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A B S T R A C T   

Archaeology has been profoundly transformed by the advent of airborne laser scanning (ALS) technology (a.k.a 
airborne LiDAR). High-resolution and high-precision synoptic views of earth’s topography are now available, 
even in densely forested environments, to identify and characterize landform patterns resulting from past human 
occupation. ALS-based archaeological prospection relies on digital terrain model (DTM) visualization techniques 
(VTs) that highlight subtle topographical changes perceived and interpreted by archaeologists. An increasing 
number of VTs have been developed, and they have been evaluated to date mainly based on subjective human 
perception. This study developed a new approach based on state-of-the-art computer-vision algorithms to 
benchmark VTs using objective metrics. Thirteen VTs were applied to a ALS-derived DTM, and a deep convo-
lution neural network (deep CNN) was implemented and trained to automatically detect and segment archae-
ological structures from these images. Visual interpretation of the images showed that the most informative VT 
was e2MSTP, which combined a multiscale topographic analysis (MSTP) with a morphologically explicit image 
and a slope-invariant relief detrending technique. The deep CNN approach confirmed these results and provided 
objective performance metrics. This study indicates that the computer vision approach opens new perspectives in 
the objective selection of the most suitable VT for archaeological prospection.   

1. Introduction 

In the past few decades, archaeology has been profoundly trans-
formed by the advent of airborne laser scanning (ALS) technology (a.k.a 
airborne LiDAR). High-resolution and high-precision synoptic views of 
earth’s topography are now available, even in densely forested envi-
ronments, to identify and characterize landform patterns resulting from 
past human occupation. Common ALS-based archaeological prospection 
relies on digital terrain model (DTM) visualization techniques (VTs) to 
highlight subtle topographical changes that are visually interpreted by 
archaeologists (Štular et al., 2012). 

Representation of the characteristics archaeological structures (e.g. 
size, shape, orientation, landscape context, topographic position) varies 
greatly among VTs (Kokalj and Hesse 2017). However, selecting the 
most suitable VT for enhancing the perception of archaeological struc-
tures remains challenging. Several studies have provided valuable 
assessment of multiple VTs applied to ALS-derived DTM via visual 
comparison (Bennett et al., 2012; Devereux et al., 2008; Doneus, 2013; 
Hesse, 2010; Orengo and Petrie, 2018; Štular et al., 2012; Zakšek et al., 

2011). However, this approach is limited due to the subjectivity and bias 
of visual interpretation (Grammer et al., 2017; Risbøl, 2013), which can 
influence identification and characterization decisions. To our knowl-
edge, only one study to date has addressed this concern with an objec-
tive approach: Mayoral et al. (2017) assessed VTs analytically based on 
local contrast and zonal statistics. Their approach provided useful in-
formation about the ability of VTs to perceive variations in local slope or 
roughness based on pre-selected topographic conditions. However, it did 
not address global objective assessment of VTs and did not consider an 
automatic-detection framework. These limitations and the growing 
number of available VTs (Kokalj and Somrak, 2019) increase the need to 
develop new objective assessment tools and methods. 

The computer-vision field has also changed profoundly in recent 
years, especially with the development of deep convolutional neural 
networks (deep CNNs) to solve complex image-analysis tasks. CNN is a 
type of artificial neural network whose connections are roughly inspired 
by biological processes in the visual cortex (Hubel and Wiesel, 1962). 
Deep CNNs are composed of many connected layers that can learn hi-
erarchical representations of data with multiple levels of abstraction 
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(LeCun et al., 2015). While emerging in the 20th century, it is only in the 
past decade that implementation of deep CNNs resulted in ground- 
breaking results in image classification (Krizhevsky et al., 2012) and 
object detection (Girshick. 2015). For details on deep CNNs, see Good-
fellow et al. (2016). 

The scientific community’s increasing interest for such high- 
performance computer vision capability has resulted in the publica-
tion of multiple open source state-of-the art deep CNN software frame-
works. Among them, Mask R-CNN, available in different open source 
Python implementations (Abdulla, 2017; Wu et al., 2019), is designed 
for object detection and instance segmentation. In deep CNN, object 
detection predicts the presence and location (surrounded by a bounding- 
box) of an object in the image, while instance segmentation adds a 
contour (also called “mask” or “segment”) to the detected object. 

