hyperbolic systems of
Partial Differential Equations (PDEs) on a finite space domain x ∈ [0, 1]. Such systems are predominant
in modeling of traffic flow [2], heat exchangers [25], open channel flow [4, Chapter 1.4] or multiphase
flow [9, 13, 10]. The coupling between states traveling in opposite directions, both in-domain and at the
boundaries, may induce instability leading to undesirable behaviors. For example, oscillatory two-phase
flow regimes occurring on oil and gas production systems directly result, in some cases, from these
mechanisms [10]. The dynamics of most of these industrial systems are described by nonlinear transport
equations. If we linearize such systems, one obtains a system of the form:

∂tR + Λ+(x)∂xR = M11(x)R +M12(x)S
∂tS − Λ−(x)∂xS = M21(x)R +M22(x)S
R(t, 0) = u(t)
S(t, 1) = HR(t, 1)

(1)

where R ∈ Rd1 , S ∈ Rd2 , Λ+,Λ− > 0 are positive diagonal matrices and H,M11,M12,M21,M22 are
matrices of appropriate dimensions. To stabilize system (1), feedback controls u(t) depending on the
boundary values S(t, 0) were designed. Lyapunov techniques allows to establish exponential stabilization
in Sobolev or Cp spaces when the terms M•• are supposed to be small. Applications to Saint Venant
systems are given in [15, 16, 8, 5, 12].

However when the in-domain coupling term M•• is too large, a simple quadratic Lyapunov function
does not exist [3, 15]. Moreover, spectral analysis shows that when M•• exceed a certain amplitude, the
system is unstable for any control of the form u(t) = FS(t, 0) (F ∈Md1d2(R)) [4, Proposition 5.2]. Note
that in [4, Proposition 5.2] this was proven only for d1 = d2 = 1.

To solve this problem, one can relax the assumption of a feedback control depending only on boundary
terms and use a full-state feedback control of the form u(t) =

∫ 1

0
α(ξ)R(t, ξ) + β(ξ)S(t, ξ)dξ (α(ξ), β(ξ)

are functions taking their values in [0, 1]). Here, we focus on backstepping controls which is a particular
case of full-state feedback controls. Besides, backstepping techniques were primarily designed for ODEs
[19] where the main idea is to find a bijective transformation that maps the system in a simpler to
stabilize one. There is a vast literature on the extension of backstepping to parabolic and hyperbolic
PDEs [24, 20, 23]. The book [21] is a very pedagogical introduction to the topic.

In this paper, we focus on the particular case where d1 = d2 = 1 that is to say that we have only two
heterodirectional transport equations. By a change of variable (see [4, p 176]), it is possible to suppress
diagonal zeroth order terms to obtain:
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∂tR + λ+(x)∂xR = M̃12(x)S

∂tS − λ−(x)∂xS = M̃21(x)R
R(t, 0) = u(t)
S(t, 1) = hR(t, 1)

where h ∈ R, λ+, λ− > 0, M̃12, M̃21 : [0, 1] → R, u(t) is the control and x ∈ [0, 1]. In this article, we
neglect the space dependence of λ1, λ2, M̃12, M̃21 and suppose that they are constant. Moreover, in order
to ease the reading, the tilda notation of M̃12, M̃21 is dropped in the rest of the paper. As a consequence,
the system under consideration writes:

∂tR + λ+∂xR = M12S
∂tS − λ−∂xS = M21R
R(t, 0) = u(t)
S(t, 1) = hR(t, 1)

(2)

where λ+, λ− > 0 and M12,M21 ∈ R.
More precisely, the focus is on the finite-time stabilization of the system with optimal time in Lp([0, 1])

(1 < p ≤ ∞). The problem is to find a full-state feedback control u(t) such that:

∀t ≥ Tmin :=
1

λ+
+

1

λ−
, ‖R(t, ·)‖Lp([0,1]) + ‖S(t, ·)‖Lp([0,1]) = 0.

In the continuous setting, this problem is already solved [4, Chapter 7.4]. However to the author’s
knowledge, no result is known when one discretizes the equations. In [1, Section 3.3], the author designs
a backstepping control from the continuous theory and inject it in the discretized closed loop. More
precisely, inspired from [18], the author uses an iterative algorithm where the characteristic lines are
calculated in order to compute the backstepping kernel (see Section 1.2 for the definition of the kernel).
However, finding the characteristic lines makes the implementation quite difficult when characteristic
velocities are not constant. Here, we do not use the iterative algorithm from [1, Section 3.3], the method
rather relies on a finite volume scheme presented in Section 3, that is easier to implement.

To simulate the closed loop system, a classic upwind finite volume scheme is given. With an example,
we will see that the finite volume scheme used to compute the backstepping control cannot be chosen
arbitrarily. It is mandatory to apply the backstepping method directly on the scheme in itself in order
to build a control. More precisely, if the schemes are not wisely chosen, then instabilities occur when
the in-domain coupling is large. The contribution can be summed up as follows:

• We illustrate on an example that injecting a control synthesized from an arbitrary finite volume
scheme does not stabilize the discretized closed loop system.

• We give a numerical framework for the numerical backstepping theory.

• We prove a finite time stabilization result for the discretized system.

Outline: The article is organized as follows. In Section 1.2, we recall the way to compute the back-
stepping control in the continuous theory. In Section 2, an example is given to show that both schemes
for calculating the control and the solution must be wisely chosen. In Section 3, we propose another
scheme and prove the finite time stabilization of the numerical system using new discretized backstep-
ping techniques. In Section 4, numerical illustrations of our results are given. Finally, conclusions and
perspectives are proposed in the last part of this paper.

2



1.2 The continuous backstepping method

In this section, we recall the continuous backstepping procedure without giving any proof. The system
(2) without boundary condition can be rewritten in the form,

∂tU + Λ∂xU = MU

where

U(t, x) =

(
R(t, x)
S(t, x)

)
,Λ =

(
λ+ 0
0 −λ−

)
,M =

(
0 M12

M21 0

)
.

To find a feedback control, we use the strategy of backstepping. A second order Volterra trans-
form allows to pass from the original system (2) to a target system for which finite time extinction is
straightforward: 

∂tU
? + Λ∂xU

? = 0,
U?
1 (t, 0) = 0,

U?
2 (t, 1) = hU?

1 (t, 1).
(3)

Note that we got rid of the 0th order term and that after a time t = Tmin, the solution to (3) is zero for
any initial data.

More precisely, the Volterra transform is expressed as follows:

U?(t, x) = U(t, x)−
∫ 1

x

P (x, ξ)U(t, ξ)dξ (4)

where P takes its values in M2,2(R) and is defined on the triangle {(x, ξ) | 0 ≤ x ≤ ξ ≤ 1}.
With such transformation, we express the time derivative of U?:

∂tU
?(t, x) = ∂tU(t, x)−

∫ 1

x

P (x, ξ)∂tU(t, ξ)dξ

= ∂tU(t, x)−
∫ 1

x

P (x, ξ)(−Λ∂ξU +MU)(t, ξ)dξ

= ∂tU(t, x) + P (x, 1)ΛU(t, 1)− P (x, x)ΛU(t, x)

−
∫ 1

x

(∂ξPΛ + PM)(x, ξ)U(t, ξ)dξ.

