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Abstract: Advances in remote sensing (RS) technology in recent years have increased the interest in
including RS data into one-class classifiers (OCCs). However, this integration is complex given the
interdisciplinary issues involved. In this context, this review highlights the advances and current
challenges in integrating RS data into OCCs to map vegetation classes. A systematic review was
performed for the period 2013–2020. A total of 136 articles were analyzed based on 11 topics and
30 attributes that address the ecological issues, properties of RS data, and the tools and parameters
used to classify natural vegetation. The results highlight several advances in the use of RS data in
OCCs: (i) mapping of potential and actual vegetation areas, (ii) long-term monitoring of vegetation
classes, (iii) generation of multiple ecological variables, (iv) availability of open-source data, (v)
reduction in plotting effort, and (vi) quantification of over-detection. Recommendations related
to interdisciplinary issues were also suggested: (i) increasing the visibility and use of available RS
variables, (ii) following good classification practices, (iii) bridging the gap between spatial resolution
and site extent, and (iv) classifying plant communities.

Keywords: MaxEnt; earth observation; plant communities; conservation; SDM; biogeography

1. Introduction

Mapping and monitoring of natural vegetation classes is essential to conserve and
restore biodiversity [1]. However, classification of natural vegetation is challenging given
their diversity and dynamics, but also the low quantity of available reference plots [2].
To address this issue, the ecology community used one-class classifiers (OCCs) since the
1980s to map animal and plant species separately [3]. OCCs use few reference plots,
which reduced the sampling effort compared to multi-class classifiers [4] such as MaxLike
or traditional multi-class support vector machine (SVM). In other words, OCCs enable
mapping one class of vegetation without knowing the other vegetation present in the
landscape [5]. OCCs require only reference plots related to the class of interest since they
do not require absence plots [6]. However, their use remains complex, which implies the
need to follow good configuration practices [7] and to interpret the results by combining
statistical, spatial, and expert-based indices [8]. Notably, the performance of OCCs is highly
sensitive to classifier parametrization (e.g., fitting, thresholding, variable selection) [9–11],
the quality of the predictive variables used [12], and the reference data [13]. Moreover,
assessing the accuracy of OCCs remains challenging without absence data [14].

Although OCCs have been widely used to map natural vegetation in the past decade [4],
they usually include only broad-scale bioclimatic variables mainly derived from field plots,
which limits their performance [15]. This results in the following challenges: (i) Improving
spatial resolution to identify small patches of vegetation [16]; (ii) improving classifier
performance by including other variables such as disturbances, or light availability [15];
(iii) improving the spatio-temporal transferability of OCCs [17]; (iv) assessing the impact of
global changes on plant community distribution [18]; (v) monitoring changes in biodiver-
sity [19]. In this context, integrating remote sensing (RS) data, which have the advantage of
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coming from long-term standardized and spatialized observations of the Earth [20], are a
growing interest [21]. Paradoxically, although early studies highlighted the ability of RS
data in OCCs to increase the accuracy of vegetation classification [22], they remain rarely
used [23].

Similarly, in recent years the RS community emphasized the ability to integrate RS data
into OCCs to map vegetation [24]. In particular, the new Sentinel satellite time-series or
unmanned aerial vehicle (UAV) data offer the opportunity to characterize vegetation classes
at unprecedented spatio-temporal scales. Subsequently, combining data from different
types of sensors, such as optical and synthetic-aperture radar (SAR), improves classification
accuracy [25]. In addition, a wide variety of essential climate and biodiversity variables are
now derived from RS data to describe the full range of ecological processes and cover the
entire globe, and they are freely available [26]. In this perspective, correspondences between
essential climate and biodiversity variables, which are globally recognized indicators for
monitoring biodiversity and climate, and RS variables have been established [27].

Integrating RS data into OCCs to map natural vegetation is therefore a multidisci-
plinary issue: (i) the RS community highlights the emergence of new sensors and new
variables derived from the RS data; (ii) the ecological community is interested in the po-
tential of RS data to improving monitoring of vegetation classes but stresses the need to
understand clearly how each classifier works. In this context, the objectives of this study
are: (i) to review the recent state-of-the-art on the use of remote sensing data for one-class
classification of natural vegetation at three hierarchical levels (land cover, plant community,
and plant species classes); (ii) to review the state-of-the-art on the tools and parameters
used to apply OCCs; and (iii) to highlight the advances achieved in classification of nat-
ural vegetation using OCCs, the challenges to be addressed, and further research to be
conducted. For this purpose, a systematic review was performed for the period 2013–2020.

2. Literature Search and Review

The literature search was based on expert definition of 79 keywords that were classified
into three topics: RS, OCCs, and natural vegetation. Full forms of abbreviations are
provided Table S1. The keywords of each topic were combined using the Boolean string
“AND” (Table 1) to perform a literature search on the institute for scientific information
(ISI) Web of Science (WOS) and Scopus. The literature search extended over 8 years from
2013, when the practical guide to MaxEnt was published [7]. As a result, 1889 and 2082
references that contained the predefined key words either in the title, abstract or key word
fields were automatically identified using the search tools available in WOS and Scopus,
respectively (Figure 1).