The first approaches using deep CNN applied to ALS-based archeo-
logical prospection were developed to automatically detect charcoal 
kilns (Trier et al., 2016). They were then evaluated in different contexts 
and configurations to detect archaeological structures (Gallwey et al., 
2019; Kazimi et al., 2018; Trier et al., 2018, 2021; Verschoof-van der 
Vaart et al., 2020; Verschoof-van der Vaart and Lambers, 2019; Bonh-
age, 2021). In these studies, a single type of input data was used (either 
raw elevation data or VT), which had been selected empirically based on 
intuition or the visual perception provided by the input data. Very few 
studies evaluated the use of various VTs with deep CNNs in archaeo-
logical context. Somrak et al. (2020) applied deep CNN models with 
different ALS-derived inputs for classifying images of ancient settle-
ments. However, to our knowledge, no studies questioned the potential 
of computer-vision approaches, especially object detection and seg-
mentation, for the objective assessment of VTs and the relation between 
computer-based and human-based perception. 

In this study we developed a new approach that uses state-of-the-art 
computer-vision algorithms to benchmark VTs using objective metrics. 
To this end, VTs were first visually interpreted and compared to assess 
their ability to identify archaeological structures. Then, the same VTs 
were compared using a deep CNN trained for automatic detection and 

segmentation of archaeological structures. 
First, we tested the assumption that visual representation of data, 

effective from the perspective of human vision, is also effective from the 
perspective of deep CNNs. Then, we presented the results and discussed 
the benefits and limits of an objective comparison of ALS-derived relief 
VTs using deep CNN for archaeology. 

2. Materials and methods 

2.1. Study area 

The study area (Fig. 1) was located in the Morbihan department 
(Brittany, France), along the Atlantic coast. The region has a complex 
and fragmented mosaic of landscapes. The hinterland is composed of 
woodlands, moorlands and farmland that form a rural environment 
oriented to agriculture. The coastal area is also diverse, with estuaries 
and small islands near the intricate Gulf of Morbihan and large open, 
sandy areas in the Bay of Quiberon that concentrate most of the eco-
nomic activities of tourism and fisheries. 

The area is home to a unique megalithic heritage. Erected between 
the 5th and 3rd millennia BC, the Neolithic architecture (standing stones 
and megalithic tombs) represents an exceptional corpus of archaeolog-
ical sites that are candidates for the UNESCO World Heritage List. 
Beyond this emblematic heritage, the coast of Morbihan includes a wide 
variety of archaeological sites that encompass several prehistorical and 
historical periods. 

2.2. Dataset 

2.2.1. Digital terrain model 
The DTM was generated from a ALS point cloud collected with a 

fixed-wing plane using an Optech Titan ALS sensor operated over the 
study area in the leaf-off season in 2016. The specifications of the 
airborne acquisition were defined to obtain a nominal point density of 
14 points/m2. Ground points were filtered from the raw point cloud 

Fig. 1. Airborne Laser Scanning (ALS) coverage of the study area with archaeological reference data used to train and test the Deep convolution neural 
network models. 
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using LAStools (Isenburg, 2020) before being interpolated to create a 
Triangular Irregular Network that was rasterized onto a grid of 50 cm 
resolution (see Guyot et al., 2018 for processing details). 

2.2.2. Archaeological reference data 
The reference dataset consisted of 195 georeferenced polygons that 

represented footprints of known archaeological sites in the study area. 
The sites were selected from the regional archaeological reference 
dataset provided by Brittany’s Service régional de l’archéologie. Only 
archaeological structures whose topographic characteristics could be 
perceived on the ALS-derived DTM were kept (excluding sites related 
only to small-object deposits and sites considered as aboveground 
structures with no influence on the bare-earth topography, such as 
standing stones). 

The archaeological sites selected had diverse chronologies, mor-
phologies and landscape contexts. Their state of conservation also varied 
greatly, from long-known restored monuments to unexcavated little- 
documented structures. The reference dataset included 195 archaeo-
logical structures (Fig. 1): 176 funeral structures attributed to the 
Neolithic, 10 funeral structures attributed to protohistoric periods, 1 
motte, 3 promontory forts and 5 ruined windmills. Note that the great 
majority of structures are elevated and there are only few depressions. 

Given the highly imbalanced dataset (since Neolithic structures 
dominated), the annotations were intentionally grouped into a single 
“archaeological structure” class with no further distinction. The refer-
ence dataset was converted from a geospatial format to an annotation 
format (json COCO format) in which each annotation was associated 
with its corresponding VT tile to be input into the deep CNN architec-
ture. Due to the spatial proximity of some archaeological sites, 150 VT 
images covered the 195 annotations (a mean of 1.3 annotations per 
image). 

