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Abstract—Process mining techniques aim at analyzing and
monitoring processes through event data. Formal models like
Petri nets serve as an effective representation of the processes.
A central question in the field is to assess the conformance of a
process model with respect to the real process executions. The
notion of anti-alignment, which represents a model run that is
as distant as possible to the process executions, has been demon-
strated to be crucial to measure precision of models. However,
the only known algorithm for computing anti-alignments has a
high complexity, which prevents it from being applied on real-life
problem instances. In this paper we propose a novel algorithm
for computing anti-alignments, based on the well-known graph-
based A∗ scheme. By introducing a discount factor in the edit
distance used for the search of anti-alignments, we obtain the
first efficient algorithm to approximate them. We show how this
approximation is quite accurate in practice, by comparing it
with the optimal results for small instances where the optimal
algorithm can also compute anti-alignments. Finally, we compare
the obtained precision metric with respect to the state-of-the-art
metrics in the literature for real-life examples.

Index Terms—Process Mining, Conformance Checking

I. INTRODUCTION

As event data becomes a ubiquitous source of information,
data science techniques represent an unprecedented opportu-
nity to analyze and react to the processes that generate these
data. Process Mining is an emerging field that contributes to
this aim [1].

Process mining proposes algorithms for discovering process
models (e.g., Petri nets) from event logs, or assessing the
adherence of a process model in describing the traces found
in an event log. The later is known as Conformance Checking,
and is one of the central pillars of the field [2].

Comparing a possibly infinite language (i.e., the process
model may accept an infinite set of runs) with respect to
a finite language (the event log is a finite set of traces)
makes conformance checking techniques challenging. The
notion of anti-alignment [3], [4], however, aims at aiding this
comparison, since it explores the process model to find a run
that deviates the most with respect to all the traces in the
event log. Anti-alignments can be used for several purposes,
e.g., evaluating the precision/generalization of a process model
with respect to an event log [5], or log-based simulation of a
process model. For instance, for the model and log shown in

Fig. 1, an optimal anti-alignment is 〈b, e, d, τ〉 (where τ holds
for silent activity).

Still, anti-alignments are hard to compute. The only pub-
lished algorithm for computing alignments is grounded on
encoding the problem as a SAT instance [6], thus making
the algorithm not applicable for large, industrial problem
instances.

This paper proposes a novel algorithm to fight the complex-
ity of computing anti-alignments. We consider a rather simple,
yet powerful idea that is motivated from the following use
case: for certain processes, the costs associated to deviations at
early stages of the process’ execution are more important than
the ones at the end. For instance, consider a loan application
process that has two decisions: one at the beginning, assessing
the type of customer (gold, silver, normal), and one at the end,
determining whereas the loan was received in a labour day
or not. It is normal that the stage in which these decisions
are made in any possible execution of the process reveal
their importance. For instance, if for the company it is very
important to know the type of the customer so that other
further information needs to be gathered depending on the
customer’s type, then it is likely that the corresponding process
has the type of customer decision close to the start of any
possible execution. On the contrary, if the day when the loan
was received is not so important, then it is likely that the
corresponding events will be pushed to the end of the traces.

Having this in mind, one can instantiate an A∗ algorithm to
make the cost function exponentially biased to this use case:
giving more importance (higher costs) to the deviations that
occur in early stages, and exponentially reducing the costs as
the search algorithm progresses. Importantly, this discounted
cost function has a huge impact on the size of the search space
required for the A∗ search, since the cost asymmetry makes
the search space to rapidly shrink after the first alignment steps
are made.

Although the resulting algorithm is not guaranteed to
provide optimal anti-alignments in general (i.e., maximally
deviating model runs), the obtained implementation represents
the first feasible attempt to compute anti-alignments for real-
life problem instances. Although approximating the problem,
in practice it can produce optimal results: for instance, the new



algorithm can also provide anti-alignment 〈b, e, d, τ〉 for the
example of Fig. 1.

The paper is organized as follows: next section contextu-
alizes the problem. In Section III the necessary background
is detailed. Sections IV and V present the discounted cost
function and the A∗ algorithm, respectively. In Section VI,
we explain how we adapt the precision measure. Then in
Section VII we report the experimental evaluation in different
dimensions, whilst Section VIII concludes the paper.