Articles that addressed classification of terrestrial vegetation using airborne or space-
borne RS data were selected. Conversely, articles that focused specifically on fauna, marine
ecosystems, virtual species, pathogens, urban habitats, environmental disturbances (e.g.,
droughts, fires, landslides)—as result of classification—and field RS, as well as duplicates
between WOS and Scopus, were excluded, which left 136 articles for the literature review
(Table S2). Each selected article was manually reviewed according to an assessment grid
with 11 topics and 30 attributes related to the material and classification method used,
and each attribute was characterized by one or more categories (Table 2). In addition, the
proportion of each attribute category in each of the 11 topics was analyzed and compared
to the literature recommendations.
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Table 1. Keywords selected per topics for the literature searching. The asterisk (*) was used to
retrieve variations of a term.

Topics

Remote Sensing One-Class Classifier Natural Vegetations
————————————— AND ———————————————
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Figure 1. Flowchart used to search and review literature on remote sensing (RS) for one-class classification (OCC) of natural
vegetation (time span: 2013–2020).

Table 2. Topics, attributes, and categories used to analyze the articles selected (see Table S3 in Supplementary Materials for
a complete description of categories).

Topic Attribute Categories

A. Ecological considerations

A1. Area of occupancy Potential area; actual area

A2. Hierarchical level Land cover; plant community; plant species

A3. Number of classes One class; multi-class

A4. Site extent Local (<1000 km2); regional (1000–100,000 km2);
national; continental; global

A5. Temporal monitoring No; yes

B. Remote sensing data and variables

B1. Sensor type Multispectral; hyperspectral; SAR; LiDAR

B2. Platform type Unmanned airborne; manned airborne; satellite

B3. Spatial resolution
very high spatial resolution (<5 m); high spatial
resolution (6–30 m); moderate spatial resolution
(31–250 m); low spatial resolution (>251 m)

B4. Acquisition frequency Single; multi-temporal; annual time-series

B5. Type of remote-sensing-based variable Climate; soil; topography; vegetation;
categorical; disturbance

C. Reference data C1. Reference type Vegetation database; field collection; image
collection

C2. Reference quantity Very small (<10); small (10–50); moderate
(50–100); large (100–1000); very large (>1000)



Remote Sens. 2021, 13, 1892 5 of 24

Table 2. Cont.

Topic Attribute Categories

D. Tools and computer Resources D1. Software license Open-source; commercial

D2. Computer location Local computing; cloud computing

E. Variable selection and collinearity E1. Initial variable selection Expert; literature; data mining

E2. Consideration of correlated variables Classifier-based; expert-based; statistical-based;
reduction

F. Classifier selection F1. Classifier type Machine learning; ensemble classifier; deep
learning; evolutionary algorithm

G. Background point selection
G1. Background point quantity Small (<10,000); default (10,000); large (>10,000);

unspecified; not applicable

G2. Consideration of spatial sampling No; yes; not applicable

G3. Area for background point selection All landscapes; distribution area; natural areas;
artificial areas; unspecified; not applicable

G4. Consideration of area of occurrence No; yes; not applicable

H. Classifier fitting H1. Type of classifier fitting None; best performance; best transferability

H2. Type of absence data Background; pseudo-absence; true absence;
unspecified

I. Thresholding I1. Thresholding stage Never; fitting/validation; categorical mapping

I2. Thresholding method Default; statistical; expert-based; unspecified

J. Classification accuracy assessment
J1. Consideration of spatial autocorrelation No; yes

J2. Independent validation plots No; yes

J3. Accuracy assessment criterion Best performance; spatial uncertainty; best
transferability; expert-based

K. One-class classifiers combination K1. Classification combination method Independent; higher probability; categorical map
addition; unspecified

3. A Wide Range of RS Data for Multiple Ecological Considerations

Recent technological advances and current spatial missions provide a large amount
of remote sensing data for monitoring vegetation classes. The wide range of available
sensors (multispectral; hyperspectral; SAR; LiDAR) and platforms (unmanned airborne;
manned airborne; satellite) types provide long-term observation of the Earth and bridge the
gap between spatial and temporal resolution. In particular, the emergence of open-access
databases of environmental variables (climate; soil; topography; vegetation; categorical;
disturbance) with global coverage derived from RS data could improve the classification of
natural vegetation. Potential and actual distribution of vegetation classes could be mapped
at multiple spatio-temporal scales and hierarchical levels (land cover; plant community;
plant species).

3.1. Identifying Potential Restoration or Invasion Areas

Traditionally, OCCs based only on topo-climatic variables were used to map the
potential area of vegetation. The addition of RS spectral variables enables OCCs to map
not only actual vegetation extent [28] but also potential restoration or invasion areas [29].
However, the literature review indicates that while most studies classified only the potential
or actual vegetation area, these two components were rarely considered together (Table 3).
Generally, many studies that classified potential vegetation area (n = 27) used spectral
variables as an indirect descriptor. For examples, photosynthetic activity derived from a
SPOT-NDVI time series at a 1 km spatial resolution was used to classify the potential extent
of tree species [30], and LiDAR-derived light availability was used to classify the potential
extent of understory species [31]. Interestingly, several studies classified the potential area
of vegetation using topo-climatic variables and then classified the actual vegetation area
using vegetation variables [5,32,33].
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Table 3. Number of studies reviewed per type of occupancy area.