For the space derivative:

∂xU
?(t, x) = ∂xU(t, x) + P (x, x)U(t, x)−

∫ 1

x
∂xP (x, ξ)U(t, ξ)dξ.

Gathering previous results, one gets the PDE solved by U?:

∂tU
?(t, x) + Λ∂xU

?(t, x) =
∫ 1

x
(−Λ∂xP − ∂ξPΛ− PM)(x, ξ)U(t, ξ)dξ

+(M + ΛP (x, x)− P (x, x)Λ)U(t, x)
+P (x, 1)ΛU(t, 1).

To get that U? solves (3), the function P is then chosen as the unique solution to the following system:
∂ξPΛ + Λ∂xP + PM = 0
M + ΛP (x, x)− P (x, x)Λ = 0
P (x, 1)Λ(1, h)T = 0

(5)

which is a well-posed transport system. See [4, chapter 7] or [7] for details. This can be rewritten in the
usual PDE form as follows:
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λ+∂ξP11 + λ+∂xP11 = M21P12

λ−∂ξP12 − λ+∂xP12 = −M12P11

λ+∂ξP21 − λ−∂xP21 = M21P22

λ−∂ξP22 + λ−∂xP22 = −M12P21

(6)

with boundary conditions: 
P12(x, x) = − M12

λ++λ−

P21(x, x) = M21

λ++λ−

P11(x, 1) = hλ−
λ+
P12(x, 1)

P22(x, 1) = λ+
hλ−

P21(x, 1).

(7)

Additionally, let us compute the trace of U?: U?
1 (t, 0) = u(t)−

∫ 1

0

p11(0, ξ)U1(t, ξ) + p12(0, ξ)U2(t, ξ)dξ

U?
2 (t, 1) = U2(t, 1) = hU1(t, 1).

Hence to get the same boundary condition at x = 0 as in (3), the control u(t) is chosen such that:

u(t) :=

∫ 1

0

p11(0, ξ)U1(t, ξ) + p12(0, ξ)U2(t, ξ)dξ. (8)

Equations (6)-(8) defines the backstepping control allowing finite-time stabilization for the system
under study.

2 The numerical backstepping approach: the naive way

In this section, a scheme is proposed to compute the backstepping kernel. It is shown by numerical
illustrations that the associated control may not stabilize the closed loop system. This is why, the
method is called the ”naive” method in contrast with the one presented in Section 3 for which stability
will be proved.

2.1 The scheme for the closed-loop system

We discretize the state (R, S) introducing two discretization parameters dt > 0, dx = 1/N(N ∈ N). The
numerical approximation of R, S is piecewise constant on cells [ndt, (n + 1)dt] × [(j − 1)dx, jdx] (n ∈
N?, 1 ≤ j ≤ N). To designate its values on such cells, we introduce the sequences (Rn

j , S
n
j )n∈N?,1≤j≤N−1

and the numerical closed loop system is:

∀j : 1 ≤ j ≤ N,


Rn+1
j −Rn

j

dt
+ λ+

Rn
j −Rn

j−1

dx
= M12S

n
j

Sn+1
j − Snj
dt

− λ−
Snj+1 − Snj

dx
= M21R

n
j .

For boundary conditions, we impose the ghost cell condition:{
Rn

0 = un

SnN+1 = hRn−1
N .

where un is given by:
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un :=
N∑
j=1

(P11,N,jR
n−1
j + P12,N,jS

n−1
j )dx. (9)

where P11, P12, P21, P22 ∈MN,N(R) are the discretized version of P that will be defined just after.

2.2 Resolution of (5)

Before going into the simulations, we need to compute P solving (5) using a scheme that will be chosen
later.

Equations in (5) can be seen as as a system of coupled transport equations on a triangular domain
drawn in Figure 1:

P11(x, 1) = hλ−
λ+
P12(x, 1)

∣∣∣∣∣P22(x, 1) = λ+
hλ−

P21(x, 1)

P 1
2
(x
, x

) =
−M

12
/2

∣ ∣ ∣ ∣P 21(
x,
x)

=
M

21
/2

x = 1

ξ = 1

Figure 1: The domain where P is defined

Here, the dot-dashed lines corresponds to characteristics for P12 and the dashed ones to those of P21

while the plain ones correspond to P11 and P22.
One can see the variable x as a “time” variable and ξ as a space variable. Boundary conditions are

imposed on the diagonal and the upper edge of the triangle. The corresponding “initial data” condition
corresponds to the upper right corner of the triangle in Figure 1. In the next section, we give a naive
method to solve these transport equations on such triangular domain.

2.3 A naive scheme to solve (5)

To solve system (5), a finite difference method is used where x is seen as the time variable while ξ
corresponds to the space variable. To do so, we introduce the step dx = 1/N (N ∈ N∗) and the step
dξ = 1/N . The (x, ξ) mesh is then defined by:

∀i ∈ N, 1 ≤ i ≤ N,
i ≤ j ≤ N

{
xi := (i− 1/2)dx
ξj := (j − 1/2)dξ.
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As a consequence, the grid is Cartesian (and square) and drawn in Figure 2:

x = 1

ξ = 1

Figure 2: The grid for the computation of P

The numerical approximation Pi,j of P is piecewise constant on cells of the form (xi − dx/2, xi +
dx/2)× (ξj − dξ/2, ξj + dξ/2). It is computed as follows:

• For all 1 ≤ j ≤ N , P12,N,j = − M12

λ++λ−
, P21,N,j = M21

λ++λ−
and P11,N,N = −hλ−

λ+

M12

λ++λ−
, P22,N,N =

λ+
hλ−

M21

λ++λ−
.

• Suppose that Pi,• is given for some i ≤ N . Recalling (6), we calculate to calculate Pi−1 using an
upwind scheme:

∀j ≤ i− 1 P12,i−1,j = − M12

λ++λ−

∀j ≥ i P12,i−1,j = P12,i,j + λ−dx
λ+dξ

(P12,i,j−1 − P12,i,j) + dxM12

λ+
P11,i,j.

∀j ≤ i− 1 P21,i−1,j = M21

λ++λ−

∀j ≥ i P21,i−1,j = P21,i,j + λ+dx
λ−dξ

(P21,i,j−1 − P21,i,j)− dxM21

λ−
P22,i,j.

P11,i−1,N = hλ−
λ+
P12,i+1,N

∀i− 1 ≤ j < N P11,i−1,j = P11,i,j + dx/dξ(P11,i,j+1 − P11,i,j) + dxM21

λ+
P12,i,j.

P22,i−1,N = λ+
hλ−

P21,i+1,N

∀i− 1 ≤ j < N P22,i−1,j = P22,i,j + dx/dξ(P22,i,j+1 − P22,i,j)− dxM12

λ−
P21,i,j.

• When all lines of P are computed, it is important to impose:

∀i, ∀j < i, ? ∈ {11, 12, 21, 22}, P?,i,j = 0

to have an upper triangular structure.

Remark 1. Note that the scheme for P12 exhibits a CFL number equal to λ−dx
λ+dξ

= λ−
λ+

whereas for the

scheme for P21, the CFL number is λ+
λ−

. As a consequence, this naive scheme for P is stable only if
λ+ = λ−. ◦
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2.4 Numerical experiments

For numerical experiments, we consider three tests illustrating why such a scheme is not appropriate to
get a finite time stabilization. In the three cases, we consider the same initial data:{

R0
j = −4 sin(50 j

N
)

S0
j = 2× 1 j

N
<0.5 − cos(50 j

N
).

