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REAL TORUS ACTIONS ON REAL AFFINE ALGEBRAIC VARIETIES

PIERRE-ALEXANDRE GILLARD

Abstract. We extend the Altmann-Hausen presentation of normal affine algebraic C-varieties
endowed with effective torus actions to the real setting. In particular, we focus on actions of
quasi-split real tori, in which case we obtain a simpler presentation.
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Introduction

In the work of Altmann and Hausen in [2], normal affine algebraic varieties endowed with
effective torus actions over an algebraically closed field of characteristic zero are determined by a
geometrico-combinatorial datum on a certain rational quotient for the action. This geometrico-
combinatorial presentation extends mutatis mutandis to actions of real split tori Gnm,R on normal
affine algebraic R-varieties.

In contrast, for normal R-varieties endowed with actions of a non-split torus T , much less is
known regarding the existence of a presentation similar to the split case. However, this presentation
was extended by Langlois in [12] for some complexity one1 non-split torus actions on normal affine
varieties X over an arbitrary field. This extension is based on a Galois descent construction specific
to complexity one torus actions. On the other hand, the case where T is the real circle S1 (of
dimension 1) was studied by Dubouloz, Liendo and Petitjean in [6, 7]. They gave a complete de-
scription of S1-actions on normal affine R-varieties based on the Altmann-Hausen presentation and
on a Galois descent construction C/R specific to S1-actions, with no restriction on the complexity.

In view of these results, it is natural and reasonable to expect that a general presentation
of normal affine varieties endowed with torus actions over arbitrary fields of characteristic zero
can be obtained by combining Altmann-Hausen theory for split torus actions with appropriate
Galois descent methods. In this context, we give a complete description of real torus actions on
normal R-varieties. The Weil restriction RC/R(Gm,C) of Gm,C is a real non-split torus (of dimension
2), and all real tori are isomorphic to a product of the three elementary real tori Gm,R, S1 and
RC/R(Gm,C). We treat the missing case of RC/R(Gm,C)-actions and more generally we extend the
setting of Altmann-Hausen to real torus actions on normal affine R-varieties. We will pay a special
attention to actions of quasi-split tori, that is real tori with no S1-factors.

2020 Mathematics Subject Classification. 14R20, 14L30, 20G20, 11E72, 14P99.
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1That is, effective actions of a torus T such that dim(X) = dim(T ) + 1
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2 PIERRE-ALEXANDRE GILLARD

In view of extending the Altmann-Hausen presentation to the real setting, we use the language
of R-structures on algebraic C-varieties. An R-structure on an algebraic C-varietyX is an involution
of R-schemes σ on X such that the following diagram commutes:

X X

Spec(C) Spec(C)

σ

Spec(z 7→ z̄)

An R-morphism between two C-varieties X and X ′ endowed with R-structures σ and σ′ is a
morphism of C-varieties f : X → X ′ such that σ′ ◦f = f ◦σ. An R-group structure τ on a complex
algebraic group G is an R-structure on G such that the multiplication G × G → G, the inverse
G → G and the unity Spec(C) → G are R-morphisms (see §2 for details). Let us note that an
R-group structure τ on a complex torus T corresponds to a lattice involution τ̃ on its character
lattice M := Homgr(T,Gm,C).

There is an equivalence of categories between the category of quasi-projective algebraic R-
varieties (resp. real algebraic groups) and the category of quasi-projective algebraic C-varieties
endowed with an R-structure (resp. complex algebraic groups endowed with an R-group structure);
see Proposition 2.2 for the precise statement. Therefore we will often write (X,σ) to refer to an
algebraic R-variety and (G, τ) to refer to a real algebraic group.

We now briefly explain Altman and Hausen’s theory in order to state our main results. Let
T be an n-dimensional complex torus with character lattice M . Then any algebraic action of T on
an affine C-variety X corresponds to an M -grading C[X] =

⊕
m∈M C[X]m of its coordinate ring,

the spaces C[X]m consisting of semi-invariant regular functions of weight m on X. Let ω be a full
dimensional cone in MQ := M ⊗Z Q, let Y be a normal semi-projective variety (see Definition 3.7),
and let D :=

∑
∆i⊗Di be a proper polyhedral divisor. This means that the Di are prime divisors

on Y and the coefficients ∆i are convex polyhedra in NQ having ω∨ as tail cone, where N is the
cocharacter lattice (see Definition 3.4). Then, for every m ∈ ω ∩M , we can evaluate D in m to
obtain a Weil Q-divisor D(m) :=

∑
min{〈m|∆i〉} ⊗Di. From the datum (ω, Y , D), Altmann and

Hausen construct an M -graded C-algebra:

A[Y,D] :=
⊕

m∈ω∩M
H0(Y,OY (D(m))) ⊂ C(Y )[M ].

The main results of [2] can be summarized as follows (see §3 for details):

Theorem AH 1. [2, Theorem 3.1]. The affine scheme X[Y,D] := Spec(A[Y,D]) is a normal
C-variety endowed with an effective T-action.

Theorem AH 2. [2, Theorem 3.4]. Let X be an affine normal variety endowed with an effective
T-action. There exists a datum (ω, Y,D) such that the graded C-algebras C[X] and A[Y,D] are
isomorphic.

As mentioned above, the present article focuses on real torus actions on normal affine R-
varieties. Our main results, Theorem A and Theorem C, give a presentation of real torus actions
in the language of [2] extended to affine C-varieties with R-structures.

Let (T, τ) be a real torus, let M be the character lattice of T, and let ω be a full dimensional
cone in MQ. Let (Y, σY ) be a semi-projective algebraic R-variety and let D be a proper polyhedral
divisor on Y . The first main result gives a condition on D for the existence of an R-structure on
the affine C-variety X[Y,D]. This result is the real analog of Theorem AH 1:

Theorem A (Theorem 4.3). If there exists a monoid morphism h : ω ∩M → C(Y )∗ such that

∀m ∈ ω ∩M, σ∗Y (D(m)) = D(τ̃(m)) + divY (h(τ̃(m))) and h(m)σ]Y (h(τ̃(m))) = 1,
then there exists an R-structure σX[Y,D] on the normal affine variety X[Y,D] such that the real
torus (T, τ) acts on the R-variety (X[Y,D], σX[Y,D]).

Conversely, given a T-action on an affine algebraic C-variety X, Altmann and Hausen give in
[2, §11] a method to construct a proper polyhedral divisor D on a semi-projective variety Y based
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on the choice of an appropriate T-equivariant closed immersion X ↪→ AnC and on the downgrading
of the Gnm,C-action on AnC to a T-action.

Thus, for a (T, τ)-action on an affine algebraic R-variety (X,σ), a key ingredient to construct
an R-structure on the semi-projective variety Y mentioned in Theorem AH 2 is to find a certain
T-equivariant closed immersion X ↪→ AnC which is also Gal(C/R)-equivariant:

Proposition B (Proposition 4.1). There exists n ∈ N, n ≥ dim(T), such that the following hold:
(i) There exists an R-group structure τ ′ on Gnm,C that extends to a R-structure σ′ on AnC;
(ii) (T, τ) is a closed subgroup of (Gnm,C, τ ′); and
(iii) (X,σ) is a closed subvariety of (AnC, σ) and (X,σ) ↪→ (AnC, σ′) is (T, τ)-equivariant.

The immersion (T, τ) ↪→ (Gnm,C, τ ′) induces an R-group structure τY on the quotient torus
TY := Gnm,C/T. This R-group structure τY induces in turn an R-structure σY on the semi-projective
variety Y mentioned in Theorem AH 2. We downgrade Gal(C/R)-equivariantly the Gnm,C-action
on AnC to a T-action, which is a key ingredient in the proof of the following result (which is the real
analogue of Theorem AH 2):

Theorem C (Theorem 4.6). Let ω ⊂ MQ be the weight cone of the T-action on X. There exists
a normal semi-projective R-variety (Y, σY ), a proper polyhedral divisor D on Y , and a monoid
morphism h : ω ∩M → C(Y )∗ such that

∀m ∈ ω ∩M, σ∗Y (D(m)) = D(τ̃(m)) + divY (h(τ̃(m))) and h(m)σ]Y (h(τ̃(m))) = 1,
and such that there is an isomorphism of R-varieties between (X,σ) and (X[Y,D], σX[Y,D]).

In the case where the real torus T is quasi-split, our presentation simplifies. Indeed, if (X,σ) is
endowed with a T -action and if (Y, σY ) is the variety mentioned in Theorem C, we see in Proposition
4.13 that there exists a proper polyhedral divisor D on Y such that σ∗Y (D(m)) = D(τ̃(m)) for all
m ∈ ω ∩M ; i.e we can take h = 1. From this result, we recover the Altmann-Hausen presentation
for Gnm,R-actions. On the other hand, this simplification is not always possible for S1-actions: see
§5.3 for details and examples. In this case we recover the presentation for S1-actions given by
Dubouloz and Liendo in [6].

After fixing our notation, the article is structured as follows.
In §2.1 we recall well-known facts about R-structures on C-varieties, and in §2.2 we see that

tori inclusions corresponds to certain short exact sequences of lattices. Basic results on real torus
actions and examples of real torus actions on affine toric R-varieties are given in §2.3 and §2.4.

In §3, we briefly explain Altmann-Hausen’s theory in view of extending it to the real case. We
start by introducing polyhedral divisors in §3.1, and we recall the main results of [2] in §3.2.

In §4, after proving Proposition B in §4.1, we prove our main results in §4.2: Theorems A and
C. Then, we give several cohomological results used to simply the Altmann-Hausen presentation
in the case where the acting torus is quasi-split.

In §5, we give examples of Gm,R-actions (see §5.1), RC/R(Gm,C)-actions (see §5.2) and S1-
actions (see §5.3).

Acknowledgments. The author is grateful to Charlie Petitjean for stimulating discussions about
Altmann-Hausen theory on the field of complex numbers. The author would like to thank the
anonymous referee for her/his comments and suggestions that helped him to improve the quality
of the article.

1. Notation

Throughout the entire paper, we call a C-variety a separated integral scheme of finite type
over C, and an R-variety a separated geometrically integral scheme of finite type over R. We denote
by Γ := {id, γ} the Galois group of the field extension C/R, it is isomorphic to Z/2Z. The group
of regular automorphisms of a C-variety X is denoted by Aut(X), and the group of regular group
automorphisms of a complex algebraic group G is denoted by Autgr(G).
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From here on, N denotes a lattice, i.e. a finitely generated free abelian group, and M :=
HomZ(N,Z) denotes its dual lattice. The associated Q-vector spaces are denoted by NQ := N ⊗ZQ
and MQ := M ⊗Z Q respectively, and the the corresponding pairing by:

M ×N → Z, (u, v) 7→ 〈u, v〉 := u(v).