Area of Occupancy Number of Studies

Potential area 65

Actual area 66

Potential and actual areas 5

3.2. From Plant Species to Land Cover

Vegetation classes can be mapped at different hierarchical levels, ranging from plant
species to land use/land cover (LULC). The literature review highlights that most studies
classified vegetation at the species level, especially for invasive species [34–36] or endan-
gered species [37–39], while the coarser LULC level and the finer plant-community level
were studied less (Table 4). At the LULC level, most studies investigated the influence of
classifier parameters on map accuracy, since over-detection of LULC classes can be detected
clearly from visual interpretation of images [40–44]. Others studies focused on wetland
inventories [45–47] or farming areas [48]. At the plant-community level, the typology
studied ranged from plant associations [49,50] to natural habitats [5,51–53]. Interestingly,
Bradter et al. [49] and Fenske et al. [50] indicated that increasing the vegetation hierarchical
level (i.e., from habitat to plant association or species) decreases OCC accuracy, while
Suárez-Seoane et al. [54] demonstrated the opposite. In addition, Suárez-Seoane et al. [54]
and Connor et al. [55] showed that vegetation classes with a narrow ecological niche had
higher classification accuracy than that with a wider niche. To improve the classification
accuracy of plant communities, Tang et al. [56] developed an approach that groups species
into spectrally discriminating phenological groups based on a k-means classification ap-
plied to PCA axes of MODIS spectral variables. However, using RS data at moderate spatial
resolution to map plant species raises the issue of the influence of the spatial resolution of
RS data on vegetation detection [57].

Table 4. Number of studies reviewed per hierarchical level of vegetation.

Hierarchical Level Number of Studies

Plant species 102

Plant community 19

Land cover 15

3.3. Site Extent and Spatial Scale

The size of the study site is crucial for OCCs: the larger the size and variety of
environments considered, the more transferable the classification will be to other parts of
the world [17]. Furthermore, the use of RS spectral variables in OCCs hinders the transfer
of classifications to other study sites given the phenological shifts that occur between sites
and years [53]. The literature review supports that, as the size of the site increases, the scale
of analysis decreases. For examples, (i) peatlands were classified at a metric resolution on a
site of a few ha using QuickBird and WorldView-3 satellite images [47]; (ii) Kim et al. [58]
and Doninck et al. [59] classified plant species using 30 m Landsat images across South
Korea and the Amazon, respectively; and (iii) biomes were mapped over the entire earth
using kilometric-resolution MODIS products [60].

3.4. Long- or Short-Term Vegetation Monitoring

RS data, which provide standardized spatio-temporal measurements, have great
potential for monitoring of vegetation [61], particularly in the long term [24]. Nonetheless,
the literature review indicates that temporal monitoring of vegetation was rarely addressed
(n = 14) and that change was often detected by comparing classifications date-by-date,
which sums the errors from each classification [62]. Half of the studies monitored vegetation
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classes over the long term (~40 years) at decadal intervals using high spatial resolution
Landsat satellite imagery [48,63,64]. Others performed mid-term monitoring (~15 years)
at annual intervals using MODIS moderate spatial resolution satellite imagery [39,65].
Two studies performed very-long-term (~90 years) monitoring at 20-year intervals using
LULC variables derived from historical aerial photographs [66,67], and only one study
performed short-term (8 years) monitoring using two very high spatial resolution satellite
images [47]. Regarding forecasting, four studies used long-term classification (~100 years)
that combined LULC and climate variables simulated under different scenarios [66,68–70].

3.5. The Importance of Spatio-Temporal Resolutions

The RS data used in OCCs should remain consistent with the spatio-temporal scales of
vegetation [29]. However, given the specific limitations of RS sensors (e.g., high spatial but
low temporal resolution vs. low spatial but high temporal resolution), scaling issues may
arise in the ecological interpretation of vegetation maps. Temporal resolution is also critical:
single-date RS data may have been acquired at a time that does not represent ecosystem
functioning [61]. In addition, classification accuracy increases as the number of acquisitions
used increases [29]. The new Sentinel data have addressed these technical limitations by
combining high spatial resolution (10 m) with high acquisition frequency (7 days), which
helps characterize and monitor vegetation classes at new spatio-temporal scales [24].

The literature review confirms issues caused by using RS data at inadequate spatial
and/or temporal resolutions to map vegetation classes. Most studies (91%) that use RS
data with moderate-to-low spatial resolution classify plant species. Interestingly, Connor
et al. [55] found that OCC accuracy decreased as the spatial resolution of an RS-derived
DTM decreased, and recommended selecting RS data with a spatial resolution similar to
that used to collect the reference plots.

The review shows that vegetation classes were characterized mostly from single-date
and, to a lesser extent, multi-date or time-series RS data (Table 5). Although Sentinel-1
and Sentinel-2 data have been freely available since 2014 and 2016, respectively, their use
for mapping vegetation in OCCs remains low (n = 6). Indeed, most studies used multi
temporal Sentinel-2 images [45,71–74] whereas one study used Sentinel-1 images [75].

Table 5. Number of studies reviewed according to the acquisition frequency of remote sensing
data used.

Acquisition Frequency Number of Studies

Single 67

Multi-temporal 34

Annual time-series 35

Recently, vegetation variables at centimetric resolution derived from UAV data are
increasingly used in OCCs. For examples, (i) Multispectral sensors on UAVs can map
invasive species [76] or small patches of plant communities [77]; and (ii) point clouds
generated from stereoscopic UAV data can characterize the vertical structure of vegetation
at unprecedented spatial resolution [78]. Interestingly, Kattenborn et al. [75] demonstrated
that UAV data can be an effective alternative to field data for fitting and validating OCCs
based on satellite imagery. However, UAVs can currently cover only a few ha (1 ha equals
to 10,000 square meters), which reduces their usefulness for local monitoring.