1. For M12 = 2,M21 = −2, dt = 0.002, λ+ = λ− = 1 (Tmin = 2), dx = dξ = 0.0022 (N = 450), the
energy dynamics is shown in Figure 3:

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time(s)

10−3

10−2

10−1

100

L2
 n
or
m

.

Figure 3: The L2 norm of the solution for case 1

The spectra of the closed-loop and open-loop operators are displayed in Figure 4:

−30 −25 −20 −15 −10 −5 0 5 10 15

−40

−20

0

20

40
Open_Loop
Closed_Loop

.

Figure 4: Spectrums of discretized operators for case 1
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Here the action of the control is quite satisfying since in Figure 3, one can clearly see that just
after the extinction time Tmin, there is an abrupt decrease of the solution’s energy. From a spectral
point of view, finite time stabilization is less clear since we have modes of real part around −4
which gives an exponential stability with rate equal to −4 only.

2. In fact when the coupling term M is too large, it is possible to exhibit the lack of effectiveness
of the control synthesized in the previous section. As an example, if we take M12 = 8,M21 = −8
keeping the same discretization parameters (dt, dx...), we obtain Figure 5:

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time(s)

101

102

103

L2
 n
or
m

.

Figure 5: The L2 norm of the solution for case 2

In that case, the spectrum of the closed-loop and open-loop operators are shown in Figure 6:

−30 −25 −20 −15 −10 −5 0 5 10 15

−40

−20

0

20

40
Open_Loop
Closed_Loop

.

Figure 6: Spectra of discretized operators for case 2

One clearly sees that the closed-loop system is unstable even if the “continuous” (ie without
discretization) version is finite-time stable.
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There is a more efficient way to compute the backstepping control and this is the object of the next
section.

3 The numerical backstepping approach

In all this section, an initial data (R0, S0) is taken in (L∞([0, 1]))2. In order to remedy the problem
of effectiveness of the control highlighted in case 2, we apply directly the Backstepping method on the
discretized open-loop system. In addition, we consider two different grids for R and S to avoid problems
of CFL pinpointed in Remark 1.

3.1 The scheme

Let N,α be integers. In this section, we consider two different space grids (see Figure 7), a coarse grid
with N cells, and a fine grid obtained by dividing each coarse cell into α finer cells. Using the notation
dx+ := 1

αN
, dx− := 1

N
and introducing the time step dt > 0, one defines the space-time grid by:

∀1 ≤ ic ≤ N, xcic := (ic − 1/2)dx−
∀1 ≤ if ≤ αN, xfif := (if − 1/2)dx+

∀n ≥ 0, tn := ndt.

− − − − − − − − −

− − − − −
Figure 7: The space grids for α = 2

Moreover, the time step dt > 0 is given such that the following CFL conditions are satisfied:{
ν+ := λ+dt

dx+
≤ 1,

ν− := λ−dt
dx−
≤ 1.

(10)

The following definition will be useful to pass from the coarse grid to the the finer one and vice-versa.

Definition 1. For all 1 ≤ ic ≤ N ,

Nf (ic) :=
{

1 ≤ if ≤ αN | xfif ∈ [xcic − dx−/2, x
c
ic + dx−/2]

}
.

Moreover, 1 ≤ Nc(if ) ≤ N is the unique index such that [xfif − dx+/2, x
f
if

+ dx+/2] ⊂ [xNc(if ) −
dx−/2, xNc(if ) + dx−/2].

The numerical approximation (Rn)n ∈ (RαN)N is piecewise constant on cells of the form ]xfif −
dx+/2, x

f
if

+ dx+/2[ whereas (Sn)n ∈ (RN)N is piecewise constant on cells ]xcic − dx−/2, x
c
ic + dx−/2[. It

is computed as follows:

• The initial data is given by R0
i =

1

dx+

∫ xfif
+dx+/2

xfif
−dx+/2

R0(x)dx and S0
i =

1

dx−

∫ xcic+dx−/2

xcic−dx−/2
S0(x)dx.
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• If we assume that (Rn, Sn) is given at time tn, we compute (Rn+1, Sn+1) with:{
Rn+1 = Rn + dt(−λ+∂+x Rn +M12Πf←cS

n +Bun)
Sn+1 = Sn + dt(λ−∂

−
x S

n +M21Πc←fR
n +B2R

n)
(11)

where operators are defined below.

(i) The positive transport operator ∂+x ∈MαN,αN(R) is:

∂+x :=


1/dx+ 0 · · · · · · 0

−1/dx+ 1/dx+ · · · · · · ...

0 −1/dx+ 1/dx+ · · · ...
... · · · · · · . . .

...
0 · · · · · · −1/dx+ 1/dx+

 ,

whereas the negative one ∂−x ∈MN,N(R) is:

∂−x :=


−1/dx− 1/dx− · · · · · · 0

0 −1/dx− 1/dx− · · · ...

0 0 −1/dx− 1/dx−
...

... · · · · · · . . .
...

0 · · · · · · 0 −1/dx−

 .

(ii) The projection from the coarse grid towards the fine one Πf←c ∈ MαN,N(R) is introduced here.
To define its action, we take a coarse cell indexed by 1 ≤ ic ≤ N and a coarse vector S ∈ RN :

| |

| |
Sic

| | |

Figure 8: The definition of Πf←c

The fine vector Πf←cS ∈ RαN is constructed by copying the value of S in the coarse cell into the
associated fine cells ie:

∀jf ∈ Nf (ic), (Πf←cS)jf = Sic .

For the projection from the fine grid towards the coarse one, the operator Πc←f ∈ MN,αN(R)
is constructed here. To define its action, we take a fine vector R and a coarse cell indexed by
1 ≤ ic ≤ N

10



| |

| |
1
α

∑
j∈Nf (ic)Rj

| | |

Figure 9: The definition of Πc←f

The coarse value (Πc←fR)ic is computed using the arithmetic mean of the values of R in the fine
cells corresponding to the neighborhood of the coarse cell ic. Obviously, we have the following
dual property:

〈R,Πf←cS〉fdx− = 〈Πc←fR, S〉cdx+ (12)

where 〈·, ·〉f , 〈·, ·〉c are the respective canonical scalar products in RαN ,RN .

At a matrix level, this is equivalent to:

Πf←c = αΠT
c←f . (13)

(iii) The discretized boundary control operator B ∈ RαN is given below:

B :=


λ+/dx+

0
...
0

 .

(iv) The boundary transfer operator B2 ∈MN,αN(R) is given by:

B2,N,αN :=
hλ−
dx−

and all other coefficients of B2 are set to zero.

3.2 The numerical backstepping method

We apply the backstepping method to the discretized system (11). We look for a backstepping trans-
formation T as a Volterra transform of the second kind, of the following form:(

R?

S?

)
= T

(
R
S

)
⇐⇒

{
R? = R− P11Rdx+ − P12Sdx−
S? = S

The structure of P11, P12 is upper triangular in a sense that will be defined later.
The system verified by R?,n := Rn − P11R

ndx+ − P12S
ndx− is calculated below:

R?n+1 −R?n

dt
=

Rn+1 −Rn

dt
− P11(−λ+∂+x Rn +M12Πf←cS

n +Bun)dx+

−P12(λ−∂
−
x S

n +M21Πc←fR
n +B2R

n)dx−

Moreover,

11



λ+∂
+
x R

?n = λ+∂
+
x R

n − λ+∂+x (P11R
ndx+ + P12S

ndx−).