Let us recall some results of [9, §1.2]. Let N ′ be a lattice, and let f : N → N ′ be a lattice
homomorphism. It induces a unique Q-linear map NQ → N ′Q, also denoted by f . A subset
ωN ⊂ NQ is called a convex polyhedral cone if there exists a finite set S ⊂ NQ such that

ωN = Cone(S) :=
{∑
v∈S

λvv | λv ∈ Q≥0

}
⊂ NQ.

A cone ωN is strongly convex if ωN ∩ (−ωN ) = {0}. For us, a cone in NQ is always a convex
polyhedral cone. The dual cone of ωN is defined by

ω∨N := {u ∈MQ | ∀v ∈ ωN , 〈u|v〉 ≥ 0};

it is a cone in MQ. Let ωN be a cone in NQ. A face τN of ωN is given by τN = ωN ∩ u⊥, for some
u ∈ ω∨N , where u⊥ := {v ∈ ωN | ∀u ∈ ω∨N , 〈u, v〉 = 0}. Recall that a face of a cone is a cone. The
relative interior Relint(ωN ) of a cone ωN is obtained by removing all proper faces from ωN .

A quasifan Λ in NQ (or in MQ) is a finite collection of cones in NQ (or in MQ) such that, for
any λ ∈ Λ, all the faces of λ belong to Λ, and for any λ1, λ2 ∈ Λ, the intersection λ1 ∩ λ2 is a face
of both λi. The support of a quasifan is the union of all its cones. A quasifan is called a fan if all
its cones are strongly convex.

A complex torus is an affine algebraic group isomorphic to Gnm,C. There is a one-to-one
correspondence between lattices and complex tori. To a lattice M ∼= Zn, we associate the affine
variety Spec(C[M ]), with C[M ] := {

∑
m∈M cmχ

m | cm ∈ C} and where χm are indeterminate such
that χm+m′ = χmχm

′ . It is a complex torus isomorphic to Gnm,C. Conversely, to a complex torus
T isomorphic to Gnm,C, we associate its character lattice M := Homgr(T,Gm,C). It is isomorphic to
Zn. Let us recall that Autgr(Gnm,C) ∼= GLn(Z).

The action of a complex torus T on a C-variety X is called effective if the neutral element of
T is the only element acting trivially on X. In this paper, we only consider effective torus actions.
Let X be a C-variety endowed with an action of the torus T = Spec(C[M ]). The weight monoid of
this action is S := {m ∈M | C[X]m 6= {0}} and the cone ωM ofMQ spanned by the weight monoid
S is called the weight cone. The algebra C[X] is M -graded: C[X] =

⊕
m∈ωM∩M C[X]m. There is

a bijective correspondence between the T-actions on X and the M -gradings on C[X] [11, §2.1].
We recall some definitions and results useful for the proof of Lemma 2.10. Let (G, ·) be a

group. A G-module is an abelian group (M,+) endowed with an action (g,m) 7→ g ·m of G such
that the induced map ϕg : m 7→ g ·m is an abelian group automorphism. Recall that this data is
equivalent to a left module (M,+) over the ring Z[G]. Indeed, if M is a module over the ring Z[G],
we define a G-module structure on M via g ·m := χgm for all (g,m) ∈ G ×M . Conversely, if M
is a G-module, we construct a Z[G]-module structure on M via (

∑
g∈G ngχ

g)m :=
∑
g∈G ngg ·m.

2. Galois descent C/R and algebraic tori

We recall basic definitions and well-known facts about R-structures on C-varieties and R-group
structures on complex algebraic groups in view of studying torus actions on R-varieties. See [3,
§3.1.3] and [4].

2.1. Galois descent C/R. Let us briefly recall the classical correspondence between quasi-projective
R-varieties and quasi-projective C-varieties endowed with an R-structure. Every C-variety X can
be viewed as an R-scheme via the composition of its structure morphism X → Spec(C) with the
morphism Spec(C)→ Spec(R) induced by the inclusion R ↪→ C = R[i]/(i2 + 1). The Galois group
Γ acts on Spec(C) by the usual complex conjugation z 7→ z.
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Definition 2.1. (i) An R-form of a C-variety X is an R-variety X0 together with an isomorphism
X0 ×Spec(R) Spec(C) ∼= X of C-varieties. By abuse of notation we will often write: X0 is an
R-form of X instead of (X0,∼=).

(ii) An R-structure σ on a C-variety X is an antiregular involution, i.e, an involution of R-scheme
σ : X → X which makes the following diagram commute:

X X

Spec(C) Spec(C)

σ

Spec(z 7→ z̄)

(iii) Two R-structures σ and σ′ on X are equivalent if there exists ϕ ∈ Aut(X) such that σ′ =
ϕ ◦ σ ◦ ϕ−1.

(iv) An R-morphism between two C-varieties X and X ′ with R-structures σ and σ′ is a morphism
of C-varieties f : X → X ′ such that σ′ ◦ f = f ◦ σ as morphisms of R-schemes.

If a quasi-projective C-variety X is endowed with an R-structure σ, then the quotient X/〈σ〉
exists in the category of R-varieties and the structure morphism X → Spec(C) descends to a
morphism X/〈σ〉 → Spec(R) making X/〈σ〉 into an R-variety such that X ∼= (X/〈σ〉)C. If f :
(X,σ)→ (X ′, σ′) is an R-morphism between quasi-projective C-varieties, and if π′ : X ′ → X ′/〈σ′〉
denotes the quotient morphism, we obtain from the invariant morphism π′ ◦ f : X → X ′/〈σ′〉 a
morphism f0 : X/〈σ〉 → X ′/〈σ′〉 of R-varieties.

Proposition 2.2. The functor (X,σ) 7→ X/〈σ〉 induces an equivalence of categories between the
category of pairs (X,σ) consisting of a quasi-projective C-variety X endowed with an R-structure
σ and the category of quasi-projective R-varieties. Moreover, σ is equivalent to σ′ if and only if
X/〈σ〉 is R-isomorphic to X/〈σ′〉.

Using this equivalence, we often write (X,σ) to refer to an algebraic R-variety.

Proof. We give a sketch of the proof for the sake of completeness. If (X0,∼=) is an R-form of X,
the C-variety (X0)C := X0 ×Spec(R) Spec(C) is endowed with a canonical R-structure given by the
action of Γ by complex conjugation on the second factor, this gives an R-structure σ on X ∼= (X0)C.
If (X0,∼=) and (X ′0,∼=) are R-forms of X and X ′ respectively, and if f0 : X0 → X ′0 is a morphism of
R-varieties, then f0 × id : (X0)C → (X ′0)C is a morphism of C-varieties, so we obtain a morphism
f : X → X ′ such that f ◦ σ = σ′ ◦ f . �

We have similar definitions and properties for affine algebraic groups.

Definition 2.3. (i) Let G be a complex algebraic group. A real algebraic group G0 together
with an isomorphism G0 ×Spec(R) Spec(C) ∼= G is called an R-form of G.

(ii) An R-group structure τ on a complex algebraic group G is an R-structure τ : G → G such
that the multiplication G × G → G, the inverse G → G and the unity Spec(C) → G are
R-morphisms.

(iii) Two R-group structures τ and τ ′ on G are equivalent if there exists ϕ ∈ Autgr(G) such that
τ ′ = ϕ ◦ τ ◦ ϕ−1.

(iv) An R-morphism between two complex algebraic groups G and G′ with R-structures τ and τ ′
is a morphism of complex algebraic groups f : G→ G′ such that τ ′ ◦ f = f ◦ τ as morphisms
of R-schemes.

If G is a complex affine algebraic group endowed with an R-group structure τ , then the quotient
scheme G0 := G/〈τ〉 is a real algebraic group which satisfies (G0)C ∼= G as complex algebraic groups.

Remark 2.4. There is an equivalence between the category of pairs (G, τ) consisting of a complex
affine algebraic group endowed with an R-group structure, and the category of real affine algebraic
groups. This induces a one-to-one correspondence between the R-forms of G, up to isomorphism
in the category of real algebraic groups, and the equivalence classes of R-group structures on G.
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2.2. Real tori. We define real tori and we recall that any real torus is isomorphic to a product of
copies of three elementary real tori.

Definition 2.5. A real torus T is a real affine algebraic group such that TC is a complex torus. It
is called a split torus if T ∼= Gnm,R for some integer n.

The torus Gm,C has two non isomorphic R-forms: the real split torus Gm,R and the real circle
S1 := Spec

(
R[x, y]/(x2 + y2 − 1)

)
. Since Autgr(Gm,C) = {id,−id}, the equivalence class of an

R-group structure on Gm,C has only one element. So, the R-group structures on Gm,C associated
to Gm,R and S1 are respectively:

τ0 : z 7→ z and τ1 : z 7→ z −1.

The group structure on S1 is given by

(x, y) · (x′, y′) = (xx′ − yy′, xy′ + yx′).

TheWeil restriction ofGm,C isRC/R(Gm,C) := Spec (R[x1, y1, x2, y2]/(x1y1 − x2y2 − 1, x2y1 + x1y2)).
It is an R-form of G2

m,C. An R-group structure on G2
m,C associated to RC/R(Gm,C) is:

τ2 : (z, w) 7→ (w, z).

The group structure on RC/R(Gm,C) is given by

(x1, y1, x2, y2) · (x′1, y′1, x′2, y′2) = (x1x
′
1 − x2x

′
2, y1y

′
1 − y2y

′
2, x1x

′
2 + x2x

′
1, y1y

′
2 + y2y

′
1).

By abuse, we call Weil restriction any real torus isomorphic to RC/R(Gm,C). Here, Autgr(G2
m,C) ∼=

GL2(Z), so the equivalence class of an R-group structure on G2
m,C has infinitely many elements.

For instance
τ ′2 : (z, w) 7→ (w −1, z −1) and τ ′′2 : (z, w) 7→ (z −1w,w)

are R-group structures equivalent to τ2.

Remark 2.6. An R-group structure τ on a complex torus T induces lattices involutions τ̃ and τ̂ on
M := Homgr(T,Gm,C) and N := Homgr(Gm,C,T) respectively. For (G2

m,C, τ2), the involutions τ̃2
and τ̂2 are both given by Z2 → Z2, (k, l) 7→ (l, k). For Gm,R, τ̃0 and τ̂0 are both given by id : Z→ Z,
and for S1, τ̃1 and τ̂1 are both given by −id : Z→ Z.