3.6. Underused RS-Based Environmental Variables

The number of studies that use each type of ecological variable based on RS or
field plots is shown in Figure 2. Globally, the results show that vegetation, climate, and
topography variables are the most frequently used in OCCs, while soil, geology, and
disturbance variables are rarely used. Moreover, vegetation, topography, LULC and
disturbance variables are mostly derived from RS data, whereas climate, soil, and geology
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variables are largely produced from field observations. From recent years, open access
and RS-based soil [79], climate [80], or disturbance variables such as snow cover [81] are
available and should be used more frequently in OCCs.
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The vegetation variable (i.e., spectral values) is used most often (n = 99) and comes
exclusively from RS data. Specifically, several studies showed the utility of variables that
characterize vegetation phenology derived from multispectral satellite data to map natural
vegetation, such as MODIS [82,83], Landsat [54], ASTER [84], RapidEye [51], or hyper-
spectral airborne data [85]. Although Sentinel-2 data are increasingly relevant for OCCs,
their use remained limited to a few acquisitions [45,71–73]. Notably, Delalay et al. [74]
reported the utility of Sentinel-2 time-series in OCCs for mapping vegetation classes in
Nepal. In addition, vegetation variables that characterize the vertical structure and volume
of vegetation derived from high and very high spatial resolution LiDAR and SAR data
are highly useful for OCCs [24,25]. For examples, Mack and Waske [44] classified LULC
using a TerraSAR-X time series; and Kattenborn et al. [75] classified woody species using
a combination of Sentinel-1 and -2 data. In practice, few studies used SAR-derived veg-
etation variables in OCCs to map vegetation, despite the growing interest in Sentinel-1
images. Regarding specific application of LiDAR data, canopy height is the vegetation
variable used most often in OCCs [5,86,87]. Wüest et al. [31] recently demonstrated that
a light-availability variable derived from a LiDAR point cloud increased the accuracy of
OCCs for understory tree species.

Climate variables describe the tolerance of vegetation to water and temperature [4] and
were derived mostly from GIS field-based layers (n = 67), such as WorldClim (~1 km reso-
lution) data [88], were also used frequently (n = 89). However, variables for precipitation
and temperature derived from multispectral time series, such as land surface temperature
products derived from MODIS data at 0.1 degree [89] (and up to 250 m resolution over
Europe [90]), or MERRAclim (2.5 arc minutes) [80], are freely available. Deblauwe et al. [91]
and Cord et al. [82] revealed that these RS-derived climate variables increased the accuracy
of OCCs more than WorldClim data, especially in areas with a low density of weather
stations and/or high environmental gradients. MODIS Land Surface Temperature products
also include a night temperature component, which is a highly informative variable for the
distribution of invasive species [92]. In this context, Lembrechts et al. [93] recommend se-
lecting climate variables derived from RS data rather than using low-resolution WorldClim
data systematically.

Topographic variables, which characterize energy and moisture availability [4], are
also widely used in OCCs (n = 87), particularly variables derived from RS data (n = 66).
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The Shuttle Radar Topography Mission DEM provides global coverage at a 90 m spatial
resolution and is used in OCCs at continental and regional scales [46], while airborne
LiDAR data provide very high spatial resolution topographic variables for OCCs [5,94].
For sites not covered by LiDAR data, but where high spatial resolution is required, the
free Global DEM at 30 m spatial resolution generated by stereoscopy of ASTER satellite
data is a suitable alternative to improve the spatial scale of OCC maps [65,95,96]. Similarly,
DEMs generated at high spatial resolution (12 m) from ALOS PALSAR data were used
successfully to map habitat suitability of plant species of the genus Juniperus in Iran [97].

LULC is commonly used in OCCs (n = 41), since it characterizes whether LULC types
are suitable (e.g., woods, grassland) or not (e.g., built-up, crop) for the distribution of
plant species [4]. Literature review shows that all LULC variables used in OCCs were
derived from RS data. For example, the European CORINE Land Cover or USGS National
Land Cover Database layers used in OCCs [98,99] were generated at 1:50,000 scale from
Landsat satellite images. At finer spatial scales, LULC variables can be derived from
very high spatial resolution RS data, such as aerial photographs and LiDAR data [100].
However, Cord et al. [101] highlighted that thematic resolution was more important than
spatial resolution. Interestingly, OCC accuracy could be increased by using LULC change
variables [26].

Although soil and geological conditions influence the distribution of natural vegeta-
tion, these types of variables remain less widely used in OCCs (n = 25 and 7, respectively)
due to their partial coverage, spatial scale, and coarse-pixel size. Nonetheless, two stud-
ies used high spatial resolution soil-property variables derived from reflectance values
of airborne [102] or satellite [103] multispectral sensors. Recently, SoilGrids layers that
cover the entire earth at 250 m spatial resolution and characterize soil properties (e.g., pH,
texture, carbon) and soil classes (World Reference Base) were derived from MODIS satellite
data [79]. Four studies noted the contribution of these SoilGrids variables to OCCs for
mapping natural vegetation [99,104–106].

RS data are often used to map and monitor disturbances (e.g., floods, snow cover,
fires, landslides) [26], mainly fire events derived from high spatial resolution satellite
data [39,107] and snow duration derived from MODIS [60] or Landsat [108] images. Sur-
prisingly, these data remain little used (n = 4) as input variables to classify vegetation.

