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JASA/ Tube reversed method

Woodwind tonehole’s linear behavior is characterized by two complex quantities: the1

series and shunt acoustic impedances. A method to determine experimentally these2

two quantities is presented. It is based on two input impedance measurements. The3

method can be applied to clarinet-like instruments. The robustness of the method4

proposed is explored numerically through the simulation of the experiment when con-5

sidering geometrical and measurement uncertainties. Experimental results confirm6

the relevance of the method proposed to estimate the shunt impedance. Even the7

effect of small changes in the hole’s geometry, such as those induced by undercutting,8

are characterized experimentally. The main effect of undercutting is shown to be a9

decrease of the tonehole’s acoustic mass, in agreement with theoretical considerations10

based on the shape of the tonehole. Experimental results also reveal that losses in11

toneholes are significantly higher than those predicted by the theory. Therefore the12

method is suitable for the experimental determination of the shunt impedance, but13

it is not convenient for the characterization of the series impedance.14
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I. INTRODUCTION15

For woodwind instruments, the effect of toneholes on the intonation and the ease of16

playing is essential. The present paper focuses on linear behaviour of toneholes, which17

is especially important for the playing frequencies. The characterization of holes can be18

independent of the geometry of the resonator (either cylindrical or conical1). The first19

theory was given by Keefe2, and completed later3,4. It is based on matching plane waves20

within the resonator and the tonehole. The tonehole is characterized by a transfer matrix or21

an impedance matrix of order 2. Because of reciprocity, only three elements of the matrix22

are necessary. In the present paper, the tonehole is assumed to be symmetrical, and two23

elements (i.e., two complex impedances) are sufficient3 for asymmetrical toneholes). The24

theory, based upon modal expansion, assumes the tonehole to be cylindrical, and this leads25

to a difficulty of the geometric matching between two cylinders. However, the number and26

nature of the matrix elements does not depend on the shape of the toneholes, and they27

can be determined either by experiment or numerical discretization5–7. The Finite Element28

Method can be used, but the modeling of boundary layers6 and nonlinear behaviour is not29

straightforward. Acoustic experiment can be also used for the computation of the input30

impedance of an instrument by using the transfer matrix method: the measurement of the31

two acoustic impedances make unnecessary the knowledge of the precise geometry. For the32

computation of the input impedance of an instrument, the acoustic characterization of the33

toneholes is sufficient.34
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Considering the impedance matrix of the tonehole, the elements are essentially acoustic35

masses. One is in series, modifying the acoustic pressure, and the other is in parallel, mod-36

ifying the acoustic flow rate. They can be regarded as length corrections to the main tube37

and to the tonehole, respectively. Nevertheless, for high (i.e., long) toneholes, compress-38

ibility (and propagation) effects can appear. Moreover, for both the impedances in series39

and in parallel, losses (i.e., resistances) exist. Losses added to the series mass are generally40

ignored, and no theoretical determination exists, while experimental evidence was found by41

Dalmont7 in a nonlinear regime. At low frequencies, the two masses are almost independent42

of frequency, but they increase when approaching the first cutoff of the main tube3 for the43

2D, rectangular case). Other shunt acoustic masses intervene, in particular that of the plane44

mode in the hole, and a resonance of the total shunt mass can occur at high frequency: this45

is detailed in Section II.46

Previous articles7–9 took advantage of the tonehole symmetry to limit the experiment47

to simultaneous measurement of two quantities, the input impedance of a tube with one48

tonehole at its middle, and a transfer impedance. This allows avoiding dismantling the49

apparatus during the measurement. The present paper aims at exploring another method.50