Thus, the equation for R? reads:

R?n+1 −R?n

dt
+ λ+∂

+
x R

?n = M12Πf←cS
n +Bun − λ+∂+x (P11R

ndx+ + P12S
ndx−)

−P11(−λ+∂+x Rn +M12Πf←cS
n +Bun)dx+

−P12(λ−∂
−
x S

n +M21Πc←fR
n +B2R

n)dx−
= −Γ11R

n − Γ12S
n + (B − P11Bdx+)un,

(14)

where the terms Γ11,Γ12 are given below:

Γ11 := λ+∂
+
x P11dx+ − λ+P11∂

+
x dx+ + P12(M21Πc←f +B2)dx−,

Γ12 := λ+∂
+
x P12dx− + λ−P12∂

−
x dx− +M12P11Πf←cdx+ −M12Πf←c.

(15)

In what follows, we give a scheme that construct a P such that most of the terms of Γ are equal to
zero. To do so, we see the column index of P (the “x” variable) as a time variable whereas row’s index
is seen as the space variable (the “ξ” variable). The scheme is given below:

• We begin by setting the last lines of P11, P12:

∀1 ≤ jf ≤ αN, P11,αN,jf = 0
∀1 ≤ jc ≤ N, P12,αN,jc = 0

(16)

• Suppose that P12, P11 is given at rows if , · · · , αN , then we calculate P12,if−1,jc by imposing
Γ12,if ,jc = 0 for jc ≥ Nc(if − 1). From (15), we deduce:

λ+
P12,if ,jc − P12,if−1,jc

dx+
dx− − λ−

P12,if ,jc − P12,if ,jc−1

dx−
dx−

+M12[P11Πf←c]if ,jcdx+ −M12[Πf←c]if ,jc = 0. (17)

It is easy to compute [P11Πf←c]if ,jc using local indexes. Using (13), one gets:

[P11Πf←c]if ,jc = [ΠT
f←cP

T
11]jc,if = α[Πc←fP

T
11]jc,if =

∑
i∈Nf (jc)

P11,if ,i.

Then, we compute P11,if−1,jf imposing Γ11,if ,jf = 0 for jf ≥ if − 1:

λ+
P11,if ,jf − P11,if−1,jf

dx+
dx+ − λ+

P11,if ,jf − P11,if ,jf+1

dx+
dx+

+M21[P12Πc←f ]if ,jfdx− + [P12B2]if ,jfdx− = 0. (18)

It is easy to calculate [P12Πc←f ]if ,jf using local indexes. Using (13), one obtains:

[P12Πc←f ]if ,jf = [ΠT
c←fP

T
12]jf ,if =

1

α
[Πf←cP

T
12]jf ,if =

1

α
P12,if ,Nc(jf ).

For [P12B2]if ,jf , we also have:

[P12B2]if ,jf =
hλ−
dx−

P12,if ,Nδjf=αN .

12



Algorithm 1 Calculate P12

P12,if ,jc ← 0 for all 1 ≤ if ≤ αN, 1 ≤ jc ≤ N .
for 2 ≤ if ≤ αN (step = -1) do

for Nc(if − 1) ≤ jc ≤ N do
if jc = Nc(if ) then
P12,if−1,jc ← −M12

αλ+
end if
P12,if−1,jc ← P12,if−1,jc + (1− λ−

λ+

dx+
dx−

)P12,if ,jc + λ−
λ+

dx+
dx−

P12,if ,jc−1 (transport)

P12,if−1,jc ← P12,if−1,jc + M12

αλ+

∑
jf∈Nf (jc)

P11,if ,jfdx+ (exchange)

end for
end for

Algorithm 2 Calculate P11

P11,if ,jf ← 0 for all 1 ≤ if ≤ αN, 1 ≤ jf ≤ αN .
for 2 ≤ if ≤ αN (step = -1) do

P11,if−1,αN ←
hλ−
λ+
P12,if ,N

for if − 1 ≤ jf ≤ αN do
if jf 6= αN then
P11,if−1,jf ← P11,if−1,jf + P11,if ,jf+1 (transport)

end if
P11,if−1,jf ← P11,if−1,jf +M21P12,if ,Nc(jf )

dx−
αλ+

(exchange)
end for

end for

Remark 2. The algorithms immediately give that:{
∀jf < if , P11,if ,jf = 0
∀jc < Nc(if ), P12,if ,jc = 0.

(19)

◦

3.3 Convergence properties of the kernel

In what follows and until the end of the article, C designates a constant independent on the discretization.
Here we present a boundedness result for P which will be useful later:

Proposition 1. If λ−

λ+
dx+
dx−
≤ 1, there exists C∞ > 0 independent on N such that:

‖P11‖L∞([0,1]2) + ‖P12‖L∞([0,1]2) ≤ C∞. (20)

Remark 3. The condition:

λ−

λ+
dx+
dx−

≤ 1

can be interpreted as a CFL condition. It imposes an asymmetry of grids in the sense that if λ−
λ+

> 1,

the grid for R (where the control is applied) needs to be finer than the one for S. ◦
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Proof. The scheme verified by P12 gives:

∀jc > Nc(if ), |P12,if−1,jc| ≤ (1− λ−
λ+

dx+
dx−

)|P12,if ,jc |+
λ−
λ+

dx+
dx−
|P12,if ,jc−1|

+
|M12|
αλ+

∑
j∈Nf (jc)

|P11,if ,j|dx+.
(21)

For jc ≤ Nc(if )− 1, we have:

|P12,if−1,jc| = 0, (22)

whereas for jc = Nc(if ), it holds:

|P12,if−1,jc| ≤
(

1− λ−
λ+

dx+
dx−

)
|P12,if ,jc|+

∣∣∣∣M12

λ+α

∣∣∣∣+
|M12|
λ+α

∑
j∈Nf (jc)

|P11,if ,j|dx+. (23)

Combining (21)-(23), it holds:

‖P12,if−1,·‖L∞([0,1]) = max

{
‖P12,if ,·‖L∞([0,1]),

∣∣∣∣M12

λ−

∣∣∣∣}+ C‖P11,if ,·‖L∞([0,1])dx+.

Similarly, it holds:

‖P11,if−1,·‖L∞([0,1]) ≤ max

{
‖P11,if ,·‖L∞([0,1]),

hλ−
λ+
‖P12,if ,·‖L∞([0,1])

}
+ C‖P12,if ,·‖L∞([0,1])dx−.

Denoting

Aif := max{hλ−
λ+
‖P12,if ,·‖L∞([0,1]), ‖P11,if ,·‖L∞([0,1]),

∣∣∣hM12

λ+

∣∣∣}, it holds:

Aif−1 ≤ (1 + Cdx−)Aif

and hence:

∀1 ≤ if ≤ αN, Aif ≤ eifCdx− ≤ eCα.