II. RELATED WORKS

Anti-alignments have been introduced by [3] as the dark
side of process models. The same year, the authors present in
[5] how those conformance artefacts can be used for measuring
precision but also generalization, i.e., two fundamental metrics
still in elaboration in process mining [1]. Anti-alignments have
been proposed for both the Hamming distance and the Lev-
enshtein distance [4]. Nicely, anti-alignment based precision
metrics satisfy the necessary axioms for a precision metric [7].
Levenshtein distance is preferred, since it provides a more
precise characterization of a deviation. Anti-alignments are the
counterpart of alignments [8]. Given a log trace, an alignment
is a run of a process model as similar as possible in terms
of distance. While many optimizations exist for alignment
computation [9]–[11], none of them can be adapted to compute
anti-alignments since for the later, the whole log and not
only one single trace needs to be considered. Today, the only
known implementation for Levenshtein based anti-alignments
is a SAT encoding given by [6] which is limited to small
instances.

Since the main use of anti-alignments is the computation of
precision, we now provide an overview of the current methods
for this in the field. The work of [12] is one of the first attempts
to evaluate the precision of a process model with respect to
an event log. It is grounded on comparing relation matrices
from the model and log. Since it requires the full state-space
exploration of the process model, it is only applicable to small
models. In [13] deviations are estimated by the number of
escaping arcs, i.e., runs of process models that deviate from
the log. The state-space exploration of this method is bounded
by the log behaviors. However, this work does not consider
the size of the deviations, i.e., escaping arcs might cause large
deviant behaviors.

As reported in [7], the two works above fail at satisfying
important axioms for a precision metric. We now turn the focus
to recent proposals that, as the case for anti-alignment based
precision, do satisfy the reference axioms for precision.

[14] transforms recorded and modeled behaviors into an ab-
straction called directly follows automaton, and compares their
languages. By introducing the notion of language quotients
according to a measure, a precision metric can be defined,
which is the ratio of common sequences between the log
and the model to the total model runs. To deal with infinite
languages, they use the topological entropy of languages,
detailed in [15]. However this technique is very strict when
any sequence is shared by the log and the model. In [16],

they add skips actions to make the approach more flexible.
Finally, the work of [17] is based on Markovian abstractions.
By comparing the k-th order Markovian abstraction of a
process model against the respective one of an event log, a
precision metric can be obtained. Both works above represent
an interesting attempt to estimate precision, but due to being
grounded in sometimes aggressive abstractions, they fail in
generating concrete insights pinpointing the real deviations.
In contrast, anti-alignments are not based on abstraction but
instead in concrete model runs, that may serve as a concrete
explanations for repairing precision problems in a process
model.

III. PRELIMINARIES

Event data can be represented by sequences of activities,
i.e., traces, contained in logs defined as follows.

Definition 1 (Log). Let Σ be a set of activities. We define a
log L as a finite multiset of log traces σ ∈ Σ∗.
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Fig. 1: A log L and a Petri Net as Process Model

Thanks to discovery techniques [18], [19], one can obtain
a process model from a log. Process models are often defined
as Petri nets, which provide representations for causality,
concurrency and loop behaviors.

Definition 2 (Petri Nets as Process Models). A labeled Petri
net [20] is a tuple N = 〈P, T, F,m0,mf ,Σ, λ〉, where P is
the set of places, T is the set of transitions (with P ∩T = ∅),
F ⊆ (P × T )∪ (T ×P ) is the flow relation, m0 is the initial
marking, mf is the final marking, Σ is an alphabet of actions
and λ : T → Σ ∪ {τ} labels every transition by an activity
or as silent.