It limits the measurement to two input impedances, by turning the cylindrical tube, the51

extremity being open. Thus the termination impedance is unchanged when turning the52

tube. The drawback is the need of dismantling the set up.53

In Sect. II, the direct calculation is performed by using the theoretical, known model of54

a cylindrical tonehole on a cylindrical tube. In Sect. III, the inverse problem is computed,55

and a simulation of experiment is done, assuming wrong values of some parameters, such as56
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the main tube length, the location of the tonehole and the accuracy of the input impedance57

measurement. This allows choosing appropriate geometric parameters of the main tube, in58

order to achieve results with high accuracy. Sect. IV describes the experimental method59

and results for cylindrical toneholes, with similar dimensions to those of oaclarinet. Sect. V60

presents the results for examples of undercut toneholes. Sect. VI discusses the validity and61

interest of the method.62

II. MODEL OF A TUBE WITH AN OPEN TONEHOLE63

The radii of the main tube and the hole are denoted a and b, respectively. The wavenum-64

ber in free space is denoted k = ω/c; ω is the angular frequency, and c is the sound speed in65

free space. The wavenumber involving viscous-thermal losses in the main tube is given by a66

standard expression10:67

ka = k
[
1 + 1.044

√
−2j/rv − 1.08j/r2v

]
(1)

where rv = a
√
ωρ/µ for the main tube. ρ is the air density, and µ the air viscosity. The same68

formula holds for the tonehole, with the notations kb and b. The characteristic impedances69

are Zc = ρc/πa2 and Zch = ρc/πb2. The quantities at the left (resp. right) of the tonehole70

are denoted with subscript 1 (resp. 2). The lengths of the main tube on the two sides of71

the tonehole are L1 and L2. The height of the tonehole is t. The schematic of the tonehole72

geometry and the acoustic variables are shown in Fig. 1. In both the main tube and the73

tonehole, only the plane mode propagates, i.e., higher order modes are evanescent, i.e., the74

frequency is low enough. The plane mode can be matched on the two sides of the tonehole75
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symmetry axis by a second order transfer matrix2. The effect of the tonehole is described76

by the following equation:77 
P1

U1

 = Mh


P2

U2

 , (2)

where acoustic pressure and volume velocity are denoted P and U , respectively. Mh is a78

symmetrical matrix with unity determinant11. It corresponds to the T-circuit3,10 shown in79

Fig. 2. It is written as follows:80

Mh =
1

1− YsZa/4


1 + YsZa/4 Za

Ys 1 + YsZa/4

 (3)

The series impedance Za and the shunt impedance Zs = 1/Ys are the impedances corre-81

sponding to the anti-symmetric and symmetric parts of the velocity at the input of the82

tonehole2,10, respectively. For an open tonehole, they are given by the following equations3:83

Za = jkZcta (4)

Zs = jZch(kti + tan [kbt+ k(tm + tr)]). (5)

In the equivalent circuit and the transfer matrix the quantity Zh appears. It is defined by:84

Zh = Zs − Za/4. (6)

The lengths included in the above expressions are given hereafter. tonehole height. It85

can be written as3:86

Za = jkZcta (7)

6



JASA/ Tube reversed method

FIG. 1. Scheme of the tonehole geometry and acoustic variables.

FIG. 2. Equivalent circuit for the tonehole

87

Zs = jZch(kti + tan [kbt+ k(tm + tr)]). (8)

In the equivalent circuit the quantity Zh is defined by:88

Zh = Zs − Za/4. (9)

The lengths included in the above expressions are given hereafter. If δ = b/a, the series89

length correction ta is given by3:90

ta = −bδ2/
[
1.78tanh(1.84t/b) + 0.94 + 0.540δ + 0.285δ2

]
. (10)
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This quantity is very small (a typical value is 0.5 mm). For this reason several authors91

neglect the corresponding term in Eq. 6. However, in the matrix Mh it is not consistent to92

ignore a quantity in one element while keeping it in the other elements. This remark can93

be related to the dual role of pressure and volume velocity in Eq. (3). At low frequencies,94

the length ti, due to evanescent modes, is independent of frequency and can be regarded as95

an internal length correction for the tonehole height. It was written in Dubos et al3, and96

corrected by Dalmont7:97

ti = b(0.82− 0.193δ − 1.09δ2 + 1.27δ3 − 0.71δ4). (11)

The length tm is related to the matching volume between the tonehole and the main tube,98

and cannot be exactly computed with the modal matching method, except when the main99

tube is rectangular (in which case it vanishes). Its value is given by4:100

tm = bδ(1 + 0.207δ3)/8. (12)