Finally, in order to exhibit the exact target system, we need to see which term of Γ is zero:

Lemma 1. The matrix Γ12 is zero except for the first row. Moreover, the term Γ11,if ,jf is non zero only

for jf ∈ Jif − α, if − 2K and if = 1. Hence, Γ11 can be decomposed as Γ11 =: Γ̃11 + Γ̄11 where Γ̃11 is the
subdiagonal part of Γ11 and Γ̄11 = Γ11 − Γ̃11 is non zero only on its first row. Furthermore,

sup
if ,jf

|Γ̃11,if ,jf | ≤ Cdx−.

with C > 0 is independent on the discretization.

In order to see which entry is zero, we represent Γ11,Γ12 for α = 3 putting a cross on each non zero
entry in Figures 10-11:

14



Figure 10: The non zero coefficients for Γ11 (α = 3)

Figure 11: The non zero coefficients for Γ12 (α = 3)

Proof. Let if ≥ 2. For jc ≥ Nc(if − 1) and by Algorithm 1, we have Γ12,if ,jc = 0. For jc ≤ Nc(if ) − 2,
we have:

1. jc < Nc(if − 1) and P12,if−1,jc = 0.

2. jc < Nc(if ) and P12,if ,jc = 0.

3. For all jf ∈ Nf (jc), we have jf < if (because jc ≤ Nc(if )−2 by assumption) and hence P11,if ,jf = 0.

By the definition of Γ12, Γ12,if ,jc = 0.
Now for jc = Nc(if ) − 1, then points 2 and 3 of the previous case hold. If jc = Nc(if − 1), then

by Algorithm 1, Γ12,if ,jc = 0. Otherwise, jc < Nc(if − 1) implying that P12,if−1,jc = 0. Thus, by the
definition of Γ12,if ,jc , one gets Γ12,if ,jc = 0.

For Γ11,if ,jf , the only terms that could be non zero are terms such that if − α+ 1 ≤ jf < if − 1 and
by the definition of Γ11:

|Γ11,if ,jf | ≤ C‖P12‖L∞([0,1]2)dx− ≤ Cdx−

15



where we have used Proposition 1.

Remark 4. If α ≤ 2 then:

sup
if>1,jf

|Γ̃11,if ,jf | = 0.

Indeed, the condition if − α + 1 ≤ jf < if − 1 ⇐⇒ if − α + 1 ≤ jf ≤ if − 2 is empty.
◦

From the computations of the kernel P , we obtained that all the entries of Γ11,Γ12 are zero except
for the first row and some diagonal terms in Γ11. By (14), in order to get rid of the contribution of these
first rows, we impose a control un of the form:

un =
1

λ+ − [P11B]11dx2+

( αN∑
jf=1

Γ11,1,jfR
n
jf
dx+ +

N∑
jc=1

Γ12,1,jcS
n
jcdx+

)
(24)

and thus, the final target system is:
R?n+1 −R?n

dt
+ λ+∂

+
x R

?n = Γ̃11R
n

S?n+1 − S?n

dt
− λ−∂−x S?n = B2R

n +M21Πc←fR
n

(25)

where Γ̃11 is the subdiagonal part of Γ11 (see Figure 10).
Next proposition asserts that the discrete Voltera transform of the second kind is invertible and

continuous uniformly with respect to the parameter of discretization. This will be useful to express the
target system uniquely in terms of star variables. Before presenting the result, it is needed to introduce
the Lp (1 < p <∞) norm for vectors R ∈ RαN , S ∈ RN :

‖R‖Lp([0,1]) = p

√√√√ αN∑
jf=1

|Rjf |pdx+ and ‖S‖Lp([0,1]) = p

√√√√ N∑
jc=1

|Sjc |pdx−.

Proposition 2. Let 1 < p ≤ ∞. There exists C > 0 independent on the discretization such that if
dx− < C, then the operator T is invertible as an operator from Lp([0, 1]) into Lp([0, 1]). Moreover, there
exists a Cback,p > 0 independent on the discretization such that for all R ∈ RαN , S ∈ RN :

1

Cback,p
‖T (R, S)‖Lp([0,1]) ≤ ‖(R, S)‖Lp([0,1]) ≤ Cback,p‖T (R, S)‖Lp([0,1]). (26)

Moreover, there exists L11 ∈MαN,αN(R), L12 ∈MαN,N(R) such that:

∀R? ∈ RαN , S? ∈ RN , T −1
(
R?

S?

)
=

(
R? + L11R

?dx+ + L12S
?dx−

S?

)
.

where (L11, L12) is upper triangular in the sense of (19).

Proof. The first inequality is easy to prove owing Proposition 1 (the proof is left to the reader).
For the second one, we use a fixed point argument. Let (Rk)k be the sequence such that R0 = 0RαN

and:

∀k ≥ 0, Rk+1 = R? + P11R
kdx+ + P12S

?dx−.
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We estimate Rk+1 −Rk in a weighted space. More precisely, let γ > 0 and for all 1 ≤ if ≤ αN

(Rk+1
if
−Rk

if
)e
γxfif =

∑
jf

P11,if ,jf (R
k
jf
−Rk−1

jf
)e
γxfif dx+

=
∑
jf

P11,if ,jf e
−γ(xfjf−x

f
if
)
(Rk

jf
−Rk−1

jf
)e
γxfjf dx+.

For the case p =∞, we have:

‖Rk+1 −Rk‖L∞γ ([0,1]) ≤ supif
∑

jf
|P11,if ,jf |e

−γ(xfjf−x
f
if
)
dx+‖Rk −Rk−1‖L∞γ ([0,1]). (27)

where L∞γ is the weighted L∞ norm:

∀R ∈ RαN , ‖R‖L∞γ ([0,1]) := max |Rif |e
γxfif .

Because of the uniform estimate from Proposition 1 and the upper triangular structure (19), one
gets:

sup
if

∑
jf

|P11,if ,jf |e
−γ(xfjf−x

f
if
)
dx+ ≤ C∞ supif

∑
jf≥if e

−γ(xfjf−x
f
jf

)
dx+

= C∞ supif
∑

jf≥if e
−γ(xfjf−x

f
if
)
dx+

≤ C∞
dx+

1−e−γdx+ = C∞
γ

γdx+
1−e−γdx+ .

(28)

Using the boundedness around 0 of the function x 7→ x
1−e−x and taking dx+ ≤ C/γ:

sup
if

∑
jf

|P11,if ,jf |e
−γ(xfjf−x

f
if
)
dx+ ≤

2C∞
γ

.

With 4C∞ ≤ γ and dx+ ≤ C/γ (with dx+ <
C

4C∞
):

∀n > 0, ‖Rk+1 −Rk‖L∞γ ([0,1]) ≤
1

2
‖Rk −Rk−1‖L∞γ ([0,1]).

For the case 1 < p <∞, the conjugate exponent is q := p
p−1 and:

‖Rk+1 −Rk‖Lpγ([0,1]) ≤
p

√√√√√∑
if

∑
jf

|P11,if ,jf |qe
−γq(xfjf−x

f
if
)
dx+


p
q

dx+‖Rk −Rk−1‖Lpγ([0,1])

where:

∀R ∈ RαN , ‖R‖Lpγ([0,1]) := p

√∑
jf

|Rjf |pe
pγxfif .

Using Proposition 1, (19) and for dx+ ≤ C/γ, we get by similar computations as in (28), that:

p

√√√√√∑
if

∑
jf

|P11,if ,jf |qe
−γq(xfjf−x

f
if
)
dx+


p
q

dx+ < C∞

(
2

q

)1/q

γ−1/q

and for 2q+1Cq∞
q
≤ γ and dx+ ≤ C/γ:
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∀n > 0, ‖Rk+1 −Rk‖Lpγ([0,1]) ≤
1

2
‖Rn −Rk−1‖Lpγ([0,1]).