Semantics.: The semantics of Petri nets are given in term
of firing sequences. Given a node x ∈ P ∪ T , we define its
pre-set •x def

= {y ∈ P ∪ T | (y, x) ∈ F} and its post-set
x•

def
= {y ∈ P∪T | (x, y) ∈ F}. A marking is an assignment of

a non-negative integer to each place. A transition t is enabled
in a marking m when all places in •t are marked and can
fire by removing a token from each place in •t and putting a
token to each place in t•. A marking m′ is reachable from m if
there is a sequence of firings 〈t1 . . . tn〉 that transforms m into
m′, denoted by m[t1 . . . tn〉m′. The set of reachable markings
from m0 is denoted by [m0〉. A full run of a Petri net N is a
firing sequence m0[t1 . . . tn〉mf from the initial marking m0

to the final marking mf . A Petri net is easy sound [21] if it
has at least one full run, i.e. mf is reachable from m0. In this



paper we assume easy sound Petri nets and note Runs(N) the
set of full runs of a process model N .

Example 1. Fig. 1 shows a log and a proposed, not optimal,
process model. The initial marking m0 is {p0} and the
final marking is {p7}. Full runs Runs(N) of the process
model are the firing sequences 〈t1, t3, t4, t6〉, 〈t1, t4, t3, t6〉
and 〈t2, t5, t7〉 which give modeled behaviors 〈b, e, d, τ〉,
〈b, d, e, τ〉 and 〈a, b, c〉.

To alleviate reading, we write the modeled sequences di-
rectly with the labels of the transitions in the rest of the paper.

Quality of process models is the core interest of confor-
mance checking. In this paper, we focus on precision, a
criterion that aims at quantifying how much extra modeled
behavior is given by a process model and does not appear in
the event log [1].

One method to formalize precision is based on the most
deviant full runs of process models called anti-alignments.

Definition 3 (Anti-alignment). Given a log L and a model N ,
an anti-alignment is a full run of N given modeled sequence γ
such that it maximizes the minimal distance minσ∈L dist(σ, γ)
to the log, where dist is a distance between sequences.

Common distance used in Process Mining is a version of
the Levenshtein edit distance.

Definition 4 (Levenshtein Edit distance). The Levenshtein
Edit Distance L(u, v) between two sequences u and v ∈ Σ∗ is
the minimal number of edits (deletions or insertions) needed
to transform u to v.

L(〈〉, 〈〉) = 0

L(u, 〈〉) = |u|
L(〈〉, v) = |v|
L(a.u′, b.v′) = L(u′, v′) if (a == b)

L(a.u′, b.v′) = min

{
L(a.u′, v) + 1,

L(u, b.v′) + 1 otherwise.

Example 2. For log L of Fig. 1 and the presented process
model N , the full run 〈b, e, d, τ〉 is an anti-alignment and is
at distance 1 or more to any log sequence.

For models with executable loops, which produce long runs
arbitrarily far from the associated log, no run maximizes the
distance to the log. However, such long runs, although far
from the log, are less relevant for measuring precision than
shorter runs diverging from the log. Following this idea, a
parameter ε is introduced in the definition of anti-alignments in
order to penalize long runs as follow: sup

γ∈Runs(N)

min
σ∈L

dist(σ,γ)
(1+ε)|γ|

.

We note Lε(γ, σ) = L(γ,σ)
(1+ε)|γ|

the corresponding adaptation of
Levenshtein distance.

Definition 5 (Anti-Alignment based Precision). For an event
log L and a model N , ε-precision P εaa(N,L) [4] is defined
by:

P εaa(N,L)
def
= 1− sup

γ∈Runs(N)

min
σ∈L

∆ε(γ, σ) (1)

with ∆ε(γ, σ)
def
= Lε(γ,σ)
|γ|+|σ| and ε ≥ 0.

Precision metric range between 0 (imprecise models) and 1
(precise models).

Example 3. For ε = 0.01 and L and N of Fig. 1, we have
P εaa(N,L) = 1 −

1
1.014

6 = 0.88 for γ = 〈b, e, d, τ〉 and σ =
〈e, d〉.

IV. A DISCOUNTED DISTANCE FOR PREFIX-BASED
ALIGNMENTS OF ACTIVITIES

Due to the complexity of recorded logs, process models
tend to be large and contain a lot of choice, concurrency and
loop behaviors. Naive exploration of the runs of a model has
to consider a huge number of candidates for anti-alignments.
This exploration can be reduced by introducing a discounted
edit distance which assigns higher costs to edits that appear
at the beginning of the sequences.