These three elementary real tori form the building blocks of every real torus, that is:

Proposition 2.7. [14, Proposition 1.5]. Every R-group structure on Gnm,C is equivalent to exactly
one R-group structure of the form τ×n0

0 × τ×n1
1 × τ×n2

2 , with n0 + n1 + 2n2 = n.

Remark 2.8. Let (T, τ) be a subtorus of the real torus (Gnm,C, τ ′). Let M := Homgr(T,Gm,C) and
M ′ := Homgr(Gnm,C,Gm,C). The inclusion T ↪→ Gnm,C induces a surjective lattice homomorphism
M ′ → M . Let MY be the kernel of this homomorphism, it is a sublattice of M ′. Moreover, the
lattice involution τ̃ ′ on M ′ induces a lattice involution τ̃Y on MY . Let τY be the induced R-group
structure on TY . The following diagram of complex algebraic groups commutes:

1 T Gnm,C TY := Spec(C[MY ]) 1

1 T Gnm,C TY := Spec(C[MY ]) 1
τ τ ′ τY

There exists an injective morphism F : N → N ′ and a surjective homomorphism P : N ′ → NY ,
and the following diagrams of free Z-modules commute:

0 N N ′ NY 0

0 N N ′ NY 0

F P

F P
τ̂ τ̂ ′ τ̂Y
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0 MY M ′ M 0

0 MY M ′ M 0

P ∗ F ∗

P ∗ F ∗
τ̃Y τ̃ ′ τ̃

There always exists a section s∗ : M → M ′, but not always a Γ-equivariant one. Therefore, we
obtain a section TY → Gnm,C, but not always a Γ-equivariant one. In other words, Gnm,C ∼= T×TY ,
but this isomorphism is not always Γ-equivariant.

Example 2.9. The real tori Gm,R and S1 are real subtori of RC/R(Gm,C). The inclusion are given
by:

(Gm,C, τ0)→ (G2
m,C, τ2), t 7→ (t, t) and (Gm,C, τ1)→ (G2

m,C, τ2), t 7→ (t, t−1).
We obtain the diagrams of Remark 2.8 withM ′ = Z2,M = Z,MY = Z, F ∗ = [1, 1] and P ∗ = [1,−1]
for Gm,R, and F ∗ = [1,−1] and P ∗ = [1, 1] for S1. In these two cases, there does not exist a Γ-
equivariant section since τ2 is not equivalent to τ1 × τ0.

In the case where RC/R(Gm,C) is a subtorus of a real torus (Gnm,C, τ ′), we have the following
result:

Lemma 2.10. Let (G2q
m,C, τ

×q
2 ) be a subtorus of (Gnm,C, τ ′). Let M := Homgr(G2q

m,C,Gm,C) and
M ′ := Homgr(Gnm,C,Gm,C). Then, there exists a Γ-equivariant section s∗ : M →M ′ (i.e. F ∗ ◦s∗ =
id and τ ′ ◦ s∗ = s∗ ◦ τ×q2 ).

Proof. The Galois group Γ = {id, γ} acts onM via τ̃×q2 , soM is a Γ-module. We have the following
short exact sequences of Z[Γ]-modules:

0 −−→MY
P∗−−−→M ′

F∗−−−→M −−→ 0.

Note that we have an isomorphism of Z[Γ]-module:

M → Z[Γ]q, (k1, l1, . . . , kq, lq) 7→ (k1χ
id + l1χ

γ , . . . , kqχ
id + lqχ

γ).

Hence M is free Z[Γ]-module of rank q, so it is a projective Z[Γ]-module. By [8, Proposition A3.1],
there exists a morphism s∗ : M →M ′ of Z[Γ]-module such that F ∗ ◦ s∗ = idM . �

Remark 2.11.
(i) The interpretation of Lemma 2.10 is : (Gnm,C, τ ′) ∼= RC/R(Gm,C)q×T ′, where T ′ is a real torus

of dimension n− 2q.
(ii) For Gm,R-actions, the Z[Γ]-module M = Z, with Γ-action given by τ̃0 = id, is not a projective

Z[Γ]-module. Indeed, we have a Γ-equivariant isomorphism

M → Z[Γ]/(χγ), m 7→ [mχid +mχγ ].

(iii) For S1-actions, the Z[Γ]-module M = Z, with Γ-action given by τ̃1 = −id, is not a projective
Z[Γ]-module. Indeed, we have a Γ-equivariant isomorphism

M → Z[Γ]/(χγ), m 7→ [mχid + (−m)χγ ].

2.3. Real torus actions. We now consider actions of real tori on R-varieties.

Lemma 2.12. Let T be a real torus. There is a one-to-one correspondence between quasi-projective
R-varieties endowed with a T -action and tuples (T, τ,X, σ, µ) consisting of:
(i) a complex torus T endowed with an R-group structure τ such that T/〈τ〉 ∼= T ;
(ii) a quasi-projective C-variety X endowed with an R-structure σ;
(iii) an action µ : T×X → X such that the following diagram commutes:

T×X X

T×X X

µ

τ × σ σ

µ



8 PIERRE-ALEXANDRE GILLARD

Proof. Let (T, τ,X, σ, µ) be such a tuple. By Proposition 2.2, the morphism µ : T×X → X induces
a morphism µ0 : (T ×X)/〈τ × σ〉 → X/〈σ〉. Since (T ×X)/〈τ × σ〉 ∼= T/〈τ〉 ×X/〈σ〉, we have a
T/〈τ〉-action on X/〈σ〉.
Conversely, let X be an R-variety endowed with a T -action T×X → X. Since (T×X)C ∼= TC×XC,
we obtain an action µ := TC ×XC → XC satisfying the commutative diagram:

TC ×XC XC

TC ×XC XC

µ

id× (z 7→ z̄) id× (z 7→ z̄) id× (z 7→ z̄)

µ

Which ends the proof. �

Example 2.13. Consider the action of G2
m,C on A3

C given by (s, t) · (x, y, z) = (sx, ty, stz). The
Weil restriction (G2

m,C, τ2) acts on (A3
C, σ

′), where σ′(x, y, z) = (y, x, z).

Example 2.14. Consider the hypersurface X of A4
C := Spec(C[x1, x2, x3, x4]) defined by x1x3 =

x2x4. The torus G2
m,C acts on A4

C by (s, t) · (x1, x2, x3, x4) := (sx1, tx2, st
2x3, s

2tx4). Since the
polynomial x1x3−x2x4 is homogeneous, G2

m,C acts on X. Let σ′ be the R-structure on A4
C defined

by σ′(x1, x2, x3, x4) = (x2, x1, x4, x3) and let σ be the induced R-structure on X. Then, the real
torus (G2

m,C, τ2) acts on (A4
C, σ

′) and on (X,σ).

Let us note that if a real torus (T, τ) acts on an affine variety (X,σ), then the comorphism σ]

of σ preserves the M -grading of the algebra C[X], where M := Homgr(T,Gm,C). This observation
will be useful in the proof of Proposition 4.1.

Lemma 2.15. Let (T, τ) be a real torus acting on the affine R-variety (X,σ). LetM := Homgr(T,Gm,C)
and let ωM be the weight cone of the T-action on X. Then τ̃(ωM ) = ωM and for all m ∈M :

σ] (C[X]m) = C[X]τ̃(m).

Proof. Let m ∈M and let f ∈ C[X]m. We obtain from the diagram of Lemma 2.12:

(µ] ◦ σ])(f) = ((τ ] × σ]) ◦ µ])(f) = τ ](χm)⊗ σ](f) = χτ̃(m) ⊗ σ](f).

Hence σ] (C[X]m) ⊂ C[X]τ̃(m). Moreover, if g ∈ C[X]τ̃(m), then g = σ](σ](g)). Hence, σ] (C[X]m) =
C[X]τ̃(m). �

2.4. The case of affine toric R-varieties. In this subsection, we consider the particular case of
affine toric R-varieties, i.e. affine R-varieties X such that XC is an affine toric C-variety.

Proposition 2.16. Let (T, τ) be a real torus, let M := Homgr(T,Gm,C) and N be its dual lattice.
Let δ be a pointed cone in NQ and let Xδ be the associated affine toric C-variety. The torus (T, τ)
acts on the affine toric R-variety (Xδ, σ), where σ is an R-structure on Xδ, if and only if there
exists an R-group structure τ ′ on T equivalent to τ such that τ̂ ′(δ) = δ.

Proof. (Compare with [10, Proposition 1.19]). Assume that τ is equivalent to τ ′ and τ̂ ′(δ) = δ.
Recall that we denote C[M ] := {

∑
m∈M amχ

m, am ∈ C} and C[Sδ] := {
∑
m∈δ∨∩M amχ

m,
am ∈ C} the coordinate rings of Gnm,C and Xδ respectively. Since τ̃ ′(δ∨) = δ∨, the algebra auto-
morphism

τ ] : C[M ]→ C[M ],
∑
m∈M

amχ
m 7→

∑
m∈M

amχ
τ̃ ′(m)

can be restricted to C[Sδ] ⊂ C[M ]. It is the comorphism of an R-structure σ on Xδ.
Conversely, let σ be an R-structure on Xδ such that (T, τ) acts on (Xδ, σ). Let m ∈ δ∨ ∩M ,

then there exists ϕ̃ ∈ GL(M) such that χm ∈ C[Sδ]ϕ̃(m). Let ϕ ∈ Autgr(T) be the corresponding
automorphism. By Lemma 2.15, σ](χm) ∈ C[Sδ]τ̃(ϕ̃(m)), so σ](χm) = χ(ϕ̃−1◦τ̃◦ϕ̃)(m). Let τ ′ :=
ϕ−1 ◦ τ ◦ ϕ be an R-group structure on T equivalent to τ , then σ](χm) = χτ̃

′(m). Hence, τ̃ ′(m) ∈
δ∨ ∩M and τ̂ ′(δ) = δ. �
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Remark 2.17. The weight cone of the T-action on Xδ does not always coincide with δ∨ (compare
with Lemma 2.15).

Remark 2.18. The Weil restriction RC/R(Gm,C) acts on a 2-dimensional affine toric R-variety
(Xδ, σ) if and only if there exists a basis {e1, e2} of the lattice N such that the cone δ is symmetric
with respect to the line Q(e1 + e2). Let σ be the R-structure on A2

C defined by σ(x, y) = (y, x).
The toric R-variety (A2

C, σ) is endowed with an RC/R(Gm,C)-action since τ̂2(Q2
≥0) = Q2

≥0.

Example 2.19. Consider the cone δ = Q3
≥0 in NQ = Q3 spanned by the canonical basis of N .