3.7. Combining Variables Improves OCC Performance

In theory, Mod et al. [15] recommended using a set of seven ecological variables in
OCCs: temperature, water, nutrients, light, biotic interactions, disturbances, and LULC.
In this perspective, Fois et al. [109] advised combining bioclimatic variables with at least
two other types of variables. However, the literature review indicates that most studies
use fewer than three types of variables (Figure 3). Given the similar spectral responses
among plant species, several studies reported a decrease in classification accuracy when
variables derived from RS data were used alone [5,106,110,111]. Conversely, many stud-
ies have reported not only that adding a spectral variable to environmental variables
increases OCC accuracy [82,110–112], particularly when classifying climate-unstructured
plant species [59], but also that the spectral variable often contributes the most [36,46]. Two
other studies reported that adding spectral variables did enhance the spatial scale of the
map substantially [54,106]. Only 25 studies used at least four variable types. For example,
Mudereri et al. [105] classified the potential area of an invasive plant species in Zimbabwe
using a combination of five variable types (i.e., bioclimate, vegetation, topography, soil,
and LULC) derived only from RS data.
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3.8. Data Quality Influences OCC Performance

The quality of predictive variables and reference data influences OCC performance [5,12,24].
The literature review indicates that variables derived from RS data can be influenced by
the specific characteristics of the sensor, environmental conditions, or data processing.
For examples, (i) Lopatin et al. [78] showed that shadows in very high spatial resolution
images decrease classification accuracy; (ii) Moudrý et al. [12,113] found that variable
topographic quality (e.g., spatial resolution, ability to penetrate vegetation cover, param-
eters for calculating topographic indices) influenced OCC accuracy greatly; (iii) Randin
et al. [26] indicated that spectral values of the thermal bands used to generate bioclimatic
variables are also influenced by the land-cover; (iv) Cord et al. [101] and Truong et al. [106]
stated that the quality of the LULC variable (e.g., spatial resolution, thematic resolution,
map reliability) often influences OCC accuracy and suggested replacing LULC categorical
variable with continuous spectral variables.

Regarding reference data, their quality is also an issue for OCC performance [54].
Although new reference plots can be collected according to a specific protocol suitable
for classifying actual area of vegetation classes at local or regional scales, using field
reference databases is inevitable when classifying larger sites and/or performing temporal
monitoring. These reference databases are frequently subject to spatial sampling bias,
incorrect georeferencing, or incorrect descriptions of vegetation [24,75]. In this sense,
Suárez-Seoane et al. [54] highlighted that compiling multiple regional reference databases
into a national database is challenging, since the same vegetation patch may be described
differently depending on the criteria that each botanist used. Moreover, spatial errors can
occur when relating field vegetation plots to the predictor variables, since one pixel may
include diversity of vegetation classes [40]. However, the literature review illustrates a few
approaches to correct biases in reference data:

• Removing outliers: Since all field plots for a vegetation class are assumed to describe
the same environmental conditions [114], outliers were removed after identifying
extreme values of each predictor variable [115–117].

• Subsampling: Several authors corrected for spatial sampling bias by subsampling
reference data in densely plotted areas [118].

• UAV image analysis: Reference data can be derived automatically from very high
spatial resolution UAV images [75]. This approach is interesting since pure pixels can
be extracted from reference polygons, and reference data can be collected from sites
that are difficult to access in the field.
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4. A Wide Range of Tools and Settings for OCCs
4.1. Classifier Selection

The variety of OCCs can be classified into three main groups: regression (e.g., par-
tial least square), machine learning (e.g., generalized linear model, generalized additive
model, random forest, MaxEnt), and deep learning (e.g., convolutional neural network).
Interestingly, the traditional multi-class SVM classifier can be adapted to one-class by the
use of absence points [44]. Overall, Yates et al. [17] indicated that it is challenging to rank
the best classifiers, since the results are specific to each study (e.g., vegetation class and
hierarchical level, quantity and quality of reference data, environmental variables, fitting
and validation methods). Several studies noted that classification accuracy was similar
regardless of the machine-learning classifier used [52,97]. In addition, it could be useful
to create an ensemble classifier i.e., applying multiple OCC and then combining each
classifier’s predictions to highlight the differences and thus the uncertainties [17]. The
literature review indicates that most studies used machine-learning, or to a lesser extent,
ensemble classifiers, but fewer used regression classifiers (Figure 4). Only one study used
an evolutionary classifier [119], which performed worse than a MaxEnt classifier. Three
other studies used deep-learning OCC to accurately map vegetation classes [77,120,121].
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4.2. Tools and Computer Resources

Previous recommendations addressed the wide use of open-source software [122] and
cloud computing [123]. The literature review confirmed that most studies (n = 126) used
open-source software to map vegetation class, such as R and its packages “dismo” [124],
“ENM eval” [125], “spatialEco” [126], “BIOMOD” [127], and “maxnet” [128]. Conversely,
a few studies (n = 29) used commercial software to pre-process RS data, particularly
hyperspectral data or those acquired by the UAV platforms. Only five studies used cloud
computing to classify the natural vegetation [60,65,74,129,130], such as the commercial
platforms Google Earth Engine [131] and Amazon Web Services [132].