Definition 6 (Discounted Edit Distance). We define the
Discounted Edit Distance between two sequences u and v
with discount parameter θ ≥ 1 by Dθ(u, v)

def
= D0

θ(u, v) where:



Dkθ (〈〉, 〈〉) = 0

Dkθ (〈〉, b.v′) = Dk+1
θ (〈〉, v′) + θ−k

Dkθ (a.u′, 〈〉) = Dk+1
θ (u′, 〈〉) + θ−k

Dkθ (a.u′, b.v′) = Dk+2
θ (u′, v′) if (a == b)

Dkθ (a.u′, b.v′) = min

{
Dk+1
θ (u′, v) + θ−k

Dk+1
θ (u, v′) + θ−k otherwise.

Hence, insertions and deletions cost θ−k where k refers to the
position where they occur.

For θ = 1, the Discounted Edit Distance is the Levenshtein
distance. However, for larger values of θ, edits at the beginning
of the sequences are more costly than edits at the end because
of the exponent −k based on the position of the edits.

By assigning higher costs to edits at the beginning of
the sequences, the discounted parameter θ allows one to
select efficiently prefixes of runs which may be continued
to promising anti-alignments. Then revelant values for θ are
slightly larger than 1 and close to 1 if the purpose is to
approximate the Levenshtein edit distance.

Example 4. For instance, for θ = 2, an edit at position k
costs more than the sum of all next edits of position k′ > k.
Let L′ = {〈b, c〉, 〈b, d, f〉} being another log less conform
to process model N of Fig.1. The best anti-alignment for
L′ and N is 〈a, b, c〉 which is strongly more deviant in the
beginning of the run with activity a. Its minimal distance
to the log is θ−0 = 1 and cannot be topped to another
run despite summing edits. However, for lower values of the
discounted parameter θ, like θ = 1.10, the distance finds
modeled behavior 〈b, e, d, τ〉 as the further one from the log
L′, like when using the Levenshtein edit distance.



V. AN A*-BASED ALGORITHM FOR COMPUTING
DISCOUNTED ANTI-ALIGNMENTS

To get anti-alignments of a process model N and a log
L using the discounted distance, we present an A*-based
algorithm given in Alg.1 that replays the firing sequences of
the process model in order to find a full run γ such that :

sup
γ∈Runs(N)

min
σ∈L
Dθ,ε(γ, σ) (2)

where Dθ,ε(γ, σ) = Dθ(γ,σ)
(1+ε)|γ|

to penalize long runs in case of
loops in N .

The algorithm maintains a priority queue of prefixes of runs,
implemented as a heap of tuples 〈m, γ, d〉, where γ is the
prefix, m is the state that it reaches, and d is the priority with
which it should be treated. This priority d is defined as the
quantity:

hθ,ε(γ, L)
def
= min

σ∈L

(
Dθ,ε(γ, σ) +

θ−|γ|−|σ|

θ − 1

)
(3)

that bounds from Eq. 2 the value minσ∈LDθ,ε(γ′, σ) that
any full run γ′ having γ as prefix can achieve.

New prefixes are obtained by firing the transitions of the
process model (line 14 of Alg.1) and the algorithm terminates
when the queue is empty or no candidate prefix can improve
the best value obtained so far (line 8).

Algorithm 1: Computation of Anti-Alignment by using
the Discounted Distance

Input : N = (P, T, F, λ,m0,mf ): process model,
L: log,
θ: discount parameter,
ε: long run limit parameter

1 Q← {〈m0, 〈〉, h(〈〉, L)〉} // Heap of open states ordered
by distance, maximum is placed on top

2 Bγ ← undefined // Current best anti-alignment
3 Bδ ← −∞ // Current best distance to reach mf

4 while Q 6= ∅ // While not all states visited
5 do
6 〈m, γ, d〉 ← Q.pop() // Next state maximizing d
7 if d ≤ Bδ then
8 break while // No state is going to improve Bδ
9 if m == mf then