Let Xδ := A3
C be the associated toric C-variety. The cone δ is stable under the lattice involution

τ̂ ′ := τ̂2 × τ̂0 induced by the R-group structure on G3
m,C defined by τ ′ := τ2 × τ0. Consider the R-

structure σ′ on A3
C defined by σ′(x, y, z) = (y, x, z). The natural action of G3

m,C on A3
C is compatible

with the R-structures τ ′ and σ′, i.e. RC/R(Gm,C)×Gm,R acts on (A3
C, σ

′). Note that the action of
RC/R(Gm,C) on (A3

C, σ
′) given in Example 2.13 comes from the action of RC/R(Gm,C) × Gm,R on

(A3
C, σ

′) (details in Example 4.2).

Counter-example 2.20. Consider the cone δ = Cone
{[

1
0

]
;
[
1
2

]}
in NQ = Q2. There are no R-

group structure τ equivalent to τ2 such that τ̂(δ) = δ, so we cannot endow Xδ with an R-structure
compatible with a RC/R(Gm,C)-action.

Let (T, τ) be a real torus and let σ be an R-structure on an n-dimensional toric C-variety Xδ

induced by an R-group structure τ ′ on Gnm,C. By a (T, τ)-action on (Xδ, σ), we mean a (T, τ)-action
such that (T, τ) is a real subtorus of (Gnm,C, τ ′). Let’s now have a look at (T, τ)-actions on (Xδ, σ).

Corollary 2.21. Let M := Homgr(Gnm,C,Gm,C) and N be its dual lattice. Let δ be a pointed
cone in NQ and let Xδ be the associated affine toric C-variety. The torus (G2q

m,C, τ
×q
2 ) acts on

the affine toric R-variety (Xδ, σ), where σ is an R-structure on Xδ, if and only if there exists an
R-group structure τ ′ on Gnm,C equivalent to an R-group structure of the form τ×q2 × τ ′′ and such
that τ̂ ′(δ) = δ, where τ ′′ is an R-group structure on Gn−2q

m,C .

Proof. It is a consequence of Lemma 2.10 and Proposition 2.16. �

The Corollary 2.21 is specific to Weil restriction actions:

Example 2.22. Let N = Z2, let δ = Q2
≥0 be a pointed cone in NQ, and let A2

C be the associated
affine toric C-variety. Since τ̂2(δ) = δ, the R-group structure τ2 on G2

m,C extends to an R-structure
σ on A2

C defined by σ(x, y) = (y, x). Note that the real torus (Gm,C, τ0) acts on (A2
C, σ) by

t · (x, y) = (tx, ty), but τ2 is not equivalent to τ0 × τ1 (see Example 2.9).

3. Altmann-Hausen presentation for normal affine C-varieties

In this section, we introduce the group of tailed polyhedra, which will serve as the group of
coefficients for the polyhedral divisors, and we recall the main results obtained by Altmann-Hausen
in [2]. We also recall some basic facts about convex geometry. Our main references for this are
Altmann-Hausen article’s [2] and Fulton book’s [9].

3.1. Tailed polyhedra and polyhedral divisors. A subset Π ⊂ NQ is called a polytope if there
exists a finite set S ⊂ NQ such that Π is the convex hull of S, and it is called a rational polytope if S
can be taken inside the lattice N . A proper face Π′ of Π is the intersection of Π with a supporting
affine hyperplane.

A convex polyhedron is the intersection of finitely many closed affine half spaces in NQ. For
us, a polyhedron in NQ is always a convex polyhedron. The relative interior of a polyhedron ∆,
denoted by Relint(∆), is obtained by removing all proper faces from ∆. Moreover, any polyhedron
∆ in NQ admits a Minkowski sum decomposition:

∆ = Π + ωN ,

where Π ⊂ NQ is a polytope and ωN ⊂ NQ is a cone. In this decomposition, the cone ωN is unique
and called the tail cone of ∆ (see [2, §1]).
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Example 3.1. ∆ = Π + ωN

1 2

1
∆ =

1

1

Π

+

1

1 ωN

Definition 3.2. Let ωN be a pointed cone inNQ. By a ωN -polyhedron inNQ, we mean a polyhedron
in NQ having the cone ωN as its tail cone. We denote the set of all ωN -polyhedra in NQ by
Pol+ωN

(NQ).

The Minkowski sum of two ωN -polyhedra in NQ is again a ωN -polyhedron in NQ. Thus,
endowed with Minkowski sum, Pol+ωN

(NQ) is an abelian monoid, whose neutral element is ωN [2,
§1].

We now introduce the language of polyhedral divisors and proper polyhedral divisors. The
idea is to replace rational coefficient by tailed polyhedra [2, §2].

Let Y be a normal C-variety. The group of Weil divisors on Y is denoted WDiv(Y ) and the
group of Cartier divisors on Y is denoted by CDiv(Y ). Since Y is normal, we have an inclusion
CDiv(Y ) ⊂ WDiv(Y ). A Cartier (resp. Weil) Q-divisor is an element of Q ⊗Z CDiv(Y ) (resp
Q⊗Z WDiv(Y )). The sheaf of sections O(D) of a Weil Q-divisor D on Y is defined by:

H0(V,O(D)) := {f ∈ C(Y ) | divV (f
∣∣
V

) +D
∣∣
V
≥ 0} ∪ {0},

where V ⊂ Y is an open subset. Now we turn to divisors with tailed polyhedra coefficients. Let
ωN be a pointed cone in NQ. An ωN -polyhedral divisor on Y is a formal sum:

D =
∑
Z

∆Z ⊗ Z ∈ Pol+ωN
(NQ)⊗Z WDiv(Y )

over all prime divisors Z ⊂ Y , and ∆Z = ωN for all but finitely prime divisors Z.
Let D =

∑
Z ∆Z ⊗Z be a ωN -polyhedral divisor on Y . For a prime divisor Z on Y we denote

the support function of ∆Z by
hZ : ω∨N → Q, m 7→ min{〈m, v〉 | v ∈ ∆Z}.

For every m ∈ ω∨N we can evaluate D in m by letting D(m) be the Weil Q-divisor on Y defined by:

D(m) :=
∑
Z

hZ(m)⊗ Z ∈ Q⊗Z WDiv(Y ).

Before introducing proper polyhedral divisors, we recall the following definitions:

Definition 3.3. A Cartier Q-divisor D on Y is called semi-ample if, for some n ∈ N∗, the set of
open subsets Yf := Y \Supp(div(f) + D), with f ∈ H0(Y,OY (nD), cover Y . A Cartier Q-divisor
D on Y is called big if, for some n ∈ N∗, there exists a section f ∈ H0(Y,OY (nD) with an affine
non-vanishing locus Yf .

Definition 3.4. A proper ωN -polyhedral divisor on Y , abbreviated an ωN -pp-divisor, is an ωN -
polyhedral divisor D =

∑
Z ∆Z ⊗ Z on Y satisfying the following properties:

(i) for all m ∈ ω∨N ∩M, D(m) is a semi-ample Cartier Q-divisor on Y ; and
(ii) for all m ∈ Relint(ω∨N ) ∩M, D(m) is big.

The sum of two ωN -pp-divisors with respect to a given cone ωN is again an ωN -pp-divisor.
Thus, ωN -pp-divisors form a monoid denoted by PPDivQ(Y, ωN ).

Example 3.5. Let N = Z2, let ωN = Q2
≥0, and let ∆ be the ωN -polyhedron defined below. The

normal quasifan associated to ∆ consists of the two cones δ1 and δ2 refining the cone ω∨N = Q2
≥0

of the dual lattice M = Z2 (see [13, §1.1.2] for details). The support function h∆ : ω∨N → Q, m 7→
min{〈m, v〉 | v ∈ ∆} is linear on each δi, and we obtain:



REAL TORUS ACTIONS ON REAL AFFINE ALGEBRAIC VARIETIES 11

h∆(m1,m2) =
{
m2 if (m1,m2) ∈ δ1
m1 if (m1,m2) ∈ δ2

1 2

1

2

∆

1 2

1

2

δ1

δ2

Consider a divisor D := ∆⊗D on a normal variety Y , where D is a prime divisor. Then,

D(m1,m2) =
{
m2 ⊗D if (m1,m2) ∈ δ1
m1 ⊗D if (m1,m2) ∈ δ2

Example 3.6. Let N = Z2, let ωN = Q2
≥0, let ∆1 = ∆2 = ωN and let ∆3 and ∆4 be the ωN -

polyhedra defined in the following illustrations. The normal quasifan associated to ∆3 (resp. ∆4)
consists of two cones refining the cone ω∨N = Q2

≥0 of the dual latticeM = Z2. The support function
of the polyhedron ∆i is denoted hi : ω∨N → Q, m 7→ min{〈m|v〉 | v ∈ ∆i}. Note that h1 = h2 = 0.

1 2

1

2

∆3

1 2

1

2

h3(m) = m2

h3(m) = 2m1

1 2

1

2

∆4

1 2

1

2

h4(m) = 2m2

h4(m) = m1

Consider the divisor D := ∆1 ⊗D1 + ∆2 ⊗D2 + ∆3 ⊗D3 + ∆4 ⊗D4 on a normal variety Y , where
the Di are prime divisors. We have D = ∆3 ⊗D3 + ∆4 ⊗D4. Considering the fan refining these
two normal fan, we obtain:

D(m1,m2) =

 m2 ⊗D3 + 2m2 ⊗D4 if (m1,m2) ∈ δ1
m2 ⊗D3 +m1 ⊗D4 if (m1,m2) ∈ δ2
2m1 ⊗D3 +m1 ⊗D4 if (m1,m2) ∈ δ3

1 2

1

2

δ1

δ2

δ3

3.2. Altmann-Hausen presentation. Let us present the main results of [2] about the geometrico-
combinatorial presentation of normal affine C-varieties endowed with a torus action.

Definition 3.7. A C-variety Y is said to be semi-projective if its C-algebra of global functions
H0(Y,O) is finitely generated and Y is projective over Y0 = Spec(H0(Y,O)).

Remark 3.8. Note that affine varieties and projective varieties are semi-projective. A semi-
projective variety is quasi-projective. Indeed, Y → Y0 is a projective morphism, moreover Y0 is an
affine variety (so quasi-projective). Then the morphism Y → Spec(C) is quasi-projective.

Let X be a C-variety endowed with an action of the torus T = Spec(C[M ]) of weight cone
ωM ⊂MQ. We write C[X] =

⊕
m∈ωM∩M C[X]m. For all m ∈ ωM ∩M , we denote:

C(X)m :=
{
f

g

∣∣∣ ∃k ∈M, f ∈ C[X]m+k, g ∈ C[X]k
}
⊂ C(X).