4.3. Variable Selection

Variable selection is essential to improving OCC transferability [17] and limiting over-
fitting [7], especially when a large number of variables derived from satellite time series
are included. According to the ecology community, only RS variables that make ecological
sense for the vegetation type classified should be used [28]. Statistical approaches that
reduce dimensions should be avoided since they remove the ecological significance of each
variable [4]. In 2013, Rocchini [61] observed that some studies do not explicitly state the
significance of the RS variables used in OCCs for natural vegetation mapping.
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The literature review reveals first that the selection of variables is based mainly on
expert-based approaches (n = 71), the existing literature (n = 36), and, to a lesser extent,
data mining (n = 29) that consider all possible variables. Then, variable collinearity is ad-
dressed mainly by statistical approaches based on internal classifier functions, a correlation
statistical index, and dimension reduction, while expert-based approaches—involving the
knowledge on the environmental and ecological characteristics of the vegetation classes—
are rarely used (Figure 5).
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4.4. Background vs. (Pseudo-)Absence Points

Guillera-Arroita et al. [133] noted confusion over the definition and use of the terms
“background,” “pseudo-absence,” and “absence” points. Background points are used
for “presence-only” classifiers (e.g., MaxEnt, biased-SVM) to describe the landscape and
can thus be located close to the field reference data. Absence and pseudo-absence points
indicate actual or expected absence, respectively, and are used for “presence/absence”
classifiers (e.g., random forest, generalized linear model). The number and location of
background points are usually selected arbitrarily [8] and can influence classification ac-
curacy strongly. Therefore, this step should be applied with caution [9]. Spatial bias is
inevitably generated by an uneven distribution of field reference data [114]. Several meth-
ods have been developed to correct this bias, such as “bias correction” [134], which places
less importance on background points far from the densely plotted areas, or “background
thickening” [135], which preferentially selects background points located in densely plot-
ted areas. Background points should be selected over the entire landscape, including
the immediate surroundings of the occurrence data; if not, classification accuracy may
be overestimated [134]. The number of background points selected is set by default to
10,000. This number can be adjusted according to the size of the study site and the spatial
resolution of the predictive variables [7].

The literature review highlights that:

• Confusion over the use of background and pseudo-absence points still occurs (Table 6):
42% of studies based on “presence-only” classifiers mentioned the use of pseudo-
absence or absence points. Conversely, and to a lesser extent, 7% of the studies based
on presence/absence classifiers used background points. This confusion occurred
mainly in “ensemble classifiers” that combined presence-only and presence/absence
OCC.

• The number of randomly generated background points varied greatly, from
200 points [45] to 50,000 points [115]. Most often (n = 49), the number of background
points was unspecified and thus probably defaulted to 10,000. Conversely, many
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studies explicitly mentioned this default value (n = 26). A few studies used less than
10,000 points (to decrease calculation times [85]) (n = 9) or more than 10,000 (n = 4).

• Spatial bias was rarely assumed when generating background points (n = 10).
• Background points were usually selected over the entire landscape (n = 29), although

most studies (n = 51) did not specify this. Seven studies selected background points
only in natural areas.

• The selection of background points rarely excluded the areas with field vegetation
plots (n = 6).

Table 6. Percentages of studies reviewed that used given types of points for presence-only or
presence/absence classifiers. Gray cells indicate correct types of points for each type of classifier.

Types of Points

Type of
Classifier Background Absence Pseudo-

Absence Unspecified

Presence only 44% 15% 28% 13%
Presence/absence 7% 67% 26% 0%

4.5. Classifier Fitting

Classifier fitting aims to test all the possible configurations (i.e., classification parame-
ters and their related values) to optimize the performance. Several authors recommended
that transferability should be given priority over classifier performance during the fitting
step [14,118]. The literature review confirms that a large number of studies that classified
natural vegetation used the default configuration instead of fitting the classifier (Table 7).
Surprisingly, this step was rarely applied in OCCs, particularly with MaxEnt classifier [10]
since its predefined settings enable easy running [44]. This lack of classifier fitting may also
be motivated by the long calculation times [51] or complexity of some machine-learning
classifiers [46]. In details, the primary aim of OCC fitting is to increase accuracy and, to a
lesser extent, transferability (Table 7). Results indicated that fitting improved OCC perfor-
mance [42,136], while others demonstrated that fitting had little influence on it [44,137].

Table 7. Number of studies reviewed using a classifier fitting to classify natural vegetation.

Type of Classifier Fitting Number of Studies

None 89

Best performance 30

Best transferability 17

It should be kept in mind that the classifier fitting step is based on accuracy index. The
literature review stresses that the F-score was often used as an alternative to the area under
the curve (AUC) to increase the classifier performance [47,138], while Akaike’s Information
Criterion (AIC) was used to increase the classifier transferability [83,137,139]. Interestingly,
West et al. [83] studied the temporal transferability of OCCs and found that a MaxEnt
classifier fitted with the reference data acquired in 2007 and had AIC values similar to
those of a classifier fitted with reference data acquired six years later.

Several studies have used novel approaches or tools to improve OCC fitting. For
example, Piiroinen et al. [87] used a function from the R package “oneClass” that fitted a
classifier by thresholding the F-score (a threshold-dependent metric) at different values.
Vollering et al. [140] developed a tool to improve the ecological interpretation of OCCs by
distinguishing effects of classifier fitting from those of variable transformation. Yu and
Kang [141] developed an unsupervised learning approach that accommodates OCC that
can be fitted without using absence data.
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4.6. Thresholding

Thresholding is an optional step parameter that may affect the accuracy of OCCs [4,11].
For this reason, Merow et al. [7] recommended avoiding thresholding. Thresholding can
occur two times in the classification process: (i) during classifier fitting and validation steps,
when using a threshold-dependent index (e.g., F-score, Kappa); and (ii) when converting
continuous maps to categorical maps (presence/absence). Among many threshold indices
(e.g., automatic, expert based), Liu et al. [142] demonstrated in 2013 that the “maximum
sensitivity specificity” index was the most effective for OCCs.