10 δ ← minσ∈LDθ,ε(γ, σ) // Exact distance δ
11 if Bδ < δ then
12 Bγ ← γ // New best anti-alignment
13 Bδ ← δ // Update distance
14 for t ∈ T with m[t〉m′ do
15 γ′ ← γ · t // Get new prefix
16 d′ ← h(γ′, L) // Get possible distance of γ′ to L
17 Q← Q.insert(〈m′, γ′, d′〉) // Place new state

Output: Bγ : best anti-alignment,
Bδ: minimal distance of Bγ to L

A. Proof of optimality

Let us first prove the announced fact: for every full run
γ′ having γ as prefix, hθ,ε(γ, L) ≥ minσ∈LDθ,ε(γ′, σ). Let
γ, γ′ = γ.u and σ, we show that Dθ,ε(γ, σ) + θ−|γ|−|σ|

θ−1 ≥
Dθ,ε(γ′, σ). This is because, in order to edit γ′ to σ, one can
edit its prefix γ to σ (at cost Dθ,ε(γ, σ)) and then delete the
letters of u one by one. The first deletion costs θ−|γ|−|σ|−1,
the second one θ−|γ|−|σ|−2. . . and the sum of these costs is
bounded by

∑∞
i=1 θ

−|γ|−|σ|−i = θ−|γ|−|σ|

θ−1 .
The algorithm satisfies the following invariant, which holds

before and after each iteration of the while loop: either current
best value is optimal or every optimal anti-alignment has a
prefix in the queue Q. It is preserved at each iteration for
the following reason. Let 〈m, γ, d〉 pop from Q and assume
γ is the prefix of an optimal full run γ′. Either γ′ = γ (then
minσ∈LDθ,ε(γ, σ) is compared with Bδ) or γ′ has a prefix of
the form γ.t, which is queued. The while loop is broken (line
8) only when d ≤ Bδ . As stated before, this implies that no
γ′ having γ as prefix will beat the current best value; and this
also holds for all the other prefixes remaining in the queue
since their value is smaller than d.

Termination: once Bδ > 0, any γ longer than
log θ

(θ−1)Bδ
log(1+ε)

popping from Q breaks the while loop. Indeed, this implies
(1 + ε)|γ| ≥ θ

(θ−1)Bδ . Moreover, for every σ, Dθ(γ, σ) ≤∑∞
i=0 θ

−i = θ
θ−1 ; hence Dθ,ε(γ, σ) ≤ Bδ Since only finitely

many prefixes are shorter, and no prefix is queued twice, the
termination of the algorithm is guaranteed as soon as Bδ > 0,
i.e. a full run γ 6∈ L has been found.

Example 5. This example illustrates the use of the fraction
θ−|γ|−|σ|

θ−1 in the definition of hθ,ε. Let θ = 1.10 and ε = 0 for
log L′ = {〈b, c〉, 〈b, d, f〉} and model N of Fig.1. The open
set Q contains, at some point, states 〈{p1, p2}, 〈b〉, db〉 and
〈{p3}, 〈a〉, da〉 of concurrent prefixes 〈b〉 and 〈a〉.

Let’s try to consider only their distance to the log, i.e., db =
min
σ∈L
D1.10,0(〈b〉, σ) = 0.83 and da = min

σ∈L
D1.10,0(〈a〉, σ) =

2.73. Prefix 〈a〉 is the best current anti-alignment and the
algorithm continues with this prefix (line 6) until the final
marking. The final run is Bγ = 〈a, b, c〉 and Bδ = 1. Prefix 〈b〉
is then forgotten at line 7 because its current distance is lower
than Bδ . However, for θ = 1.10, the optimal anti-alignment is
indeed 〈b, e, d, τ〉. By adding the fraction θ−|γ|−|σ|

θ−1 in db and
da given in function h at line 16 which prevents best suffixes,
db = 7.51 and prefix 〈b〉 is now handled at line 7 and becomes
the best anti-alignment.

B. A Heuristic for Alg.1 to Further Reduce the Search Space

When models are dense in concurrency and loops, some
markings are visited a large number of times. For instance, all
possibles combinations of a concurrent part finally reach the
same marking. Because best prefixes are prioritized, a simple
but efficient heuristic is to limit the number of times a marking
can be reached. We propose a parameter µ for this purpose
and observe very nice results in practice.