As a consequence, for 1 < p ≤ ∞ the series
∑∞

k=0R
k+1 − Rk is convergent and the sequence (Rk)k

converges in Lp([0, 1]) towards a limit R ∈ Lp([0, 1]). Moreover, we have for γ large enough:

‖R‖Lpγ([0,1]) ≤
∞∑
k=0

‖Rk+1 −Rk‖Lpγ([0,1])

≤

(
∞∑
k=0

1

2k

)
‖R1‖Lpγ([0,1])

≤

(
∞∑
k=0

1

2k

)
(‖R?‖Lpγ([0,1]) + ‖S?‖Lpγ([0,1])).

Using the fact that ‖ · ‖Lp([0,1]) ≤ ‖ · ‖Lpγ([0,1]) ≤ eγ‖ · ‖Lp([0,1]), one finally gets:

‖R‖Lp([0,1]) ≤

(
∞∑
k=0

1

2k

)
eγ(‖R?‖Lp([0,1]) + ‖S?‖Lp([0,1])).

This proves (26) taking γ = 2q+1Cq∞
q

which does not depend on the discretization.
To finish the proof of the proposition, it suffices to write that:(

R
S

)
=

(
R?

S?

)
+

(
P11dx+ P12dx−

0 0

)(
R
S

)
and by induction, it holds:(

R
S

)
=

(
R?

S?

)
+
∞∑
k=1

(
P11dx+ P12dx−

0 0

)k (
R?

S?

)
.

Owing the strict upper triangular structure of P•,•, we get that:(
L11dx+ L12dx−

0 0

)
:=

∞∑
k=1

(
P11dx+ P12dx−

0 0

)k
with L11 strict upper triangular and L12 verifying (19) (easy to prove by induction).

3.4 Proof of the finite time stabilization result

Owing Proposition 2, it is possible to write the target system (25) as:
R?n+1 −R?n

dt
+ λ+∂

+
x R

?n = Γ̃11R
n

S?n+1 − S?n

dt
− λ−∂−x S?n = (B2 +M21Πc←f )(R

?n + L11R
?ndx+ + L12S

?ndx−).
(29)

Then using Lemma 1, next lemma shows that the right hand side of the equation for R? in (29) can be
neglected.
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Lemma 2. For all T > 0 and 1 < p < ∞, there exists C > 0 independent on the parameters of
discretization such that:

∀n : ndt ≤ T, ‖R?n − R̃?n‖pLp([0,1]) + ‖S?n − S̃?n‖pLp([0,1]) ≤ Cdxp−

n∑
m=0

(‖R?m‖pLp([0,1]) + ‖S?m‖pLp([0,1]))dt.

where R̃?, S̃? satisfies the same system as (29) without the term Γ11, that is
R̃?n+1 − R̃?n

dt
+ λ+∂

+
x R̃

?
n = 0

S̃?n+1 − S̃?n

dt
− λ−∂−x S̃?n = (B2 +M21Πc←f )(R̃

?n + L11R̃
?ndx+ + L12S̃

?ndx−),

(30)

with initial data: {
R̃?0 = R?0

S̃?0 = S?0.

Before going into the proof of Lemma 2, we will prove the following preliminary result:

Lemma 3. For all T > 0, there exists C > 0 independent on the discretization such that for every
(fn)n ∈ (RαN)N and every (R̃?n, S̃?n)n satisfying:

R̃?n+1 − R̃?n

dt
+ λ+∂

+
x R̃

?n = fn

S̃?n+1 − S̃?n

dt
− λ−∂−x S̃?n = (B2 +M21Πc←f )(R̃

?n + L11R̃
?ndx+ + L12S̃

?ndx−),

(31)

then:

∀n : ndt ≤ T, ‖R̃?n‖pLp([0,1]) + ‖S̃?n‖pLp([0,1]) ≤ C

(
‖R̃?0‖pLp([0,1]) + ‖S̃?0‖pLp([0,1]) +

n∑
k=0

‖fn‖pLp([0,1])dt

)
.

Proof. As this is classical, we give only a rapid sketch of the proof here.
Let 1 < p <∞, then by the convexity of x→ |x|p:

∀jf ≥ 2, |R̃?n+1
jf
|p ≤ (1 + dt)p−1

(
(1− ν+)|R̃?n

jf
|p + ν+|R̃?n

jf−1|
p + dt|fnjf |

p
)
.

Hence, summing over jf and multiplying by dx+, one gets:

‖R̃?n+1‖pLp([0,1]) ≤ (1 + dt)p−1
(
‖R̃?n‖pLp([0,1]) + dt‖fn‖pLp([0,1]) − ν+|R̃

?n
αN |pdx+

)
.

For S?, the method is similar:

∀jc ≤ N − 1, |S̃?n+1
jc
|p ≤ (1 + Cdt)p−1

(
(1− ν−)|S̃?njc |

p + ν−|S̃?njc+1|p

+dt|M21|
(
|[Πc←fL11R̃

?n]jcdx+|p + |[Πc←fL12S̃
?n]jcdx−|p

+|[Πc←f R̃
?n]jc |

))
.

Then, summing over jc, multiplying by dx− and owing the fact that L11dx+, L12dx− are bounded as
operators from Lp to Lp((Proposition 2), one gets:
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‖S̃?n+1‖pLp([0,1]) ≤ (1 + Cdt)p
(
‖S̃?n‖pLp([0,1]) + dt‖R̃?n‖pLp([0,1]) + C|R̃?n

αN |pdx−
)

where the last term corresponds to the boundary condition at x = 1.
Thus, it is possible to take an η > 0 such that En := ‖R̃?n‖pLp([0,1]) + η‖S̃?n‖pLp([0,1]) verifies:

En+1 ≤ (1 + Cdt)p(En + ‖fn‖pLp([0,1])dt)
which immediately gives the result of the Lemma by induction.

Now we are able to prove Lemma 2:

Proof of Lemma 2. By using Lemma 1, we have:

‖Γ̃11R
n‖Lp([0,1]) ≤ Cdx−‖Rn‖Lp([0,1]).

By Proposition 2, one can bound ‖Rn‖Lp([0,1]) by ‖R?n‖Lp([0,1]) + ‖S?n‖Lp([0,1]) to get:

‖Γ̃11R
n‖Lp([0,1]) ≤ Cdx−(‖R?n‖Lp([0,1]) + ‖S?n‖Lp([0,1]))

where we may have changed the constant C.
Applying Lemma 3 to (R̃?n−R?n, S̃?n−S?n)n, we can conclude easily. This ends the proof of Lemma

2.