The length tr is the (complex) radiation length given by th = Zrh/(jkZch), where r is the101

subscript for the tube end, and Zrh the radiation impedance of the tonehole. Different102

expressions exist in the literature. For the sake of simplicity, we assume that it is equal to103

the radiation of a tube without flange12). At low frequencies, the order of magnitude of the104

uncertainty concerning the length correction is 0.2b, if losses near the walls are ignored, the105

total equivalent height of the tonehole is defined as:106

ts = Im(Zs/(kZch)). (13)

At low frequencies, it is equal to:107

ts = ti + t+ tm + Re(tr). (14)
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The geometric values chosen in this paper are the tonehole radius b = 4 mm (the main tube108

radius is a = 7.3 mm), and height t = 8.5 mm; the matching length correction is tm = 0.3109

mm. The length correction for radiation is tr = 2.5 mm (with a significant uncertainty of110

0.2b = 0.8 mm) and the internal length correction is ti = 2.1 mm. The total equivalent height111

is therefore ts = 13.4 mm. This quantity is of major interest for the computation of the112

input impedance of an instrument. Using the standard transmission line theory, a difference113

can be computed: it is of 1 mm, and implies a typical shift of the first impedance peak of a114

clarinet-like instrument by 0.5% to 1% (i.e., 9 to 17 cents). Therefore the cumulative shift115

for several toneholes can be rather high.116

III. TUBE REVERSED METHOD117

A. From the radiation impedance of the main tube to its input impedance118

For the present method, the main tube is open and the tonehole is not located at the119

middle of the tube, in order to obtain two different input impedances when the tube is120

reversed. The two different situations are L1 < L2, and L′1 < L′2,when in the second case121

the tube is reversed such that L′1 = L2, and L′2 = L1. The apostrophe indicates the reverse122

situation. M1 and M2 are the transfer matrices of the cylindrical sections of the tube123

(i = 1, 2):124

Mi =


Ai Bi

Ci Ai

 =


cos kaLi jZc sin kaLi

jZ−1c sin kaLi cos kaLi

 . (15)
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Finally the input impedance is derived from (in is the subscript of the tube input):125 
Pin

Uin

 = M1MhM2


Pr

Ur

 . (16)

The radiation impedance Zr is projected back to the right of the tonehole, as follows:126

Z2 =
A2Zr +B2

C2Zr + A2

. (17)

Similarly, the impedance Z1 at the left of the tonehole and the input impedance Zin are127

calculated by using the projection formula.128

B. Inverse problem129

The input impedance Zin, assumed to be known, is projected to the left of the tonehole,130

multiplying by the inverse matrix of M1 as:131 
P1

U1

 =


A1 −B1

−C1 A1



Pin

Uin

 (18)

132

⇒ Z1 =
A1Zin −B1

−C1Zin + A1

. (19)

Following Fig. 2, the equations for the 3 elements of the electrical equivalent circuit can be133

written: Defining P = Zh(U1−U2); P1 = Z1U1 = P+Za/2U1; and P2 = Z2U2 = P−Za/2U2,134

the following equation is obtained:135

1

Zh

=
1

Z1 − Za/2
− 1

Z2 + Za/2
. (20)
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A similar equation holds for the second situation (reversed tube), replacing Z1 and Z2 by136

Z ′1 and Z ′2, respectively.137

1

Zh

=
1

Z ′1 − Za/2
− 1

Z ′2 + Za/2
. (21)

The following quadratic equation is obtained by eliminating Zh:138

AZ2
a/4 +BZa/2 + C = 0, (22)

139

A = (Z ′1 − Z1)− (Z ′2 − Z2);

B = 2(Z ′1Z
′
2 − Z1Z2);

C = Z ′2Z2(Z
′
1 − Z1)− Z ′1Z1(Z

′
2 − Z2)

(23)

Eq. (22) can be solved for Za, then Zh is derived from Eq. (20) or Eq. (21). However a140

simpler solution is obtained by expressing Zh with respect to Za. Using Eqs. (20 and 22)141

and eliminating Z2
a , it can be written as:142

Zh = − B

2A
− Za

2
. (24)

Then, introducing this result in the quadratic equation (22), the following result is obtained:143

144

Z2
h =

B2

4A2
− C

A
. (25)