The literature review confirmed that thresholding is the parameter that influences the
accuracy of OCCs the most [42,73] and that a threshold remains challenging to set [51,53].
Although Chignell et al. [46] noted that a continuous map is more informative than a
categorized map for end-users, few of the studies reviewed avoided thresholding (Table 8).
Conversely, most studies used a threshold during OCC fitting and validation, and/or
map categorization.

Table 8. Number of studies reviewed using a thresholding stage during the classification process.

Thresholding Stage Number of Studies

None 33

Fitting/validation 47

Categorical mapping 56

Statistical thresholding was used more frequently (n = 76) than expert-based thresh-
olding (n = 20), though the thresholding method was not always specified (n = 7).
Cord et al. [82] compared several statistical indicators and confirmed that the “maximum
sensitivity specificity” index is the best indicator for OCCs. However, no consensus
emerges [53], since the literature review includes a wide variety of statistical indices,
such as:

• Maximum sensitivity specificity [5,59,78,84,143];
• Equal sensitivity specificity [111,137,144];
• Maximum true skill statistics (TSS) [52,145];
• Maximum F-score [50];
• Maximum kappa [51,75,78].

Regarding expert-based thresholding approaches, many authors stated that they
inevitably remain subjective [43,87]. For example, a threshold value of zero (i.e., the hy-
perplane) was used to fit SVM classifiers [137,138], and a threshold of 0.5 was used to
categorize maps [139,146]. Studies may benefit from developing a threshold-free approach
and using threshold-independent indices combined with continuous maps. In this per-
spective, Scherrer et al. [11] recently developed an original approach to classify plant
communities without thresholding.

4.7. Assessing Classification Accuracy

Traditionally, the quality of OCCs was assessed using statistical indices [4]. However,
given sampling biases (e.g., spatial autocorrelation, no absence data), accuracy indices must
be interpreted carefully [43] and supplemented with expert-based map validation [8]. To
limit statistical bias, classification accuracy should be assessed using reference data that are
independent from those used for OCC fitting and spatially uncorrelated [14]. Furthermore,
assessment of over-detection by OCCs is biased without absence reference data.

The literature review highlights that classification accuracy was assessed mainly using
statistical validation through performance (n = 123) and/or transferability (n = 13) indices.
Fernandes et al. [147] reported that the Kappa index is more sensitive to degradation of
the quality of reference data than the AUC or TSS. Morales and Fernández [73] suggested
not placing all confidence in statistical indices of classifier quality (e.g., AUC, AIC, TSS),
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but rather in conventional Kappa or global accuracy indices derived from independent
reference datasets.

Unlike statistical validation, spatial validation was rarely performed, either by expert-
based (i.e., visual) map analysis (n = 8) or by interpreting spatial uncertainty indices (n = 4).
Several original approaches deserve to be pointed out: (i) Stenzel et al. [53] estimated the
classification accuracy of stacked OCCs by combining three spatial indices: the number
of classes assigned per pixel, the maximum membership probability per pixel, and the
Shannon index; (ii) Tang et al. [148] estimated a classifier’s spatial uncertainty by combining
several categorical maps based on different thresholding methods; and (iii) Yates et al. [17]
indicated that uncertainty can be spatialized by combining the multiple predictive maps
derived from ensemble classifiers.

To decrease the bias in statistical accuracy indices, several studies based on “presence-
only” classifiers included absence reference data extracted from RS images and/or vegeta-
tion maps to estimate classification accuracy using Kappa, overall accuracy, or F1-score
indices [5,32,51,73,137]. Besides, the literature review highlights that spatial autocorrelation
in reference data was usually ignored (Table 9). Notably, Suárez-Seoane et al. [54] con-
trolled spatial autocorrelation bias by subsampling the reference data with a 60 m distance
calculated from the Moran index and applied to the predictive variables. Conversely, most
studies ensured the independence of the validation plots (Table 9).

Table 9. Number of studies reviewed that used spatially uncorrelated and independent validation
plots during the classification accuracy assessment.

Use of Spatially Uncorrelated
Validation Plots

Use of Independent Validation Plots

Yes No

Yes 43 7
No 38 48

4.8. Combining One-Class Classifiers

The literature review confirms the utility of stacked OCCs (i.e., “predict first, assemble
later” [82]) for mapping several vegetation classes. Notably, Baldeck and Asner [149]
demonstrated that one-class SVM has an accuracy similar to that of multi-class SVM, but
with field reference plots collected only for vegetation classes of interest. However, outputs
of multiple OCCs must be combined when several vegetation classes are grouped in a
multi-class or diversity map. This combination is not straightforward because the ranges
of logistic values of class probabilities are specific to each classifier [7]. Consequently, the
same predictive variables and background points must be used for each one-class classifier.
The literature review indicates that half of the studies mapped several vegetation classes
(Figure 6), although most of them considered vegetation classes independently [63,120].
Among the studies that combined multiple vegetation classes, addition [82] or the highest
membership probability [5,50,53,144] was the methods most frequently used, while some
studies did not specify the method used [73,74].
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5. Conclusions and Recommendations

The increasing use of RS data in OCCs in the past decade has improved knowledge
and monitoring of natural vegetation. This review revealed several advances:

• Mapping of potential and actual vegetation areas: Using spectral variables derived
from high spatial resolution RS data in OCCs enables classifying potential and actual
vegetation areas, which provides new insights into the quantification of species diver-
sity, ecosystem restoration (identification of suitable areas), or the control of invasive
species (identification of vulnerable areas).