Let Y be a normal semi-projective variety, let ωN be a pointed cone in NQ and let D =∑
Z ∆Z ⊗Z be an ωN -pp-divisor on Y . By [2, proposition 2.11], for all m, m′ ∈M ∩ω∨N , we have



12 PIERRE-ALEXANDRE GILLARD

D(m+m′) ≥ D(m) +D(m′). So, for all m, m′ ∈ ω∨N ∩M , we have a map:
H0 (Y,OY (D(m)))⊗H0 (Y,OY (D(m′)))→ H0 (Y,OY (D(m+m′))) .

This ensures that the H0 (Y,OY )-sub-modules H0 (Y,OY (D(m))) of C(Y ) can be put together into
an M -graded C-algebra:

A[Y,D] :=
⊕

m∈ω∨
N
∩M

H0 (Y,OY (D(m)))Xm ⊂ C(Y )[M ],

where Xm is an indeterminate of weight m. We denote by X[Y,D] := Spec(A[Y,D]) the associated
T-scheme. The general idea of the construction of Altmann-Hausen is to identify C(X)0 with C(Y )
for some semi-projective variety Y , and use an appropriate pp-divisor on Y to construct the grading
of C[X] via an identification between C[X]m and H0 (Y,OY (D(m)))Xm.

Theorem 3.9. [2, Theorems 3.1 and 3.4]. Fix a torus T. Let M its character lattice.
(i) Let Y be a normal semi-projective variety, let ωN be a pointed cone in NQ, and let D be a

ωN -pp-divisor on Y . The affine scheme X[Y,D] is a normal variety, of dimension dim(Y ) +
dim(T), endowed with a T-action of weight cone ω∨N .

(ii) Conversely, let X be an affine normal variety endowed with a T-action, and let ωN be the
cone in NQ dual to the weight cone. There exists a normal semi-projective variety Y and a
ωN -pp-divisor D on Y such that the graded C-algebras C[X] and A[Y,D] are isomorphic.

Example 3.10. Consider the Example 2.13. The affine variety A3
C endowed with the action of G2

m,C
given by (s, t) ·(x, y, z) = (sx, ty, stz) is described by a semi-projective variety Y := P1

C = A1
C∪{∞},

and a pp-divisor on Y defined by D := ∆⊗ {∞}, where ∆ is the polyhedral defined below. Using
Example 3.5, we have:

D(m1,m2) =
{
m2 ⊗ {∞} if (m1,m2) ∈ δ1
m1 ⊗ {∞} if (m1,m2) ∈ δ2

1 2

1

2

∆

4. Altmann-Hausen presentation for normal affine R-varieties

4.1. Equivariant toric downgrading. Given an action of a complex torus T on a normal affine
C-varietyX, Altmann and Hausen indicate in [2, §11] a recipe on how to determine a semi-projective
variety YX and a pp-divisor DX mentioned in Theorem 3.9. The idea is to embed T-equivariantly X
into a toric variety AnC such thatX intersects the dense open orbit of AnC for the natural Gnm,C-action.
They construct a normal semi-projective variety Y and a pp-divisor D describing the T-action on
AnC. From these data, they obtain YX and DX describing the T-action on X.

In this section, we describe a T-equivariant embedding X ↪→ AnC which is also Γ-equivariant
(Proposition 4.1), and we use this embedding to extend the Altmann-Hausen presentation to the
case of real torus actions on affine R-varieties (Theorems 4.3 and 4.6).

Proposition 4.1. Let X be an affine C-variety endowed with an action of T, letM := Homgr(T,Gm,C),
and let d be the rank of M . Let σ be an R-structure on X, and let τ be an R-group structure on T.
If the real torus (T, τ) acts on (X,σ), then there exist n ∈ N, n ≥ d such that:
(i) There is an R-group structure τ ′ on Gnm,C that extends to an R-structure σ′ on AnC;
(ii) (T, τ) is a closed subgroup of (Gnm,C, τ ′); and
(iii) (X,σ) is a closed subvariety of (AnC, σ′) and (X,σ) ↪→ (AnC, σ′) is (T, τ)-equivariant. Moreover,

X intersects the dense open orbit of AnC for the natural Gnm,C-action, and the weight cone of
AnC is the weight cone of X.

Proof. (i) The algebra C[X] is finitely generated, so we can write C[X] = C[g̃1, . . . , g̃k] with g̃i ∈
C[X]\{0}. Since C[X] =

⊕
m∈M C[X]m, there exists homogeneous elements g̃i,j such that g̃i =
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g̃i,1 +· · ·+ g̃i,ki , hence C[X] = C[g̃i,j ]. Note that C[X] = C[g̃i,j , σ](g̃i,j)]. Moreover, by Lemma 2.15,
an homogeneous element is send to an homogeneous element by σ]. Hence we can assume that there
exists n ∈ N such that C[X] = C[g1, . . . , gn], where the gi are homogeneous of degree mi ∈M and
such that the set {gi | 1 ≤ i ≤ n} is stable under the involution σ]. Let τ ′ and σ′ be the maps induced
by the antilinear maps τ ′](xi) = xj , and σ′](xi) = xj , where σ](gi) = gj . This induces an R-group
structure on Gnm,C = Spec(C[x±1

1 , . . . , x±1
n ]) and a R-structure on AnC = Spec(C[x1, . . . , xn]).

(ii) The C-algebra morphism ψ : C[x±1
1 , . . . , x±1

n ]→ C[M ], xi 7→ χmi is surjective since the T-
action on X is effective. Since (T, τ) acts on (X,σ), ψ is Γ-equivariant. So, the R-algebra morphism
ψΓ : C[x±1

1 , . . . , x±1
n ]Γ → C[M ]Γ is well defined and surjective. Hence, (T, τ) is a closed subgroup

of (Gnm,C, τ ′).
(iii) The C-algebra morphism ϕ : C[x1, . . . , xn] → C[X], xi 7→ gi is surjective and induces a

C-algebra isomorphism C[g1, . . . , gn] ∼= C[x1, . . . , xn]/a, with a = Ker(ϕ). Moreover, the morphism
ϕ is Γ-equivariant. So, the R-algebra morphism ϕΓ : C[x1, . . . , xn]Γ → C[X]Γ is well defined and
surjective. Hence, (X,σ) is a closed subvariety of (AnC, σ′).

Note that ϕ is T-equivariant, so the closed immersion X ↪→ AnC is T-equivariant. Moreover,
the comorphism of the T-action on AnC is given by:

µ̃] : C[x1, . . . , xn]→ C[M ]⊗ C[x1, . . . , xn], xi 7→ χm1 ⊗ xi
Then, the following diagram commutes:

C[AnC] C[M ]⊗ C[AnC]

C[AnC] C[M ]⊗ C[AnC]

C[X] C[M ]⊗ C[X]

C[X] C[M ]⊗ C[X]

µ̃]

µ̃]

µ]

µ]

τ ] × σ′]

τ ] × σ]
σ]

σ′
]

ϕ

ϕ id× ϕ

id× ϕ

Hence, the morphism ϕ is (T, τ)-equivariant, so (X,σ) is a closed subvariety of (AnC, σ′), and
(X,σ) ↪→ (AnC, σ′) is (T, τ)-equivariant.

Finally, note that for all i ∈ {1, . . . , n}, xi /∈ a, hence X intersects the dense open orbit of
Gnm,C. It follows that the weight cone of AnC is the weight cone of X. �

Example 4.2. We pursue Example 3.10. The action of (G2
m,C, τ2) on (A3

C, σ
′) comes from the Γ-

equivariant inclusion of (G2
m,C, τ2) in (G3

m,C, τ
′) given by (s, t) 7→ (s, t, st), where τ ′ is the R-group

structure defined by τ ′ = τ2 × τ0 (see Example 2.19). We denote by M and M ′ the character
lattices of G2

m,C and G3
m,C respectively. Then, we obtain the diagrams of Remark 2.8 with:

F :=

[
1 0
0 1
1 1

]
P :=

[
−1 −1 1

]
τ̂2 :=

[
0 1
1 0

]
τ̂ ′ :=

[
0 1 0
1 0 0
0 0 1

]
τ̂Y :=

[
1
]

4.2. Real torus actions on normal affine R-varieties. We present the main theorical results
of this article concerning the presentation of affine R-varieties endowed with real torus actions:

Theorem 4.3. Let (T, τ) be a real torus, let M := Homgr(T,Gm,C), and let (Y, σY ) be a normal
semi-projective R-variety. Let ωN be a pointed cone in NQ, and let D be an ωN -pp-divisor on Y .
Assume that there exists a monoid morphism h : ω∨N ∩M → C(Y )∗ such that

∀m ∈ ω∨N ∩M, σ∗Y (D(m)) = D(τ̃(m)) + divY (h(τ̃(m))) and h(m)σ]Y (h(τ̃(m))) = 1, (1)
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then there exists an R-structure σX[Y,D] on the normal affine variety X[Y,D] such that (T, τ) acts
on (X[Y,D], σX[Y,D]).

Remark 4.4. The datum (Y,D) is used to construct the affine T-variety X[Y,D]. The monoid
morphism h is the additional datum that encodes the real structure σX[Y,D] on X[Y,D] such that
(X[Y,D], σX[Y,D]) is a (T, τ)-variety.

Remark 4.5. Since Y is an integral scheme, for any affine open subset U ⊂ Y , the ring OY (U)
is integral and C(Y ) = Frac(OY (U)). Hence, σY induces an R-field automorphism denoted
σ]Y : C(Y ) → C(Y ). The field of invariant rational functions is denoted by C(Y )Γ := {f ∈
C(Y ) | σ]Y (f) = f}. A classical result, due to Artin, states that if G is a finite group of automor-
phisms of a field k, then G = Gal(k/kG). So, the extension C(Y )/C(Y )Γ is Galois, with Galois
group Γ.

Proof. By Theorem 3.9 (1), X[Y,D] := Spec(A[Y,D]) is a normal affine C-variety endowed with a
T-action, of weight cone ω∨N . This action is obtained from the following comorphism:

µ] : A[Y,D]→ C[M ]⊗A[Y,D], fXm 7→ χm ⊗ fXm.