Two solutions exist for this equation. The solution with a negative real part can be elimi-145

nated because the physical system is passive. Zs can be deduced from Eq. (6):146

Zs = Zh + Za/4. (26)

11
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Throughout this paper, the results are focussed on 3 quantities: the total equivalent height147

of the tonehole ts, given by Eqs. (13, 25, 26); the real part of Zh and the imaginary part of148

Za, from Eq. (24). The results of the inverse problem were checked by using computed input149

impedances, and the order of magnitude of the numerical error is smaller than 10−14. Fig. 3150

shows the comparison between the direct and the inverse computations for the equivalent151

height of the tonehole ts = Re(Zs/(jkSch). For Za, the numerical error is smaller than152

10−12. For other choices of termination impedance, such as an infinite impedance or the153

characteristic impedance, the entire computation remains valid. When the frequency tends154

0 1000 2000 3000 4000 5000 6000 7000 8000

Frequency (Hz)

0

0.01

0.02

0.03

0.04

0.05

0.06

FIG. 3. (Color online) Equivalent height ts of the tonehole (in m). Solid, red line: model; blue,

dotted line: inverse problem (from Eq. (25)). Dimensions a = 7.3 mm, b = 4 mm, t = 8.5 mm,

L1 = 44 mm, L2 = 74 mm.

155

156

to zero, the small increase is due to the visco-thermal dispersion, which diminishes the157

sound speed, and increases the equivalent length. Furthermore, the strong variation at158

higher frequencies is due to the propagation of the planar mode in the tonehole (see the159

12
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function tan(x) in Eq. (6)). The resonance near 7540 Hz corresponds to the minimum of160

the input impedance of the tonehole.161

C. Numerical simulation of the experiment: effect of uncertainty on the main162

tube length163

In order to simulate the experiment, errors are introduced on the data of the inverse164

problem. The input impedance is first computed, and the values are treated as experimental165

data. We start with an error of 0.2 mm on the length L1. For the second case, an error166

of 0.2 mm on the length L1 is considered together with an opposite error on the length167

L2 (the later case corresponds to an error on the location of the tonehole, without change168

in the total length L1 + L2 ). For the equivalent height of the hole ts, Fig. 4 shows the169

comparison between results for the two cases simulated and the theoretical result (without170

errors introduced). Between 1550 Hz and 1650 Hz, the error on the result is very large.171

Because this also happens at other higher frequencies, the figure is limited to 2000 Hz. The172173

frequency ranges with large error are close to the input impedance minima of the main tube174

(1560 Hz for Zin and 1610 Hz for Z ′in). A simple qualitative interpretation is the following:175

suppose that the radiation impedance of the tube is 0 (whatever the frequency), and that176

the input impedance vanishes at a given frequency, therefore the eigenfrequencies of the177

tube in the two positions are equal, and the problem becomes ill-posed (one equation for178

two unknowns): the solutions tend to infinity. This reasoning is not exact, because the179

radiation impedance is small, but not 0. The variations of ts are very small up to 1400180

Hz, as well as the discrepancies with the theoretical values. Concerning the real part of the181
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0 200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency (Hz)

0.01

0.011

0.012

0.013

0.014

0.015
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0.017

0.018

0.019

0.02

FIG. 4. (Color online) Equivalent height ts (in m). Red, solid thin line: theory without length

errors. Blue, thick, solid line: inverse problem (Eq. (25) with 0.2 mm error on L1. Black, dashed

line: inverse problem with 0.2 mm error on L1 and −0.2 mm error on L2.

shunt impedance Zh, it can be seen in Fig. 5 that the accuracy of the simulated results is182

satisfactory up to 1400 Hz.183

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency (Hz)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

FIG. 5. (Color online) Real part of the shunt impedance Zh. See line definitions in the caption of

Fig. 4.