As a consequence, the energy dynamics of R?, S? can be estimated by the one of R̃?, S̃?. Indeed,

‖R?n‖pLp([0,1]) + ‖S?n‖pLp([0,1]) ≤ C
(
‖R?n − R̃?n‖pLp([0,1]) + ‖S?n − S̃?n‖pLp([0,1])

+‖R̃?n‖pLp([0,1]) + ‖S̃?n‖pLp([0,1])
)

≤ Cdxp−

n∑
m=0

(‖R?m‖pLp([0,1]) + ‖S?m‖pLp([0,1]))dt

+C
(
‖R̃?n‖pLp([0,1]) + ‖S̃?n‖pLp([0,1])

)
and thus by Grönwall inequality [17, p.1], there exists a constant C independent on the parameters of
discretization such that:

‖R?n‖pLp([0,1]) + ‖S?n‖pLp([0,1]) ≤ C
(
‖R̃?n‖pLp([0,1]) + ‖S̃?n‖pLp([0,1])

)
+Cdxp−

n∑
m=0

eCdx
p
−(n−m)dt(‖R̃?m‖pLp([0,1]) + ‖S̃?m‖pLp([0,1]))dt.

Hence for all T > 0 fixed and 1 < p <∞, there exists a constant C > 0 such that:

∀ndt ≤ T, ‖R?n‖Lp([0,1]) + ‖S?n‖Lp([0,1]) ≤ C(‖R̃?n‖Lp([0,1]) + ‖S̃?n‖Lp([0,1])
+dx−‖R?0‖Lp([0,1]) + ‖S?0‖Lp([0,1]))

(32)

where we used Lemma 3 applied to (R̃?n, S̃?n)n.
From now on, we do not make the difference between R?, S? and R̃?, S̃? keeping the non tilda notation.

To prove a finite time stabilization result, the first step is to prove an extinction result for R?.

Proposition 3. The following estimate holds:

∀n ≥ 0, ‖R?n‖L∞([0,1]) ≤ e
1√
dt
( 1
λ+
−(1−C

√
dt)ndt)‖R?0‖L∞([0,1]).
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Proof. We use a Lyapunov argument using the Lyapunov functional firstly introduced in [6] in a con-
tinuous setting and then adapted to a discrete framework [14]:

Vγ(R
?n) := sup

1≤jf≤αN
|R?n

jf
e
− γ
λ+

xfjf |

where γ > 0 will be chosen later.
Using the scheme verified by R? (identified with R̃?) (30), it holds for jf > 1:

|R?n+1
jf

e
− γ
λ+

xfjf | ≤ (1− ν+)|R?n
jf
e
− γ
λ+

xfjf |+ ν+|R?n
jf−1e

− γ
λ+

xfjf |
≤ (1− ν+)Vγ(R

?n) + ν+e
− γ
λ+

dx+Vγ(R
?n)

= (1− ν+(1− e−
γ
λ+

dx+))Vγ(R
?n)

and for jf = 1:

|R?n+1
jf

e
− γ
λ+

xfjf | ≤ (1− ν+)|R?n
jf
e
− γ
λ+

xfjf |
≤ (1− ν+)Vγ(R

?n).

As a consequence,

Vγ(R
?n+1) ≤

(
1− ν+(1− e−

γ
λ+

dx+)
)
Vγ(R

?n).

As e−x ≤ 1− x+ x2

2
for x ≥ 0, it holds:

Vγ(R
?n+1) ≤

(
1− γdt+

1

2ν+
(γdt)2

)
Vγ(R

?n).

Owing the fact that 1 + x ≤ ex, one gets:

Vγ(R
?n+1) ≤ e

−γdt+ 1
2ν+

(γdt)2
Vγ(R

?n).

Thus, for γdt ≤ 2ν+ε where ε will be fixed later:

∀n ≥ 0, Vγ(R
?n) ≤ e−(1−ε)γndtVγ(R

?0).

To finish the proof, we use the fact that:

e
− γ
λ+ ‖ · ‖L∞([0,1]) ≤ Vγ(·) ≤ ‖ · ‖L∞([0,1])

to conclude that:

∀n ≥ 0, ‖R?n‖L∞([0,1]) ≤ e
γ( 1
λ+
−(1−ε)ndt)‖R?0‖L∞([0,1])

For γ := 1/
√
dt and ε = 1

2ν+

√
dt, we have:

∀n ≥ 0, ‖R?n‖L∞([0,1]) ≤ e
1√
dt
( 1
λ+
−(1− 1

2ν+

√
dt)ndt)‖R?0‖L∞([0,1]).

This finishes the proof of the proposition.

A similar analysis for S? is given, to deduce the extinction result for all the system.
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Theorem 1. For T > Tmin, there exists a constant C independent on the discretization such that for

all n with Tmin+Cdt
1/8

1−C
√
dt
≤ ndt ≤ and for all (R?0, S?0) ∈ L∞([0, 1])2:

‖R?n‖L∞([0,1]) + ‖S?n‖L∞([0,1]) ≤ Ce
− 1

2dt1/8 (‖R?0‖L∞([0,1]) + ‖S?0‖L∞([0,1])).

Proof. By Proposition 3, it holds:

∀ndt ≤ T, ‖R?n‖L∞([0,1]) ≤ e
1√
dt
( 1
λ+
−(1−C

√
dt)ndt)‖R?0‖L∞([0,1]). (33)

In order to have estimates on S?, we again proceed by a Lyapunov argument. This time the Lyapunov
function is the norm L∞γ defined by:

‖S?n‖L∞γ ([0,1]) := sup
ic

|S?nic |e
γ
λ−

(xcic−1)

where γ > 0. Note that in the proof of Proposition 2, we have proven that for C ≤ γ ≤ C√
dx−

:

‖L11dx+‖L(L∞γ ([0,1])) + ‖L12dx−‖L(L∞γ ([0,1])) ≤ C

uniformly in dt, γ. Then, by similar computations as in the proof of Proposition 3:

‖S?n+1‖L∞γ ([0,1]) ≤ (1− ν−(1− e−
γ
λ−

dx−))‖S?n‖L∞γ ([0,1]) + C|R?n
αN |

+(‖L11dx+‖L(L∞γ ([0,1]))‖R?n‖L∞γ ([0,1]) + ‖L12dx−‖L(L∞γ ([0,1]))‖S?n‖L∞γ ([0,1]))dt.

For ndt ≤ T ,

‖S?n+1‖L∞γ ([0,1]) ≤ (1− (γ − C)dt+ C(γdt)2)‖S?n‖L∞γ ([0,1]) + C|R?n
αN |.

For γ such that C( 1
γ

+ γdt) ≤ ε (ε will be fixed later), it holds:

‖S?n+1‖L∞γ ([0,1]) ≤ e−γdt(1−ε)‖S?n‖L∞γ ([0,1]) + Ce
1√
dt
( 1
λ+
−(1−C

√
dt)ndt)‖R?0‖L∞([0,1]).

where we have used (33). Let us introduce n1 := E
(

1/λ++dt1/4

dt(1−C
√
dt)

)
+ 1 and for n1 ≤ n ≤ E(T/dt), we

easily get (by induction):

‖S?n+1‖L∞γ ([0,1]) ≤ C‖R?0‖L∞([0,1])

∑n
k=n1

e−γ(n−k)dt(1−ε)e
1√
dt
( 1
λ+
−(1−C

√
dt)kdt)

+e−γ(n−n1)dt(1−ε)‖S?n1‖L∞γ ([0,1])

≤ C‖R?0‖L∞([0,1])e
− 1

dt1/4
∑n

k=n1
e−γ(n−k)dt(1−ε) + e−γ(n−n1)dt(1−ε)‖S?n1‖L∞γ ([0,1])

≤ C
dt
‖R?0‖L∞([0,1])e

− 1

dt1/4 + e−γ(n−n1)dt(1−ε)‖S?n1‖L∞γ ([0,1]).