We now construct an R-structure on X[Y,D] such that (T, τ) acts on (X[Y,D], σX[Y,D]). Condition
(1) implies that, for all m ∈ ω∨N ∩M ,

αm : H0(Y,OY (D(m)))Xm → H0(Y,OY (D(τ̃(m))))Xτ̃(m), fXm 7→ σ]Y (f)h(τ̃(m))Xτ̃(m)

are isomorphisms ofA[Y,D]0-modules and these isomorphisms collect into an involution⊕m∈ω∨
N
∩Mαm

on the direct sum A[Y,D]. The latter corresponds to a R-structure σX[Y,D] on X[Y,D].
Finally, (T, τ) acts on (X[Y,D], σX[Y,D]) since the following diagram commutes:

A[Y,D] C[M ]⊗A[Y,D]

A[Y,D] C[M ]⊗A[Y,D]

µ]

µ]

σ]X[Y,D] τ ] ⊗ σX[Y,D]
]

�

Theorem 4.6. Let (T, τ) be a real torus and let M := Homgr(T,Gm,C). Let (X,σX) be a normal
affine R-variety endowed with a (T, τ)-action. Let ωN be the cone in NQ dual to the weight cone
ωM . There exists a normal semi-projective R-variety (Y, σY ), an ωN -pp-divisor D on Y , and a
monoid morphism h : ωM ∩M → C(Y )∗ such that

∀m ∈ ωM ∩M, σ∗Y (D(m)) = D(τ̃(m)) + divY (h(τ̃(m))) and h(m)σ]Y (h(τ̃(m))) = 1,

and such that the affine varieties (X,σX) and (X[Y,D], σX[Y,D]) are (T, τ)-equivariantly isomorphic.

Proof. • Step 0: Preliminaries.
Using Proposition 4.1, there exists n ∈ N such that (T, τ) is a closed subgroup of (Gnm,C, τ ′)

and (X,σX) is a closed (T, τ)-equivariant subvariety of (AnC, σ). So, let a be the ideal of C[AnC] =
C[x1, . . . , xn] such that C[X] is (Γ × T)-equivariantly isomorphic to C[AnC]/a. We write C[X] =
C[AnC]/a. Let M ′ := Homgr(Gnm,C,Gm,C) and let MY be the sublattice of M ′ constructed in
Remark 2.8. We have the commutative diagrams of Remark 2.8. Recall that there always exists
a section s∗ : M → M ′, but not necessarily Γ-equivariant, and a cosection t∗ : M ′ → MY . These
homomorphisms satisfy F ∗ ◦ s∗ = IdM , t∗ ◦ P ∗ = IdMY

and P ∗ ◦ t∗ = IdM ′ − s∗ ◦ F ∗.
Since Frac(C[M ′]) = C(AnC), the section s∗ induces a morphism

u : ωM ∩M → C(AnC)∗,m 7→ χs
∗(m)

such that for all m ∈ ωM ∩M , u(m) ∈ C(AnC)m.
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Note that, for all m ∈ ωM ∩M , C(AnC)m = C(AnC)0u(m). Indeed, since C[AnC]m ⊂ C(AnC)m, we
can write C[AnC]m = C̃[AnC]mu(m), with C̃[AnC]m ⊂ C(AnC)0. Then , we can write:

C[AnC] =
⊕

m∈ωM∩M
C̃[AnC]mu(m) ⊂ C(AnC)0[M ].

Since for all i, xi /∈ a, for all m ∈ ωM ∩M we have uX(m) ∈ C(X)m, where uX(m) is obtained from
the surjective morphism C[AnC] � C[X]. It follows a morphism uX : ωM ∩M → C(X)∗. Hence we
can write

C[X] =
⊕

m∈ωM∩M
C[X]m =

⊕
m∈ωM∩M

C̃[X]muX(m) ⊂ C(X)0[M ],

where, for all m ∈ ωM ∩M , C[X]m = C̃[X]muX(m) and C̃[X]m ⊂ C(X)0.
• Step 1: Altmann-Hausen quotient and divisors.
Let {e1, . . . , en} be the standard basis of N ′. The cone in N ′Q of the toric variety AnC is Qn≥0,

and F ∗(Qn≥0) = ωM . Since the fan in N ′Q generated by {e1, . . . , en} is Γ-stable (for τ̂ ′) and P is
Γ-equivariant, the fan ΛY in (NY )Q generated by {P (e1), . . . , P (en)} is Γ-stable (for τ̂Y ).

Let Y be the toric variety obtained from the fan ΛY ; it is a semi-projective variety (see [5,
Proposition 7.2.9]). Since ΛY is Γ-stable, the R-group structure τY on TY := Spec(C[MY ]) extends
to an R-structure σY on Y by [10, Proposition 1.19].

Let YX be the closure of the image of X ∩Gnm,C in Y by the surjective group homomorphism
π : Gnm,C � TY composed with the inclusion TY ↪→ Y . Since these morphisms are Γ-equivariant,
the R-structure on Y restricts to an R-structure σYX

on YX . The normalization ỸX of YX , with
morphism ν : ỸX → YX , is a semi-projective variety. Using universal property of normalization
and the fact that ν is an isomorphism on a dense open subset of YX , there exists an R-structure
σỸX

on ỸX which makes the following diagram commute:

ỸX ỸX

YX YX

σỸX

σYX

ν ν

For each ray of the fan ΛY , we denote by vi its first lattice vector. To a ray spanned by vi
corresponds a toric divisor Dvi on Y .

The divisor D =
∑
vi

∆vi
⊗Dvi

, where ∆vi
:= s(Qn≥0 ∩ P−1(vi)), is an ωN -pp-divisor on Y .

Let DX be the divisor obtained by pulling back D to ỸX . It is an ωN -pp-divisor on ỸX (see [1,
Proposition 8.1] which is not in the published version).

• Step 2: Isomorphisms C(Y ) ∼= C(AnC)0 and C(YX) ∼= C(X)0.
Observe that π] : C[MY ]→ C[M ′]0 is an isomorphism. Hence, π] induces an isomorphism:

Frac(C[MY ])→ Frac(C[M ′]0), f
g

=
∑
aiχ

mi∑
bjχmj

7→ π](f)
π](g) =

∑
aiχ

P∗(mi)∑
bjχP

∗(mj) .

For all m ∈ M , note that (F ∗)−1(m) = s∗(m) + Ker(F ∗). Hence, Frac(C[M ′])0 = Frac(C[M ′]0).
Since TY is a dense open subset of Y , we have C(Y ) = C(TY ). Since Gnm,C is a dense open subset
of AnC, we have Frac(C[M ′]) = C(AnC). Therefore, Frac(C[M ′])0 = C(AnC)0. Finally, we obtain a
Γ-equivariant isomorphism:

ϕ : C(Y )→ C(AnC)0.

Moreover, the inclusion X ↪→ AnC is T-equivariant, the variety TY ∩ YX is affine and the following
diagram commutes:

Gnm,C TY

Gnm,C ∩X TY ∩ YX = π(Gnm,C ∩X)

π

Therefore the following diagram commutes:
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C[TY ∩ YX ] C[Gnm,C ∩X]0

C[TY ] C[Gnm,C]0
π]

It follows an isomorphism C(TY ∩ YX)→ Frac(C[Gnm,C ∩X]0). Since,
Frac(C[Gnm,C ∩X]0) = C(Gnm,C ∩X)0, C(YX) = C(TY ∩ YX), and C(X) = C(Gnm,C ∩X),

we obtain a Γ-equivariant isomorphism C(YX) ∼= C(X)0. Note that we have a Γ-equivariant iso-
morphism C(YX) ∼= C(ỸX), therefore, the isomorphism:

ϕX : C(ỸX)→ C(X)0

is Γ-equivariant.
• Step 3: Isomorphisms A[Y,D] ∼= C[AnC] and A[ỸX ,DX ] ∼= C[X].
Let m ∈ ωM ∩ M . Consider the polyhedron ∆(m) := (F ∗)−1(m) ∩ Qn≥0 ⊂ M ′Q and the

polyhedron ∆Y (m) := t∗(∆(m)) ⊂ (MY )Q. Note that

C̃[AnC]m :=
⊕

m′∈Qn
≥0∩(F∗)−1(m)∩M ′

Cχm
′

=
⊕

mY ∈∆Y (m)∩MY

CχP
∗(mY ) = ϕ

 ⊕
mY ∈∆Y (m)∩MY

CχmY

 .

It follows from Lemma [9, §3.4] and the proof of [1, Proposition 8.5] that:

H0(Y,OY (D(m))) =
⊕

mY ∈∆Y (m)∩MY

CχmY .

Therefore, we obtain a graded algebra isomorphism:
Φ : A[Y,D]→ C[AnC], fXm 7→ ϕ(f)u(m).

Moreover, there is a natural surjective graded algebra morphism:
Ψ : A[Y,D] � A[ỸX ,DX ].

Let ΦX : A[ỸX ,DX ] → C(X)0[M ] be the morphism defined by fXm 7→ ϕX(f)uX(m). Since the
following diagram commutes:

A[Y,D] C[AnC]

A[ỸX ,DX ] C[X]

Φ

ΦX
Ψ

we obtain a graded algebra isomorphism:
ΦX : A[ỸX ,DX ]→ C[X], fXm 7→ ϕX(f)uX(m).

• Step 4: Equality σ∗
ỸX

(DX(m)) = DX(τ̃(m)) + div(h(τ̃(m))), for all m ∈ ωM ∩M .
Let m ∈ ωM ∩M . Let h′ : ωM ∩M → C(AnC)0 be the monoid morphism defined by h′(m) :=

σ](u(τ̃(m))
u(m) . By Lemma 2.15, σ](C[AnC]τ̃(m)) = C[AnC]m. It follows h′(m) ∈ C̃[AnC]m. Moreover,

note that h′(m)σ](h′(τ̃(m))) = 1. Consider the monoid morphism h := ϕ̃−1◦h′ : ωM∩M → C(Y )∗.
We construct a R-structure on X[Y,D] using the following commutative diagram:

C[AnC ] C[AnC ]

A[Y,D] A[Y,D]

σ]

Φ Φ−1

ϕ(f)u(m) σ]
(
ϕ(f)

)
h′(τ̃(m))u(τ̃(m))

fXm ϕ−1
(
σ]
(
ϕ(f)

)
h′(τ̃(m))

)
Xτ̃(m)

Since ϕ is Γ-equivariant, we have ϕ−1
(
σ]
(
ϕ(f)

)
h′(τ̃(m))

)
= σ]Y (f)h(τ̃(m)). Hence, the

morphism
A[Y,D]→ A[Y,D], fXm 7→ σY

](f)h(τ̃(m))Xτ̃(m)



REAL TORUS ACTIONS ON REAL AFFINE ALGEBRAIC VARIETIES 17

induces an R-structure σX[Y,D] on X[Y,D]. From this we deduce that:
σ∗Y (D(m)) = D(τ̃(m)) + divY (h(τ̃(m))). (2)