2.3. Methods 

2.3.1. Visualization techniques of the ALS-derived terrain model 
We compared 13 VTs: 12 came from archaeological prospection 

literature, and one (e2MSTP) was designed during this study. All VTs 
were applied to the ALS-derived DTM at 50 cm resolution, with specific 
calculation and visualization parameters (Table 1) using open-source 
tools such as RVT software (Kokalj, 2020), WhiteboxTools (Lindsay, 
2020) and Python blend-mode libraries (Roscheck, 2020). 

All VTs (Fig. 2) were normalized to 0–255 using the visualization 
parameters (Table 1) and converted to 8-bit 3-band images (RGB) to be 
used as input to the deep CNN. Greyscale VTs were transformed from 8- 
bit (0–255) single-band to 8-bit (0–255) 3-band images by duplicating 
the 8-bit single-band images. 

The blending techniques were applied using the 3-band normalized 
and transformed images. 

2.3.2. Deep CNN for instance segmentation 
The deep CNN was based on a Detectron2 framework (Wu et al., 

2019) that implemented a Mask R-CNN architecture for instance seg-
mentation (Fig. 3). Mask R-CNN was chosen for its ability to perform 
instance segmentation by combining automatic detection and segmen-
tation phases in sequential order. The benefit of instance segmentation 
for archaeological prospection is that besides automatic detection, pre-
dicted segments can be used for morphological or contextual charac-
terization of the terrain anomalies identified. 

Detectron2 was configured to use a Resnet-101 + FPN backbone, and 
training hyperparameters (Table 2) were predefined and remained static 
for all experiments. 

For the transfer-learning strategy, weights of the network were 
initialized using a model pre-trained with a the Common Object in 
Context (COCO) dataset (Lin et al., 2015). 

A Data augmentation technique was included in the training work-
flow with randomized flip, crop and rotation transformations 

2.3.3. Evaluation metric and cross-validation 
Performances of the resulting segmentation were evaluated statisti-

cally using the Average Precision (AP) metric (Padilla et al., 2020) for an 
intersection over union (IoU) threshold of 0.5. This threshold value, 
commonly used in the literature, was justified in our study by the fuzzy 

Table 1 
Visualization techniques compared in the study.   

Description References Calculation parameters Visualization parameters 

HS Analytical hillshading (Yoëli, 1967) Sun azimuth: 315◦; Sun elevation angle: 35◦ Linear histogram stretch 
between 0 and 1 

HS_PCA PCA of multi-analytical 
hillshading 

(Devereux et al., 2008) Sun azimuths: 16 directions; Sun elevation angle: 35◦ ; Number of 
principal components: 3 

Histogram equalization 
with 2% cut-off 

SLP Gradient of elevation (Doneus and Briese, 
2006) 

No parameters Linear histogram stretch 
between 0 and 51◦

ON Negative topographic openness (Doneus, 2013) Number of search directions: 16; Search radius: 10 px linear histogram stretch 
between 60◦ and 95◦

OP Positive topographic openness (Doneus, 2013) Number of search directions: 16; Search radius: 10 px linear histogram stretch 
between 60◦ and 95◦

SVF Sky view factor (Kokalj et al., 2011) Number of search directions: 16; Search radius: 10 px Linear histogram stretch 
between 0.64 and 1.00 

LD Local dominance (Hesse, 2016) Minimum radius: 10 px; Maximum radius: 20 px Linear histogram stretch 
between 0.5 and 1.8 

SLRM Simple local relief model (Hesse, 2010) Radius for trend assessment: 20 px Histogram equalization 
with 2% cut-off 

RRIM Red relief image map Based on Chiba et al. 
(2008) 

Source images: openness ((OP-ON) / 2) & SLP (red-toned) 
Blending: addition with 70% (SLP) and 30% openness 

See SLP, OP, ON 

MSTP Multiscale topographic 
position 

(Lindsay et al, 2015; 
Guyot et al., 2018) 

Number of |DEV| calculation: 30; 
Micro scale (Blue): 3 to 21 px; Meso scale (Green): 23 to 203 px ; 
Macro scale (Red): 223 to 2023 px 

linear histogram stretch 
between 0 and 3 

e2MSTP enhanced MSTP Adapted from Guyot 
et al. (2021) 

Source images: MSTP, RRIM, SLRM. 
Blending: SLRM blended (screen, 25% opacity) with RRIM blended 
(softlight, 70% opacity) with MSTP 

See MSTP, RRIM, SLRM 

VAT Visualization for 
Archaeological Topography 

(Kokalj and Somrak 
2019) 

Source images: HS, SLP, OP, SVF 
Blending: SVF blended (multiply, 25% opacity) with OP blended 
(overlay, 50% opacity) with SLP blended (luminosity, 70% opacity) 
with HS. 