184

185186

However, concerning the imaginary part of the series impedance Za, even a very small187

error on the lengths causes large errors on the result (see Fig. 6). Even the sign of the188

14
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0 500 1000 1500 2000

Frequency (Hz)

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

FIG. 6. (Color online) Imaginary part of the series impedance Za. See line definitions in the

caption of Fig. 4.

quantity is not determined. This result suggests that it is extremely difficult to expect a189

precise measurement of the series impedance. From this perspective, the method is less190

robust than the method of the input and transfer impedance7, even if the later is not very191

precise (the uncertainty is almost 35%). The present method is probably not suitable for192

measuring this element through experimentation.193

D. Numerical simulation of the experiment: effect of the uncertainty on the mea-194

sured input impedance195

A second attempt to simulate the experiment is based on the introduction of a random196

error on the input impedance (for the two configurations of the main tube Zin and Z ′in).197

The input impedance is modified as follows:198

Z̃in = Zin{1 + 0.005[rand(N)− 0.5]}. (27)

15
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The number N is the size of the input impedance vector. rand is a Matlab function that gen-199

erates uniform pseudo-random numbers in the interval [0, 1]. The value 0.005 is determined200

by the measurement of many input impedances. It means that the error modelled ranges201

from -0.25% to 0.25% of Zin. The three figures 7 to 9 show a confirmation of the previous202

observations: the measurement can be accurate up to 1400 Hz for the shunt impedance, but203

the measurement of the series impedance is not possible (see Figs. 7 to 9).204

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency (Hz)

0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.02

FIG. 7. (Color online) Tonehole equivalent height ts (in m). Black lines: result of a simulation

with a random error on the input impedance of the tube (Eq. (27)). Yellow line: no random error.

205

206207208

E. Practical considerations for the dimensions of the main tube209

A conclusion of the simulation study implies that the main tube has to be chosen to be as210

short as possible. In order to avoid the coupling of evanescent modes between the tonehole211

and the radiating termination, the distance L1 between the tonehole and the termination212

can be chosen between 2 and 3 times the main tube diameter. Furthermore the value of the213

first minimum frequency implies a small total length L1 + L2. However it is essential that214
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FIG. 8. (Color online) Real part of the shunt impedance Zh. Black lines: result of a simulation

with a random error on the input impedance of the tube (Eq. (27). Yellow line: no random error.
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FIG. 9. (Color online) Imaginary part of the series impedance Za. Black lines: result of a simulation

with a random error on the input impedance of the tube (Eq. (27). Yellow line: no random error.

the two lengths are sufficiently different, in order to avoid the quadratic equation to become215

degenerate. The convenient choice for the L2 is between 2 and 3 times the length L1.216
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IV. EXPERIMENTAL RESULTS FOR CYLINDRICAL TONEHOLES217

A. Input impedance measurement218

The previous analysis encourages us to study an experiment based upon the method219

presented in the present paper. The method is tested experimentally by using wood pieces,220

and the CTTM sensor13 for the impedance measurement. A piezoelectric buzzer is used as221

a source. The pressure in the back cavity of the buzzer is measured by a microphone, which222

gives an estimation of the volume velocity. The measured pipe is connected to the front of223

the buzzer via a small open cavity in which a second microphone measures the pressure. The224

input impedance of the pipe is at first order proportional to the transfer function between225

the two microphones. The comparison with theoretical results for cylindrical tubes (without226

toneholes) is satisfactory: the discrepancy for a closed tube is 4 cents for the resonance227

frequencies and 1 dB for the peak heights, except at very low frequencies. For this reason,228

measurements are done above 200 Hz.229

B. Preliminary results concerning the repeatability of the measurement230

We first study the repeatability for a tube and a tonehole with dimensions equal to those231

previously considered. For the frequency range 200 to 1400 Hz, the equivalent height ts of232

the tonehole is found to be between 14.4 mm and 15.5 mm, while the theoretical value (from233

Eq. (13) is 13.4 mm. For 4 measurements after disassembly and assembly, the uncertainty is234

found to be about 1 to 2% (see Fig. 10). Furthermore Fig. 11 shows the comparison between235

the measurements of 4 tubes built with the same tools. The results are distributed on both236

18
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sides of the theoretical one. This is an effect of the manufacturing tolerance, which is of the237

same order of magnitude as the measurement uncertainty, or higher. For all experimental238

results, the Matlab function smooth has been used. We remark measurements are not239

necessarily taken on the same day and at the same temperature, but the computation took240

it into account.241

200 400 600 800 1000 1200 1400

Frequency (Hz)

0.01

0.012

0.014

0.016

0.018

0.02

FIG. 10. (Color online) Tonehole equivalent height measured 4 times after disassembly. Blue,

dashed lines: measurements. Red, solid line: theory. Dimensions a = 7.3 mm, b = 4 mm, t = 8.5

mm, L1 = 44 mm, L2 = 74 mm.