Moreover, h(m)σ]Y (h(τ̃(m))) = 1. By the same reasoning, we construct an R-structure σX[ỸX ,DX ]
on X[ỸX ,DX ] from the following morphism:

A[ỸX ,DX ]→ A[ỸX ,DX ], fXm 7→ σỸX

](f)hX(τ̃(m))Xτ̃(m),

where hX is obtained from h by the projection C[AnC] � C[X]. Thus we obtain:
σ∗
ỸX

(DX(m)) = DX(τ̃(m)) + divỸX
(hX(τ̃(m)))

and hX(m)σ]Y (hX(τ̃(m))) = 1. �

Remark 4.7. The construction of the real variety (X[Y,D], σX[Y,D]) does not depend on the choice
of the cosection. Indeed, for j ∈ {1, 2}, let sj : N ′ → N be two cosections, let Dj :=

∑
i ∆j

vi
⊗Dvi

be
the two associated pp-divisors, and let hj : ωM∩M → C(Y )∗ be the monoid morphisms constructed
in Step 4. Note that for all m ∈ M , (s∗1 − s∗2)(m) ∈ Ker(F ∗) = Im(P ∗), thus there exists a lattice
homomorphism s0 : NY → N such that s1 − s2 = s0 ◦ P . Let g : M → C(Y )∗ be the morphism
defined by g(m) := χs

∗
0(m). Let m ∈ ωM ∩M . Since ∆1

vi
= s0(vi) + ∆2

vi
, we have :

D1(m) =
∑
i

〈s∗0(m)|vi〉 ⊗Dvi
+D2(m) = divY (g(m)) +D2(m).

Therefore the M -graded algebras A[Y,D1] and A[Y,D2] are isomorphic via:
A[Y,D1]→ A[Y,D2], fXm 7→ fg(m)Xm.

Moreover, since

σ]Y (g(τ̃(m)))
g(m) =

σ]Y
(
χs
∗
0(τ̃(m)))

χs
∗
0(m) = ϕ̃−1

X

(
σ]Y
(
χP
∗◦s∗0(τ̃(m)))

χP
∗◦s∗0(m)

)
= ϕ̃−1

X

(
σ]Y (u1(τ̃(m)))u2(m)
u1(m)σ]Y (u2(τ̃(m)))

)
= h1(m)
h2(m) ,

the following diagram commutes:

A[Y,D1] A[Y,D1]

A[Y,D2] A[Y,D2]

σ]X[Y,D1]

σ]X[Y,D2]

∼= ∼=

fXm σ]Y (f)h1(τ̃(m))Xτ̃(m)

fg(m)Xm σ]Y (fg(m))h2(τ̃(m))Xτ̃(m)

Hence, the varieties (X[Y,D1], σX[Y,D1]) and (X[Y,D2], σX[Y,D2]) are (T, τ)-equivariantly iso-
morphic.

4.3. Galois cohomology and real torus actions. We recall some cohomological results in view
of simplifying the Altmann-Hausen presentation in the case where the real acting torus is quasi-split.

Let G be an abstract group equipped with a Γ-action denoted by ?. A cocycle a : Γ → G is
a map such that aid = 1 and aγ(γ ? aγ) = 1. Two cocycles a and b are equivalent if there exists
g ∈ G such that bγ = g−1aγ(γ ? g). The set of cocycles modulo this equivalence relation is the first
pointed set of Galois cohomology H1(Γ, G). If G is an abelian Γ-group, then H1(Γ, G) is a group
(see [15]).

In the following result (Corollary 4.8 (ii)), we see that the Altmann-Hausen presentation
simplifies if a certain cohomology set is trivial. This simplification consists of choosing a pp-divisor
on Y such that h = 1.

Corollary 4.8. Fix a real torus (T, τ). Let M := Homgr(T,Gm,C).
(i) Let (Y, σY ) be a normal semi-projective variety. Let ωN be a pointed cone in NQ and D be an

ωN -pp divisor on Y . If
∀m ∈ ω∨N ∩M, σ∗Y (D(m)) = D(τ̃(m)),

then there exists an R-structure σX[Y,D] on the affine variety X[Y,D] such that (T, τ) acts on
(X[Y,D], σX[Y,D]).
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(ii) Let (X,σX) be an affine variety endowed with an action of (T, τ) of weight cone ωM ⊂ MQ,
and let ωN be the cone in N dual to ωM . Let (Y, σY ) be the R-variety of Theorem 4.6 and let
G := Homgr(M,C(Y )∗) endowed with the Γ-action γ ? f := σ]Y ◦ f ◦ τ̃ . If H1(Γ, G) = {1}, then
there exists an ωN -pp divisor D on Y such that

∀m ∈ ωM ∩M, σ∗Y (D(m)) = D(τ̃(m)),

and such that the varieties (X,σX) and (X[Y,D], σX[Y,D]) are (T, τ)-equivariantly isomorphic.

Proof. (i) We specify the proof of Theorem 4.3 with h = 1 ∈ C(Y )∗.
(ii) By Theorem 4.6 there exists a normal semi-projective variety Y , an ωN -pp-divisor D on Y ,
an R-structure σY on Y and a monoid morphism h : ωM ∩M → C(Y )∗ such that σ∗Y (D(m)) =
D(τ̃(m))+divY (h(τ̃(m))) and h(m)σ]Y (h(τ̃(m)) = 1 for allm ∈ ωM∩M , and such that the varieties
(X,σX) and (X[Y,D′], σX[Y,D′]) are (T, τ)-equivariantly isomorphic. Consider a : Γ → G defined
by aid : m 7→ 1 ∈ C(Y )∗ and aγ : m 7→ h(m). By construction, a is a cocycle. Since H1(Γ, G) = {1},
the cocycle b : Γ→ G defined by bid = bγ : m 7→ 1 ∈ C(Y )∗ is equivalent to a, so there exists g ∈ G
such that h(m) = g−1(m)σ]Y (g(τ̃(m))). Let m ∈ ωM ∩M , then:

σ∗Y (D(m)) = D(τ̃(m)) + divY (h(τ̃(m))) = D(τ̃(m)) + σ∗Y divY (g(m))− divY (g(τ̃(m)))

⇐⇒ σ∗Y (D(m)− divY (g(m))) = D(τ̃(m))− divY (g(τ̃(m))).
So, if D′ is the pp-divisor defined by D′(m) := D(m) − divY (g(m)), then σ∗Y (D′(m)) = D′(τ̃(m))
and theM -graded algebras A[Y,D] and A[Y,D′] are isomorphic with respect to σ]X[Y,D] and σ

]
X[Y,D′]

(see the diagram of Remark 4.7 with D1 = D, h1 = h, D2 = D′ and h2 = 1). Hence the varieties
(X,σX) and (X[Y,D′], σX[Y,D′]) are (T, τ)-equivariantly isomorphic. �

Remark 4.9. The converse of Corollary 4.8 (ii) is false; see Example 5.4.

We provide some situations with trivial Galois cohomology set making it possible to apply
Corollary 4.8 to simplify the Altmann-Hausen presentation. Let L/K be a quadratic extension and
denote by {ϕid, ϕγ} the Galois group Gal(L/K).

Lemma 4.10. Let M be a rank n lattice and let Gn := Homgr(M,L∗). If Gal(L/K) acts on Gn
by γ ? f := ϕγ ◦ f , then H1(Gal(L/K), Gn) = {1}.

Proof. We prove this result by induction on n. Let n = 1, then G1 ∼= L∗. The Galois group
Gal(L/K) acts on G1 ∼= L∗ and this action comes from the Γ-action on L defined by γ · z = ϕγ(z).
By Hilbert’s theorem 90, H1(Gal(L/K), G1) = {1}. Let n ≥ 1 and assume that the Lemma 4.10 is
true for this fixed n. We have a Gal(L/K)-equivariant short exact sequence of Gal(L/K)-groups:

1 Gn Gn+1 G1 1Ψ Ψ′

with Ψ(f) : Zn ⊕ Z → L∗, (k1, . . . , kn, k) 7→ f(k1, . . . , kn) and Ψ′(g) : Z → L∗, k 7→ g(0, . . . , 0, k),
where f ∈ Gn and g ∈ Gn+1. This induces an exact sequence in Galois cohomology:

1 G
Gal(L/K)
n G

Gal(L/K)
n+1 G

Gal(L/K)
1 H1(Gal(L/K), Gn) H1(Gal(L/K), Gn+1) H1(Gal(L/K), G1)

By induction, H1(Gal(L/K), Gn) = {1} and H1(Gal(L/K), G1) = {1}. Therefore,

H1(Gal(L/K), Gn+1) = {1}.

�

Lemma 4.11. Let M := M0⊕M0, where M0 ∼= Zn, and let ρ := Γ→ GL(M) be the representation
which exchanges the two factors. Let G = Homgr(M,L∗) be endowed with the Γ-action defined by
γ ? f := ϕγ ◦ f ◦ ρ(γ−1), Then H1(Γ, G) = {1}.

Proof. A cocycle is uniquely determined by a homomorphism h = aγ : M → L∗ which satisfies
h(m,m′)ϕγ(h(m′,m)) = 1 (the constant homomorphism) for every (m,m′) ∈ M = M0 ⊕ M0.
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In particular, we have ϕγ(h(−m′, 0))h(0,−m′) = 1, hence ϕγ(h(−m′, 0)) = h(0,m′). Now let
f : M → L∗ be the homomorphism defined by f(m,m′) = h(−m, 0). Then, we have:

f−1(m,m′)(γ ? f)(m,m′) = h(m, 0)ϕγ(h(−m′, 0)) = h(m, 0)h(0,m′) = h(m,m′).
Hence a is equivalent to the cocycle Γ→ G, γ 7→ 1, and so H1(Γ, G) = {1}. �

Lemma 4.12. Let M := M1⊕M0⊕M0, where M1 ∼= Zp and M0 ∼= Zq, and let ρ := ρ1× ρ0 : Γ→
GL(M) be the representation such that ρ1 is the identity on M1 and ρ0 exchanges the two factors on
M0⊕M0. Let G = Homgr(M,L∗) be endowed with the Γ-action defined by γ ? f := ϕγ ◦ f ◦ ρ(γ−1).
Then H1(Γ, G) = {1}.