See HS, SLP, OP, SVF 

VAT- 
HS_channels 

3-band, Visualization for 
Archaeological Topography 

(Somrak, Džeroski, and 
Kokalj 2020) 

Source images: SLP, OP, SVF 
Combined in a 3-band RGB image (Red: SLP, Green:OP, Blue: SVF) 

See SLP, OP, SVF  
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nature and spatial uncertainty associated with the archaeological 
reference dataset (Guyot et al., 2021). The metric, called AP@IoU0.5, 
refers to the area under the precision-recall curve. 

Cross-validation was performed using a K-fold (K = 5) strategy with a 
80%/20% train/test split (120/30 images, respectively) to assess the 
performance stability of each VT (Rodriguez et al., 2010). Since model 
hyper-parameters were not tuned (only model parameters were fine- 
tuned), no model selection was performed. Therefore, a split between 
validation and test sets was not required. 

Each VT (Fig. 4) was visually interpreted by a human to empirically 
assess their performance for visual perception. The same VT 

configurations (visualization techniques and visualization parameters) 
were used as input for the deep CNN and as a basis for visual 
interpretation. 

3. Results 

3.1. VT assessment through human-based interpretation 

Visually, multiscale VTs (MSTP, e2MSTP) had the best perception 
performances for archaeological sites with subtle positive topographic 
variations, regardless of their size or morphology. This result was 

Fig. 2. Visualization techniques applied to the Le Pusso area, Carnac (France). The area has a variety of landforms, including multiple archaeological structures.  
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especially evident for a levelled tumulus (example 1, Fig. 4) whose 
remaining trace spreads over an area 80 m long and 50 m wide. The 
multiscale VTs were also, by design, the only ones that provided infor-
mation about the wider topographical context (example 2, Fig. 4), by 
highlighting the dominant position of the Neolithic funeral structures in 
the landscape. The combination of multiscale representation and local 
morphological information (e2MSTP) allowed for better interpretation 
of structured terrain; for example, terrain with pits, narrow ditches or 
embankments (example 2, Fig. 4). Detrending techniques (LD and 
SLRM) were highly informative for small scale-terrain variations; how-
ever, their limits were apparent for the following geoarchaeological 
configurations: (1) small archaeological structures (smaller than the 
radius of analysis) within highly textured terrain (usually in under-
growth vegetation) and, (2) large archaeological structures (larger than 
the radius of analysis) considered to be the natural trend of the terrain 
and thus not enhanced. Terrain openness and its variants (OP, ON, SVF, 
RRIM) appeared to be effective for small archaeological structures, 
especially for small mounds (<10 m radius) with a central pit; however, 
the lack of overall contextual information (such as multiscale topo-
graphic position) reduced the ability to interpret these structures. 
However, these VTs were not visually informative for continuous and 
subtle variations that occur at a larger scale with the presence of leveled 
tumulus. This limitation was also observed for standard VTs, such as 
slope (SLP), hillshadings (HS and, to a lesser extent, HS_PCA) as well also 
for the combined visualization of archaeological topography (VAT and 
its 3-band variation VAT-HS_channels). VAT was designed to improve 
the recognition of small topographical features (Kokalj and Somrak 
2019). While it was informative for the visual description of small 
structures or local morphological characteristics, the results we obtained 
showed that it was not adapted for the visualization of larger subtle 
topographic variations or for specific topographic positions. 