To finish the proof, we use the fact that:

e
− γ
λ− ‖ · ‖L∞([0,1]) ≤ ‖ · ‖L∞γ ([0,1]) ≤ ‖ · ‖L∞([0,1])

to conclude that:

‖S?n+1‖L∞([0,1]) ≤ C
dt
‖R?0‖L∞([0,1])e

γ
λ−
− 1

dt1/4 + e
γ
λ−
−γ(n−n1)dt(1−ε)‖S?n1‖L∞([0,1]).

For γ = λ−
2dt1/4

, ε = Cdt1/4, one gets:

‖S?n+1‖L∞([0,1]) ≤ C
dt
‖R?0‖L∞([0,1])e

− 1

2dt1/4 + e
1

2dt1/4
− λ−

2dt1/4
(n−n1)dt(1−C̃

√
dt)‖S?n1‖L∞([0,1]).
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For ndt ≥ Tmin+dt
1/8/λ−

1−C̃
√
dt

⇐⇒ (n− n1)dt ≥ 1
1−C̃

√
dt
× (1 + dt1/8)× 1

λ−
:

‖S?n+1‖L∞([0,1]) ≤ C
dt
‖R?0‖L∞([0,1])e

− 1

2dt1/4 + e
− 1

2dt1/8 ‖S?n1‖L∞([0,1])

≤ C
dt
‖R?0‖L∞([0,1])e

− 1

2dt1/4 + Ce
− 1

2dt1/8 ‖S?0‖L∞([0,1]).

Hence,

‖S?n+1‖L∞([0,1]) ≤ Ce
− 1

2dt1/8 (‖R?0‖L∞([0,1]) + ‖S?0‖L∞([0,1])).

Because of the perturbation term Γ̃11 (see also (32)), we lose the convergence in e
− 1

2dt1/8 . The final
result is given in the next corollary.

Corollary 1. For T > Tmin and 1 < p <∞, there exists a constant C independent on the discretization

such that for all n with Tmin+Cdt
1/8

1−C
√
dt
≤ ndt ≤ and for all (R0, S0) ∈ L∞([0, 1])2:

‖Rn‖Lp([0,1]) + ‖Sn‖Lp([0,1]) ≤ Cdx−(‖R0‖L∞([0,1]) + ‖S0‖L∞([0,1])).

Proof. Immediate from (32), Proposition 2 and Theorem 1.

4 A numerical example

4.1 Comparison with the naive method

Here we give a numerical example with h = 1, M12 = 2, M21 = 3, λ+ = λ− = 1, dt = 1/1000. For the
naive way, we have only one discretization ie α = 1 for which we take a CFL = 0.8. The naive way
gives a converged result for the kernel represented in Figure 12.
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Figure 12: The kernels of the closed-loop operator for the naive method

The kernels K1, K2 represents the functions such that:

∀n, un = K1Rdx+ +K2Sdx−.
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The spectrum is given in Figure 13.
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Figure 13: The spectrum of the closed loop operator for the naive method

For our scheme with α = 2, dt = 1/1000, dx+ = 1/800, dx− = 1/400, the kernels are represented in
Figure 14:
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Figure 14: The kernels of the closed-loop operator for less naive method

However, the spectrum of the closed loop system is much closer to its “continuous” equivalent whose
spectrum is rejected at infinity. This is displayed in Figure 15.
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Figure 15: The spectrum of the closed loop operator for the less naive method

Indeed, we have a much stronger rate of convergence for our method than the the naive one. To see
this, take an initial data: {

R0(x) = −4 sin(50x)
S0(x) = 2× 1x≤0.5 − cos(50x).

(34)

and look at the evolution of the L2 norm of the solution as time goes by. The comparison between both
methods is shown in Figure 16.
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(a) The naive method (CFL = 0.8)
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Figure 16: The L2 norm of the solution (log10 scale)

Our method gives much more dissipation than the naive one. This is why it represents better the
behaviour of the “continuous” solution which extinguishes at a finite time (Tf = 2).

4.2 The effect of the perturbation term

In order to observe the effect of the perturbation term Γ̃11, we need to take a larger zeroth order term M .
The parameters are now h = 1, M12 = 8, M21 = −8, λ+ = λ− = 1, dt = 1

1000
, dx+ = 1/800, dx− = 1/200
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(α = 4) and the initial data is given by (34). The Figure 17 gives energy dynamics:

0 1 2 3 4 5
Time(s)

10−3

10−2

10−1

100

101

102

L2
 n
or
m

L2 norm of solution

(a) dt = 1/1000, dx+ = 1/800, dx− = 1/200
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(b) dt = 1/4000, dx+ = 1/3200, dx− = 1/800

Figure 17: When the perturbation term is non zero

One can observe that we are far from a finite time stabilization picture since after a time t > Tmin = 2,
the solution has still a lot of energy. Moreover, when the discretization is finer (Figure 17-b), the picture
shows a stronger decay of the energy but still, one cannot see a clear extinction at t = Tmin.

In order to explain this, we need to come back to the results of Lemma 2. In fact, when the zeroth
order term M is large, the constant C from Lemma 2 may be very large. Besides, we can estimate it
heuristically:

C ' eM21Tmin ' 107.

Hence, when M is large, we need to discretize a lot (in this example dx− should be at least 10−7) for
(R?, S?) to be close to (R̃?, S̃?).

As a consequence, the effect of the perturbation term Γ̃11 can be important if dx− is not small
enough. To confirm this, now take a different discretization for which the perturbation term Γ̃11 is zero.
After Remark 4, this is the case when the fine grid is two times finer than the coarse one (α = 2). Take
for example, dt = 1/1000, dx+ = 1/800, dx− = 1/400 to obtain Figure 18:
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Figure 18: When the perturbation term is zero
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Here, the finite time extinction is clear and after t ' Tmin, the solution is of the order of at least

e
− 1

2dt1/8 (see Theorem 1).

4.3 The case of different velocities

For completeness, we illustrate that our method works for the case were λ1 6= λ2 ,α > 2 and when zeroth
order term M is moderate. Taking λ+ = 1, λ− = 3, M12 = 2,M21 = 3, dt = 1/1000, dx+ = dt and
dx− = 4dx+ (α = 4), one gets Figure 19:
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Figure 19: When velocities are different

5 Conclusion

In this paper, it is established that designing a discretized backstepping control must be done with
the appropriate scheme. This is why we discretized the system first and then designed a backstepping
control adapted to the numerical open-loop system. Doing so, an approximate finite-time stabilization
result was shown for the numerical system.

The natural question which comes into play is how can we construct a similar control when the
numbers d1, d2 of equations are larger. We can quote papers [11] where d1 = 1 and d2 ∈ N? and
[18] where d1, d2 ∈ N? for the continuous theory. In these papers, the authors design a backstepping
control to have exponential stabilization. Another interesting question is the influence of the choice
of the scheme. Here we took the upwind scheme but it well known that it is very diffusive and gives
poor results in simulation. It would be interesting to see if we can extend the numerical backstepping
method to higher order schemes like the slope limiter [22] one for example. This is not an easy task since
slope limiter schemes are nonlinear even if the PDE system is linear. Finally, it would be interesting to
generalize the method to a larger class of grids where the coarse grid is not a subgrid of the fine one.
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