• Long-term monitoring of vegetation: The use of RS databases, such as Landsat
archives (available since 1972) or historical aerial photographs (available since the
beginning of the XX century), enables temporal monitoring of vegetation classes over
many decades.

• Generation of multiple ecological variables: A wide range of ecological variables can
be derived from RS data available at the global scale, including vegetation (phenology,
physiognomy, height . . . ), topography, and LULC, as well as climate (precipitation,
temperature . . . ), soil (physical and chemical properties), and disturbances (fires,
flooding . . . ). These variables can be combined to increase OCC performance.

• Availability of open-source tools and open-access databases: Many innovative open-
source tools, software, as well as archives of RS data and derived variables are freely
available, which provide access to the most recent advances in OCCs by a larger user
community. Future studies could focus on wider use of cloud computing and devel-
opment of open-source software to pre-process RS data. For example, Sentinel data
can be pre-processed with the Sentinel Application Platform (SNAP) [150], provided
by the European Space Agency using the ESA RSS Cloud Toolbox service [151].

• Reduction in plotting effort: A significant advantage of OCCs, compared to traditional
multi-class classifiers, is to restrict to plotting the vegetation classes of interest. Using
UAV images, plots can be generated automatically using artificial intelligence, such as
deep learning.

• Quantification of over-detection: Use of very high spatial resolution RS data enables
collection of absence plots (e.g., impervious areas, waterbodies, or crops) to quantify
more objectively over-detection (i.e., producer’s accuracy) on natural vegetation maps
derived from presence-only OCC.

However, the literature review highlights several existing issues that are usually
related to interdisciplinary concerns among the RS and ecology communities that could
be addressed.
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• Increasing the visibility and use of available RS variables: Variables derived from
the RS data remain under-used in OCCs. To increase their visibility and thus their
application in the ecology community, it is crucial—whenever possible—to relate RS
variable (e.g., vegetation, topography, bioclimate, soil, LULC, disturbance) to essential
climate or biodiversity variables [23], such as phenology, ecosystem vertical profile, or
soil moisture.

• Following good classification practices: The performance of OCCs depends largely
on good classification practices. In particular, it involves: (i) removing correlated
variables; (ii) fitting all classification parameters and prioritizing transferability over
performance; (iii) using background points and absence points for presence-only and
presence/absence classifiers, respectively; (iv) limiting thresholding; (v) correcting
spatial sampling biases; (vi) validating classifications statistically and spatially with
independent and non-spatially autocorrelated field plots [152]; and (vii) discussing
the influence of the quality of RS variables and field plots on OCC performance.

• Bridging the gap between spatial resolution and site extent: Future studies could focus
on applying OCCs at national, continental, or global scales using high or very high
spatial resolution RS data. This could be done by combining advances in classification
algorithms (e.g., convolutional neural network) with growing databases (e.g., citizen
science data [153]) and enhanced computing ability (e.g., cloud computing).

• Classifying plant communities: Although plant communities are rarely classified,
mapping them is indicative of the conservation status of natural habitats [154]. To this
end, developing harmonized databases such as the European vegetation archive [155]
is crucial to providing field plots for OCC fitting and validation.

Some issues remain unresolved and require further research:

• Improve quality of RS-based variables: Microwave remote sensors, such as SAR or
emerging global navigation satellite system reflectometry data, could be more broadly
used in OCCs, since they have great potential for characterizing vegetation structure
(e.g., volume) and for monitoring ecosystem disturbances (e.g., flooding, snow cover,
fires, soil moisture) at higher spatio-temporal resolutions. Moreover, using climate
variables with higher spatial resolution in OCCs generated from LiDAR [156] and
Sentinel-3 data also appears promising.

• Classify time first, space later: Traditionally, vegetation classes were monitored over
time by annual change detection, which may be due to real vegetation dynamics but
also to multiple errors generated by each annual classification. Future studies could
focus on “time-first, space-later” approach that examines inter-annual NDVI profile
rather than each annual NDVI profile independently [62].

• Improve classifier transferability: Classifier transferability in space and time is a
major challenge for vegetation mapping due to phenological variations in space and
time. Using algorithms based on optimal transport, which is a robust probabilistic and
geometric tool for comparing the similarity between two distributions [157], into OCCs
seems promising. In addition, the AIC index could also be integrated into OCC tools
more widely to fit classifier based on their transferability rather than their accuracy.

• Connect artificial intelligence to ecological expertise: Although it is interesting to
use artificial intelligence (e.g., deep learning, data mining) to map vegetation, the
ecological community is concerned with the “black box” issue and stresses the need to
understand relationships (i.e., transparency, interpretability, and explanation) between
classifier functioning and ecological processes, e.g., using videos based on RS time-
series to highlight vegetation dynamics [158]. Moreover, future studies could also
focus on the development of dynamic classifiers that establish a strong relationship
between environmental variables and ecological processes [17].

• Develop a method to combine one-class classifiers: Although most studies involve
several vegetation classes, they are rarely combined in the same map given the re-
quirement to select, for each OCC, the same variables and ratio of presence/absence
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points [7]. It thus seems necessary to develop a generic methodological framework to
combine multiple one-class classifiers.
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