3.2. VT assessment through computer-based analysis 

The AP@IoU0.5 performance results by VT (Fig. 4) showed a 

minimum average of 24% (analytical hillshading to a maximum average 
of 65% (e2MSTP), with per-fold individual performance extremes 
ranging from 19% (analytical hillshading, fold 4) to 76% (e2MSTP, fold 
5). Monochromatic VTs, such as HS (24%), OP (26%), SVF (28%) and 
ON (33%), had lower performances than other VTs and were thus 
considered less informative by the deep CNN model. VAT (the combined 
monochromatic VT) showed an average performance of 28%, which was 
higher than the performance of its components, except for SLP (38%). 
The VAT-HS_channels (a colored VT) showed a better average perfor-
mance of 39%, confirming the value of multi-band information. How-
ever, monochromatic VTs based on terrain detrending such as SLRM 
(42%) and LD (48%) had higher performances than VAT_HS_channels 
and other colored VTs such as HS_PCA (34%), based on virtual illumi-
nation, or RRIM (41%), based on morphological representation. How-
ever, monochromatic VTs based on terrain detrending such as SLRM 
(42%) and LD (48%) had higher performances than VAT_HS_channels 
and other colored VTs such as HS_PCA (34%), based on virtual illumi-
nation, or RRIM (41%), based on morphological representation. Only 
the multiscale approaches, MSTP (58%) and e2MSTP (65%), obtained 
performances that exceeded 50%. The e2MSTP, based on a combination 
of multiscale information with morphological (RRIM) and local 
detrending (SLRM) representations, was an improvement over the 
standard MSTP version (+7%). 

The statistical performance of deep CNN obtained using different VTs 
enabled the VTs to be ranked by the mean AP@IoU.5 value (Fig. 4). This 
metric-based ranking was similar to the subjective human-based 
assessment presented in 3.1, thus confirming the initial assumption 
that visual representation of data, effective from the perspective of 
human vision, is also effective from the perspective of deep CNNs. 

4. Discussion 

4.1. Towards an objective creation of suitable VTs 

The best-performing VT was the e2MSTP generated using multiscale 
topographic analysis (MSTP) combined (via a blending technique) with 
a morphologically explicit image (RRIM) and a slope-invariant relief- 
detrending technique (SLRM). This VT was created based on empirical 
knowledge and iterative selection of parameters that enhance the 
perception of ALS-derived terrain data for archaeological prospection. 
The computer-vision approach shows the suitability of such VTs for 
identifying archaeological structures on ALS-derived terrain models in 
the study area. In particular, it highlights the utility of using a multiscale 
approach that provides contextual topographic position information and 
is more robust for varying structure size (Guyot et al., 2018). It also 
confirms the advantage of combining complementary VTs to address 
identified limitations of single VTs (e.g. blending morphological and 
detrended information with multiscale information). Nevertheless, 
evaluating the complementarity of VTs and selecting the optimal 

Fig. 3. Architecture of Mask R-CNN for instance segmentation on visualization technique images.  

Table 2 
Main hyperparameters used to train the deep convolution neural network.  

Hyperparameters Value 

Learning rate (LR) BaseLR = 0.002; 100 warmup iterations then 0.1xBaseLR, 
0.01xBaseLR, 0.001xBaseLR at 500, 1000 and 1500 iterations 
respectively 

Total iterations 2000 
Batch size 2 
Epochs* 33 (for 120 images) 
Anchors size 16, 32, 64, 128, 256, 512 px 
Data 

augmentation 
flip, crop and rotation transformations (50% probability) 

*Epochs = total iterations * batch size/total number of images. 

A. Guyot et al.                                                                                                                                                                                                                                   
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blending strategies to emphasis this complementarity remains a chal-
lenge. This was illustrated by the results we obtained using VAT and 
VAT-HS_channels. As expected, VAT showed lower performance than its 
3-band variant VAT-HS_channels that is in accordance with the results of 
Somrak et al. (2020) who compared these two VTs for image classifi-
cation task. However, VAT-HS_channels, which was produced without 

blending but by simple stacking of SLP, OP and SVF, showed lower 
performance than SLP used as a single VT. This could be due to the visual 
correlation between SLP, OP and SVF. A simple stacking of correlated 
VTs does not necessarily generate a better performing combined image. 

While evaluating all possible VT combinations was out of the scope 
of this study, the proposed approach could open new perspectives in the 

Fig. 4. Performances of detection/segmentation using deep convolution neural network (CNN) for different visualization techniques (VTs). Visual examples of VTs 
with (right) the reference data and (left) mean deep CNN model performances (mAP@IoU.5) of each VT. Error bars indicate 1 standard deviation. Example 1 is a 
leveled Neolithic tumulus in an agricultural field. Example 2 is a megalithic complex of 3 dolmens under dense vegetation. Example 3 is a Neolithic tumulus of 
elongated shape in a marshland area. 
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objective selection of the most suitable VT or blending parameters as the 
remote-sensing archaeological or geomorphological community de-
velops new ALS-derived terrain model visualizations. 