242

243244

C. Comparison between two tubes of different lengths245

Two tubes of total length L1 + L2 = 118 mm and 162 mm are compared. The tonehole246

is located at the same distance of one of the ends of the two tubes (44 mm). This value is247

chosen to be 2.7 times the hole diameter. The dimensions of the hole are identical for the248

two tube lengths (b = 4 mm; t = 8.5 mm). As expected, Fig. 12 shows a small inceease249
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200 400 600 800 1000 1200 1400
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FIG. 11. (Color online) Tonehole equivalent height ts for 4 tubes built with the same tool. Blue,

dashed lines: measurements. Red, solid line: theory.

when the frequency approaches the eigenfrequency of the tubes. As explained above, the250

short tube yields better results on a wider frequency range and the results are closer to251

the theoretical value, in particular near the measured minimum. The discrepancy between252

the results of the two tubes is about 3%, except near the eigenfrequency. Concerning the253254

real part of the shunt impedance, it appears that the two tubes yield very similar values,255

except in the vicinity of the eigenfrequency. Fig. 13 shows that they are higher than the256

theoretical values. Remember that for a linear functioning, radiation losses are proportional257

to ω2, while visco-thermal losses increase as
√
ω. We refer to7 for a discussion about the258

theoretical aspects. Finally, the experiment confirms that the series impedance cannot be259260

measured by the tube reversed method, as shown in Fig. 14.261262
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200 400 600 800 1000 1200 1400
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t
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FIG. 12. (Color online) Measured value of the equivalent height ts of the hole. Green, dashed lines:

long tube. Blue, dottted line: short tube. Red, solid line: theory
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FIG. 13. (Color online) Measured value of the real part of the shunt impedance Re(Zh) See the

line definitions in the caption of Fig. 12.
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FIG. 14. (Color online) Measured value of the imaginary part of the series impedance Im(Za). See

the line definitions in the caption of Fig. 12.

V. EXPERIMENTAL RESULTS FOR UNDERCUT TONEHOLES263

Undercutting toneholes was studied for high excitation level bt Dalmont et al7 and264

Mcdonald14 (see also15) for rectangular geometry. Nine short tubes of length 118 mm are265

holes drilled at L1 = 44 mm that have three different geometries: three are straight (but266

the hole is deburred), three are undercut by 2 mm and two are undercut by 3 mm. Figs. 15267

and 16 show the effect of undercutting the toneholes. The quantity shown by Fig. 15 is268

slightly different from that shown previously (see e.g. Fig. 13), because considering the269

length correction in Eq. (13) implies a division by the cross-section area Sh, but for the270

case of undercut toneholes, the area is not constant. For this reason, we choose the acoustic271

mass (per unit density) ms:272

ms = Zh/(jωρ). (28)
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The figures represent the average quantities for each geometry. The effect of undercutting is273

a decrease of 10m−1 to 20m−1 for the acoustic mass when the undercutting becomes wider.274

The jump below 400 Hz in Fig. 13 remains unexplained. Two causes for this mass increase275

can be analyzed. The widening implies a decrease of the acoustic mass of the plane mode,276

and also of the internal length correction due to the discontinuity between the main tube and277

the tonehole. The first of these causes can be modelled. Considering the acoustic mass for278

the cylindrical tonehole case, the result seems to be close to the theoretical result between279

400 Hz and 600 Hz. Calculating the average value, we obtain 280 m−1. For the cases of280

undercutting, we obtain 270 m−1 and 264 m−1.281

An elementary model can be made in order to interpret these results. The shape of282

the most undercut tonehole is close to a cylinder extended in a truncated cone joining the283

internal wall of the main tube. For the cases studied, the lengths ` of the cylinder and `′284

of the cone are approximately equal to ` = `′ = 5.5 mm. The radius of the cylinder is285

b = 4 mm, the small radius of the cone is R1 = b and its large radius is R2 = 5.4 mm.286