VI. PRECISION

The main purpose of finding anti-alignments is to compute
precision of process models. The present paper provides an al-
gorithm for finding anti-alignments not necessarily optimal, an
artifact of reducing the search space. In return, the technique
is able to work with real instances. Once an anti-alignment is
found, one can use it to compute precision of its model by
using the classical Levenshtein based precision as defined in
Section III. The expression

sup
γ∈Runs(N)

min
σ∈L

∆ε(γ, σ) (4)

of Def.5 is approximated by

min
σ∈L

∆ε(γ, σ) (5)

for the run γ computed by Alg.1. Nicely, we observe perfect
matching results for some instances in practice.

VII. EXPERIMENTS

In this section, we present a set of comparisons of the
discounted distance based anti-alignment and precision with
the state-of-the-art methods. The experiments have been run
on a MacBook air 2017 model with a 1.8 GHz Intel ® CoreTM

i5 CPU and 8G RAM.

A. Comparison of the results obtained with the different
heuristics

The aim of this first subsection is to present the risks
and benefits of using the heuristics. For this purpose,
we used the known artificial log L′′ = {〈A,B,D,E, I〉,
〈A,C,D,G,H, F, 〉, 〈A,C,G,D,H, F 〉, 〈A,C,H,D, F, I〉,
〈A,C,D,H, F, I〉} and two of its associated models specifically
chosen for showing the impact of the heuristics: the generating
model and the flower model. The models can be found in [5]
page 4, [17] and [4] page 10.

Model θ Anti-alignment P εaa Time (s)
Generating 1.1 〈A,C,G,H,D, F, I〉 0.928 0.02

model 1.5 〈A,C,G,H,D, F, I〉 0.928 0.01
2.0 〈A,C,G,H,D, F, I〉 0.928 0.01

Flower 1.5 〈τ, F, F, F,E, τ〉 0.400 29.85
model 2.0 〈τ, F, F, F, F, τ〉 0.372 4.67

(a) Complete Computation for Different Values of the Discounted
Parameter θ for threshold limit ε = 0.01

Model µ ε Anti-alignment P εaa Time (s)
Flower 100 0.01 〈τ, F, F,E,H, τ〉 0.400 2.50
model 100 0.001 〈τ, F, F, F, F, F, F,A,A,H, τ〉 0.302 4.61

5 0.01 〈τ, F, F, F, F, τ〉 0.372 0.07

(b) Reducing the Search Space with parameter µ for different ε values
and θ = 1.5

TABLE I: Heuristic Impacts on Anti-alignments by Using the
Discounted Distance Dθ

The generative model has a finite set of runs obtained by
its several choice structures. In opposition, the flower model
represents an infinite language of its transition labels which are
all connected to the same place. We choose those models to
present a normal case versus a complex and imprecise model.

In Tab.Ia, we show how changing the discounted parameter
θ can improve the runtime. For large θ, prefixes cost more than
suffixes, thus allowing the algorithm to considerably reduce
the exploration. This aspect appears very clearly for the flower
model.

The anti-alignments found for the flower model are not
long because of the parameter ε set to 0.01. Then we observe
that the found precision is quite high for this model which is
very imprecise. By setting ε to larger values, we would get
longer anti-alignments, thus providing more significant value
of precision. However, due to the possible combinations of
longer runs, the algorithm would blow up.

Tab.Ib aims at showing the benefit of the limit µ on the
number of exploration of prefixes reaching the same marking.
We see that for θ = 1.5 and ε = 0.01, the runtime of
computing an anti-alignment for the flower model is divided
by 10 when setting µ to 100. The runtime improvement by
using µ is prominent and allows to explore longer runs (for
instance Tab.Ib shows a result where ε = 0.001). Finally, the
last line of Tab.Ib presents an experiment where µ is very small
and still provides a relevant anti-alignment (just a bit shorter).
We advise ε close to 0.001 to allow long runs, µ from 5 to 10
to limit the number of times the algorithm reaches the same
state and θ ≥ 1.5 to obtain fast results.