4.2. Generalization of the benchmarking approach 

The deep CNN was trained on a limited typology of archaeological 
remains (mostly funeral structures from the Neolithic) and within a 
limited geographical area. A similar approach applied to different con-
texts would not necessarily provide the same performances from a deep 
CNN perspective. It would require new training and evaluation, which 
may not result in the same ranking of VTs, especially if structures or 
landforms differ from those in our study area. However, the approach is 
expected to maintain the relation between the degree of visual percep-
tion from VTs and the ability to perform segmentation automatically 
using Deep CNN. 

This deep-CNN-based benchmarking approach has not yet been 
developed for diverse geographical and archaeological environments. 
While the available coverage of ALS data is rapidly growing (due to a 
decrease in the cost of acquisition and an increase in the number of 
open-access ALS projects supported by public funding), the availability 
of archaeological reference datasets remains a key issue. The collection, 
publication and maintenance of labelled archaeological data is not 
straightforward. Available inventories (e.g. the “Carte Archéologique 
Nationale” in France) are gradually addressing this issue, but the limits 
of large-scale archaeological references persist: many sites remain to be 
discovered, and for many of them, the nature and spatial extent of the 
archaeological structures could, paradoxically, be confirmed only by 
destructive archaeological excavation. The “ground truth”, which serves 
as an essential base for all supervised remote-sensing classification or 
detection approaches, would remain wishful thinking in the archaeo-
logical prospection domain. Thus, New paradigms based on fuzzy or 
partial reference datasets need to be developed. 

4.3. Computer vision as a support for human interpretation 

This study is based on the initial assumption that the deep CNN- 
based and human-based processes involved in image interpretation 
share some similarities (Brachmann et al., 2017; Geirhos et al., 2018; 
Kim et al., 2019; Zhang et al., 2018). The results confirmed this 
assumption by showing comparable VT rankings between the computer- 
based and human-based interpretation. In both cases, the detection 
performance is related to the ability of a VT to enrich the original data 
representation with interpretable information. However, the image data 
is not the only information that influence human-based interpretation. 

An expert-based interpretation would include perceptions of the in-
formation included in the image, but also external information not 
available in the data itself (geoarchaeological knowledge of the area or 
skills based on experience). The computer-vison approach applied to an 
image cannot encompass the exhaustive aspects that influence archae-
ological interpretation. Therefore, the proposed approach does not aim 
at replacing expert-knowledge or imposing a single VT for archaeolog-
ical interpretation of ALS-derived terrain model, but rather aim at pro-
posing a significant support tool for archaeological analysis. With a high 
capacity of data processing, a consistent response against similar data 
and an interpretation bias (even if not entirely absent) that can be 
measured, the deep CNN approach provides a complementary tool for 
the identification and characterization of archaeological structures from 
ALS-derived relief model. 

5. Conclusion 

In this study, we demonstrated the potential of the deep CNN 
approach as a tool to objectively assess the utility of ALS-derived VTs in 
the context of archaeological prospection. We used a state-of-the-art 
open-source instance-segmentation framework to compare the 

performances of automatic detection and segmentation of deep CNN 
models with 11 different VTs used as input data. The results allowed to 
rank VTs by their performance from an automatic detection and seg-
mentation point of view. This computer-based ranking was compared to 
a subjective human-based interpretation. Ranking outcomes were 
comparable and thus confirmed the assumption that the deep CNN 
perception was similar to the subjective perception of human-based 
visual interpretation. Based on this confirmation, we showed that deep 
CNN computer vision approach could be used to objectively assess the 
ability of VTs ability to enhance the perception of archaeological 
structures. Although the study was conducted in a limited geo-
archaeological context, the approach is expected to be reproducible on 
different areas and different types of structures or landforms, especially 
because it is based on relative evaluation of the selected VTs. Moreover, 
by relying on a non-subjective benchmarking method, the approach 
developed could help design new or hybrid VTs that could be used to 
improve the human-based interpretation, or as inputs to the CNN for 
further automatic extraction tasks on large datasets. 
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Kokalj, Žiga, Somrak, Maja, 2019. Why not a single image? Combining visualizations to 
facilitate fieldwork and on-screen mapping. Remote Sensing 11 (7), 747. https://doi. 
org/10.3390/rs11070747. 
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