The calculation of the mass of a tube with variable cross section is done by integrating the287

inverse of the area along the axis. For a cone, the result is published in10, p. 325. It is that288

of a cylinder with a cross section equal to the geometric average of the radius: S = πR1R2.289

The difference between the cylindrical tonehole and the undercutting one is:290

δm =
`′

πb2

[
b

R2

− 1

]
. (29)

The result of this formula is 26m−1. This result, based on approximate geometric and291

acoustic models, is consistent with the experimental data. This is encouraging for the292

use of an accurate measurement method for the computation of the input impedance of293

23



JASA/ Tube reversed method

an instrument with undercut holes or other deviations from the cylindrical shape, such as294

holes with keypads. Furthermore, Fig. 16 shows that the effect of undercutting on the real295

part of the shunt impedance is small, but significant: it causes a decrease in resistance by296

approximately 10 % as the undercut is increased from 0 to 2 and 3 mm. . It is difficult to297

interpret the differences between the three geometries and their variation with frequency,298

and the influence of nonlinear effects cannot be ignored. However, a linear reasoning can299

be applied here: undercutting a tonehole broadens the effective radius, and visco-thermal300

effects diminish.301
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FIG. 15. (Color online) Measured value of the acoustic mass per unit density ms of the hole.

Red, solid line: theory of a cylindrical tonehole in m−1. From top to bottom, 3 geometries of

the tonehole: Blue, dashed line: no undercutting; Green, dash-dot line: undercutting by 2 mm;

Magenta, dotted line: undercutting by 3 mm

302

303304
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FIG. 16. (Color online) Measured value of the real part of the shunt impedance Re(Zh). Red line:

theory of a cylindrical tonehole. See line definitions in the caption of Fig. 15.

VI. CONCLUSION305

The method presented in this paper allows an evaluation of the effect of the complex306

shunt impedance of an open tonehole. We recall that the aim is to insert the experimental307

value in the computation of the input impedance of an instrument. The effect of a hole308

modification on the input impedance of an instrument is significant: a difference of 1 mm309

for the equivalent height may imply a shift of the first impedance peak. The cumulative310

shift for several toneholes can be rather high (see e.g. an article on the clarinet tuning11).311

It is important to use a short tube for this method, due to antiresonances associated to the312

total tube length. We remark that a similar problem concerning the “forbidden” frequency313

ranges is encountered in other methods. Moreover the distance of the hole to the tube end314

needs to be short. Concerning the real part of the shunt impedance, the results appear315

to be robust, and suggest further studies on the theoretical aspects, even for cylindrical316

25



JASA/ Tube reversed method

toneholes in the linear regime. Concerning the imaginary part of the shunt impedance,317

the primary quantity studied here, the results seem to be very sensitive to small geometric318

differences. The relative variation of the equivalent height with frequency is small, and the319

absolute variation remains small. For a cylindrical tonehole, at approximately 500 Hz, the320

discrepancy between experiment and theory is very small for the equivalent height (0.1 mm),321

and is of the same order of magnitude as the result obtained by other method7. The paper322

is limited to the frequency range [200 Hz, 1400 Hz] for the measurements. It is concluded323

that the variation with frequency is mainly due to the measurement method. Assuming324

that the true value of the tonehole equivalent height is independent of frequency, the choice325

of an average of the values between 400 and 600 Hz as appropriate can be extended to326

any hole geometry. This result of the different cases examined in the present work can be327

used for including the acoustic characteristic of undercut tonehole in a computation of input328

impedances of an instrument.329

The method is not convenient for measuring the series impedance. Actually this quantity330

is very small, but for this quantity the methods proposed in previous publications seem to be331

better. Concerning undercut toneholes, which are generally not symmetrical, in certain cases332

it could be useful to search for a circuit with 3 unknowns3. The aim of the present paper333

is not to improve a model, but it is useful in that it highlights some of the complications334

inherent in existing open tonehole models. The main improvement to existing models could335

be done on the radiation impedance of a tonehole.336
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