B. Anti-alignments Comparison on Artificial Logs and Models

Now that we have presented the approximation impacts, we
take advantage of them and compare our results to the optimal
results for all artificial models associated to L′′ where the SAT
implementation of [4] can also compute the anti-alignments.
To compute exact precision (column E.P εaa of Tab.II) their
algorithm solves several SAT formulas by increasing the size
of the run until the anti-alignment converges. Because the
process is slow, they propose another version in which one can
set the size of the run if it is known. In Tab.II, we decided to
compare runtimes of anti-alignment computation and we used
the latter version. We set the size of the run to 11 which is
the minimal size to get a full run for all the models.

Column P εaa gives the approximations of the precision given
by both the shorter version of [4] (lines Ln for Levenshtein
with a size of the run n to 11) and the proposed algorithm
of this paper (lines Dθ,ε where θ = 1.5 and ε = 0.01 and
heuristic µ = 10).

Observations are significant: the novel algorithm runs much
faster and obtains, in most times, the optimal results. Differ-
ences between the found anti-alignments can be explained by
the parameters. For instance, by using the flower model, our
discounted version Dθ,ε returns a shorter run due to parameter
µ which strictly reduces the number of times the algorithm can
reach a marking.

The big difference observed for the model entitled C,F
equal loop, for which our algorithm finds a much worse anti-
alignment, is due to the fact that this model is not safe1, i.e.,

1A Petri net is safe if every place can have at most one token in any
reachable marking.



Model E.P εaa Type Anti-alignment P εaa
Time

(s)
Generating 0.928 Ln 〈A,C,G,H,D, F, I〉 0.923 16.51

model Dθ,ε 〈A,C,G,H,D, F, I〉 0.928 0.01

Single 1.000 Ln 〈A,B,D,E, I〉 1.000 9.92
Dθ,ε 〈A,B,D,E, I〉 1.000 0.01

Flower 0.295 Ln 〈τ,G,G,G,G,G,G,G,G,Gτ〉 0.222 19.89
model Dθ,ε 〈τ, F, F, F,E, τ〉 0.400 0.03

Separate 1.000 Ln 〈A,C,G,D,H, F, I〉 1.000 42.26
traces Dθ,ε 〈A,B,D,E, I〉 1.000 0.01

G,H in 0.928 Ln 〈A,C,D,G, τ, F, I〉 0.923 20.00
parallel Dθ,ε 〈A,C,G,H,D, F, I〉 0.928 0.04
G,H as 0.496 Ln 〈A,C,G,D,G,G,G,G,G, F, I〉 0.667 14.95

self-loops Dθ,ε 〈A,C,G9, H,D, F, I〉 0.631 0.15
D as 0.469 Ln 〈A,B,D7, E, I〉 0.625 19.99

self-loops Dθ,ε 〈A,B,D10, E, I〉 0.588 0.17
All 0.420 Ln 〈τ, I, E, F,D,H,C,B,A,G, τ〉 0.353 24.03

parallel Dθ,ε 〈τ, I, F,E,H,C,A,G,B,D, τ〉 0.525 4.08
C,F equal 0.845 Ln 〈A,C,B,D,E, F, I〉 0.833 18.01

loop Dθ,ε 〈A,C7, B,D,E, F 7, I〉 0.502 0.67
Round- 0.300 Ln 〈τ, E, F,G,H, I, A,B,C,D, τ〉 0.444 45.01

robin Dθ,ε 〈τ, E, F,G,H, I, A,B,C,D, τ〉 0.502 0.01

TABLE II: Comparison of Anti-alignments and Precision on
Artificial Log and Models. The discounted based method is
noted by Dθ,ε with θ = 1.5, ε = 0.01 and µ = 10 and Ln
is the fastest Levenshtein version of [4] where the maximal
size of the run n = 11. Column E.P εaa shows the optimal
anti-alignment precision where ε = 0.01

transitions labeled with C and F output a token in their input
place, thus allowing running the transitions again. But, the
SAT implementation does not consider unsafe Petri nets (it
restricts their behavior to runs visiting only safe markings),
and hence, cannot guarantee optimality for this model. The
precision obtained with Dθ,ε is then more accurate than E.P εaa.

Finally, we observe that the All parallel model, whom
transitions are all concurrent, is much slower than all other
models by using our A*scheme. In this model, the limit µ does
not have any impact because the markings are different for all
combinations of firing transitions. Also θ = 1.5 is not too
strict and many prefixes are explored. However, the runtime
for this model is still faster than the fastest version of [4].

C. Precision of Real-life Models

In this section, we present, for the first time, anti-alignment
based precision on real-life models whose description can be
found in Tab. III. We recall that the previous SAT implemen-
tation of anti-alignment could not deal with entire large logs
due to the complexity of the encoding.

Log |L| |Σ| Model |T | |P | |F |
Miner

BPI2012 13087 24 IM 34 24 68
SM 30 23 60

BPI2019 251734 42 IM 18 13 38
SM 13 10 26

BPI2020dd 10500 17 IM 15 11 32
SM 14 9 28

BPI2020rp 6886 19 IM 31 26 74
SM 23 12 46

TABLE III: Real-life Logs and Models Description. Models
have been discovered from the prototypes of the logs defined
by [22] and by using the inductive miner (IM) [19] and the
split miner (SM) [18]

We show both computation time and precision measure in
Tab. IV and compare our work to the ETC measure defined

by [8], the MAP 3 measure of [17] and the EMP measure
proposed by [16], all introduced in the related works.

Log Model Precision Runtime (s)
ETC MAP 3 EMP P εaa ETC MAP 3 EMP P εaa

BPI2012
IM 0.561 0.492 0.602 0.761 513.28 6.94 44.84 79.73
SM 0.915 0.196 0.538 0.753 438.65 6.98 27.50 176.69

BPI2019
IM − 1.000 0.468 0.934 − 42.26 421.42 727.86
SM − 0.780 0.903 0.950 − 33.11 331.84 219.74

BPI2020dd
IM 0.636 0.472 0.804 0.868 0.83 3.63 7.03 0.38
SM 0.953 0.040 0.861 0.894 0.76 4.17 3.90 1.04

BPI2020rp
IM 0.346 0.074 0.319 − 1.64 3.58 13.88 −
SM 0.815 0.017 0.780 0.604 0.64 4.39 9.22 0.59

TABLE IV: Real-life Logs and Models Precision where the
Anti-alignment Precision P εaa is found with Discounting Anti-
alignments and θ = 2, ε = 0.01, µ = 5

We remark than any precision measure agrees for all the
inputs which strengthens the interest of research about this
metric in process mining. The MAP 3 measure finds a per-
fectly precise model, i.e., the IM model of BPI2019 log.
Nicely, our method has a similar precision, 0.934, but found an
anti-alignment for this model which can figures the language
difference between the log and model. The EMP measure
is more strict with a precision of 0.468. For this log, ETC
precision of [21] lasts more than several hours so we stopped
the process. This method uses alignments whose complexity
is related to the log complexity. As we can see in Tab.III, the
BPI2019 log is the more complex log with 251 734 cases and
42 different type of activities.

Our method also has to deal with log complexity. More than
75% of our runtime presented in Tab.IV is used to compute
the discounted distances. For the IM model of BPI2020rp,
our method also takes several hours. This model contains two
parallel structures of 10 and 2 transitions that explode the
space of search. But in several cases, our method even gives
the fastest runtime.

Besides runtimes, it is not obvious to conclude which
precision metric is more valuable. However, as a conclusion of
this section, we want to point out that, in order to understand
the precision of process models, a human requires more than
a numerical value. We believe that anti-alignment is the added
value of our approach because it provides explanation for the
imprecision of models.

VIII. CONCLUSION

In this paper, we show the advantage of a discounted
distance to reduce the search space for finding anti-alignment
of a process model w.r.t. an event log. Thanks to an A*-based
algorithm that prioritizes promising prefixes, we find the opti-
mal anti-alignments by using discounted costs slightly higher
than 1 which, in practice, approximates well the Leventshein-
based anti-alignments. We show through several experiments
that our algorithm outperforms state-of-the-art methods for
computing anti-alignments. Moreover, we see, for the first
time, anti-alignment based precision for real-life instances.

In the real-life experiments, our algorithm hits a limit for
a process model containing a lot of concurrency. Future work
should target heuristics for this specific situation.
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