Proof. Denote G1 := Homgr(M1,L∗) and G0 := Homgr(M0 ⊕M0,L∗). We have a Γ-equivariant
short exact sequence of groups:

1 G1 G G0 1

We obtain an exact sequence in Galois cohomology:

1 GΓ
1 GΓ GΓ

0 H1(Γ, G1) H1(Γ, G) H1(Γ, G0)

By Lemma 4.10 and Lemma 4.11, we have H1(Γ, G1) = {1} and H1(Γ, Gq) = {1}. Hence
H1(Γ, G) = {1}.

�

A consequence of the Lemma 4.12 is the following proposition:

Proposition 4.13. Fix a real torus (Gnm,C, τ) where τ = τp0 × τ q2 and n = p + 2q. Let M :=
Homgr(Gnm,C,Gm,C).
(i) Let (Y, σY ) be a normal semi-projective variety. Let ωN be a pointed cone in NQ and D be an

ωN -pp divisor on Y . If
∀m ∈ ω∨N ∩M, σ∗Y (D(m)) = D(τ̃(m)), (3)

then there exists an R-structure σX[Y,D] on the affine variety X[Y,D] such that (Gnm,C, τ) acts
on (X[Y,D], σX[Y,D]).

(ii) Let (X,σX) be an affine variety endowed with an action of (Gnm,C, τ) of weight cone ωM ⊂MQ,
and let ωN be the cone in N dual to ωM . There exists a semi-projective variety (Y, σY ) and an
ωN -pp divisor D on Y such that

∀m ∈ ωM ∩M, σ∗Y (D(m)) = D(τ̃(m)),
and such that the varieties (X,σX) and (X[Y,D′], σX[Y,D′]) are (Gnm,C, τ)-equivariantly isomor-
phic.

For a complexity one quasi-split (T, τ)-action on an affine R-variety (X,σ) (i.e Dim(T) =
Dim(X)− 1), we recover the real version of Langlois’ result in [12] about quasi-split torus actions
on varieties of complexity one over an arbitrary field.

4.4. Some one-to-one correspondence. The two main results (Theorem 4.3 and 4.6) establish
correspondences between real affine varieties endowed with a real torus action and triples (Y,D, h).
In this section, we focus on this correspondence. In general, there is no one-to-one correspondence
between (T, τ)-varieties and triple (Y,D, h). However, Altmann and Hausen define the notion of
minimal pp-divisor in [2, Section 8] that leads us to the following result:

Theorem 4.14. Let (T, τ) be a real torus and let M := Homgr(T,Gm,C). Let ωN ⊂ NQ (resp.
ω′N ⊂ NQ) be a pointed cone, let (Y, σY ) (resp. (Y ′, σ′Y )) be a normal semi projective variety,
D ∈ PPDivQ(Y, ωN ) (resp. D′ ∈ PPDivQ(Y ′, ω′N )) be a minimal pp-divisor and h : ω∨N∩M → C(Y )
be a monoid morphism such that:

∀m ∈ ω∨N ∩M, σ∗Y (D(m)) = D(τ̃(m)) + divY (h(τ̃(m))) and h(m)σ]Y (h(τ̃(m))) = 1,
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(resp. h′ : ωN ′∨∩M → C(Y ′)). The affine R-varieties (X[Y,D], σX[Y,D]) and (X[Y ′,D′], σX[Y ′,D′])
are (T, τ)-isomorphic if and only if the following holds:
(i) there exists an isomorphism ψ : (Y, σY )→ (Y ′, σ′Y );
(ii) there exists a lattice automorphism L : N → N such that L ◦ τ̂ = τ̂ ◦ L;
(iii) there exists a monoid morphism g : M → C(Y );
(iv) for all m ∈ ωM ∩M , ψ∗(D′(m)) = D(L∗(m)) + divY (g(m));

(v) for all m ∈ ωM ∩M , σY
](g(τ̃(m)))
g(m) = ψ](h(m))

h′(L∗(m)) (i.e the cocycles defined by h′ ◦L∗ and ψ] ◦h

are equivalent).

Proof. By [2, Theorem 8.8], the affine C-varieties X[Y,D] and X[Y ′,D′] are T-isomorphic if and
only if the following holds:
(i) there exists an isomorphism ψ : Y ′ → Y ;
(ii) there exists a lattice automorphism L : N → N ;
(iii) there exists a monoid morphism g : M → C(Y ′);
(iv) for all m ∈ ωM ∩M , ψ∗(D′(m)) = D(L∗(m)) + divY (g(m));
The morphisms ψ and L induces a T-equivariant isomorphism of graded algebras:

Ψ : A[Y,D]→ A[Y ′, D′], fXm 7→ ψ](f)g(m)XL∗(m).

Therefore the diagram

A[Y,D] A[Y ′,D′]

A[Y,D] A[Y ′,D′]

Ψ

σ]Y σ]Y
′

Ψ

commutes if and only for all m ∈ ωM ∩M , σY
](g(τ̃(m)))
g(m) = ψ](h(m))

h′(L∗(m)) . �

5. Examples

5.1. Split real torus actions on normal affine R-varieties. We describe actions of the real
split torus Gnm,R on affine R-varieties. By definition, a Gnm,R-action on an R-variety (X,σX) is an
action of the real torus (Gnm,C, τ

×n
0 ) on (X,σX). Fix a real torus Gnm,R = (Gnm,C, τ

×n
0 ) and let

M := Homgr(Gnm,C,Gm,C). The condition (3) of Proposition 4.13 becomes:
∀m ∈ ωM ∩M, σY

∗(D(m)) = D(m).

Example 5.1. We pursue Example 2.22. In the case of a Gm,R-action, the sequence obtained from
the inclusion (X,σ) ↪→ (AnC, σ′) of Proposition 4.1 does not always have a Γ-equivariant section.
Indeed, consider the affine variety (A2

C, σ), where σ(x, y) = (y, x). Note that the torus (Gm,C, τ0)
acts on (A2

C, σ) by t · (x, y) = (tx, ty). Then, we have the following split short exact sequence

1 Gm,C G2
m,C Gm,C 1

with Gm,C → G2
m,C, t 7→ (t, t) and G2

m,C → Gm,C, (s, t) 7→ s/t. We obtain the diagrams of Remark
2.8 with M ′ = Z2, M = Z, MY = Z, and with the following lattice homomorphisms:

F ∗ :=
[
1 1

]
; P ∗ :=

[
1
−1

]
; τ̃ ′ :=

[
0 1
1 0

]
; τ̃Y :=

[
−1
]
; τ̃ =

[
1
]
.

We can show that there is no Γ-equivariant section s∗ : M → Z2. Indeed, note that if such a
section exists, we obtain Gm,R × S1 ∼= RC/R(Gm,C), which is false (see Proposition 2.7). Let

s∗ :=
[
0
1

]
be a section. Then, an Altmann-Hausen presentation of the Gm,R-action on (A2

C, σ) is:
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• P1 = A1
Cv ∪ {∞};

• σY : v 7→ v −1;
• D := [1,+∞[⊗{∞};
• h := w = x/y.

Now we give a (Γ×Gm,C)-equivariant inclusion (X,σ) ↪→ (AnC, σ′) which admits a Γ-equivariant
section. First, note that A2

C
∼= Spec(C[x, y, z]/(x + y − z)) ⊂ A3

C, where the closed embedding is
given by:

A2
C → A3

C, (x, y) 7→ (x, y, x+ y).
Consider the action of Gm,C on A3

C defined by t · (x, y, z) = (tx, ty, tz). This action is obtained from
the inclusion:

Gm,C → G3
m,C, t 7→ (t, t, t).

Consider the R-group structure on G3
m,C defined by σ′(t1, t2, t3) = (t2, t1, t3). The closed immersion

A2
C
∼= Spec(C[x, y, z]/(x+y−z)) ⊂ A3

C is (Γ×Gm,C)-equivariant. We obtain the diagrams of Remark
2.8 with M ′ = Z3, M = Z, MY = Z2, and with the following lattice homomorphisms:

F ∗ :=
[
1 1 1

]
; P ∗ :=

[
1 0
0 1

−1 −1

]
; τ̃ ′ :=

[
0 1 0
1 0 0
0 0 1

]
; τ̃Y :=

[
0 1
1 0

]
; s∗ :=

[
0
0
1

]
.

The section s∗ is Γ-equivariant. An Altmann-Hausen presentation of the Gm,R-action on
(A3

C, σ
′) is given by:
• Y := P2 = U1 ∪ U2 ∪ U3, where

U1 = Spec(C[v1, w1]), U2 = Spec(C[v2, w2]), and U3 = Spec(C[v3, w3]),
with gluing morphism obtained from (v1 = x/z, w1 = y/z), (v2 = y/x,w2 = z/x) and
(v3 = z/y, w3 = x/y);

• σY is the R-structure exchanging x and y and fixing z;
• D := [1,+∞[⊗D, where D

∣∣
U1

= 0, D
∣∣
U2

= {w2 = 0} and D
∣∣
U3

= {v3 = 0}; and
• h := 1.

We deduce from this an Altmann-Hausen presentation of the Gm,R-action on (Spec(C[x, y, z]/(x+
y − z)), σ′):

• YX := U1X ∪ U2X ∪ U3X ∼= P1, where
U1X = Spec(C[v1, w1]/(v1 + w1 − 1)), U2X = Spec(C[v2, w2])/(v2 − w2 + 1),

and U3X = Spec(C[v3, w3]/(v3 − w3 − 1));
• σYX

= σY
∣∣
X
;

• DX := [1,+∞[⊗D, where D
∣∣
U1

= 0, D
∣∣
U2

= {(1, 0)} and D
∣∣
U3

= {(0, 1)}; and
• hX := 1.

5.2. Weil restriction actions on normal affine R-varieties. By definition, a RC/R(Gm,C)-
action on a real algebraic variety (X,σX) is an action of the real torus (Gm,C, τ2) on (X,σX). Fix
a real torus (G2

m,C, τ2). Let M := Homgr(G2
m,C,Gm,C) and N its dual lattice. The condition (3) of

Proposition 4.13 becomes:
∀m ∈ ωM ∩M, σY

∗(D(m)) = D(τ̃2(m)).

Example 5.2. The sequences of Example 4.2 admit a Γ-equivariant section s : N ′ → N defined
by

s :=
[
1 0 0
0 1 0

]
An Altmann-Hausen presentation of the (G2

m,C, τ2)-action on (A3
C, σ

′) is given by

((Y, σY ),D, h),
where (see Example 4.2):

• Y := P1 = A1
C ∪ {∞};

• σY is the complex conjugation on the coordinates;
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• D := ∆⊗ {∞}; and
• h := 1.

Example 5.3. We give an Altmann-Hausen presentation of the G2
m,C-action on A4

C introduced
in Example 2.14. Using toric downgrading results of [2, §11], we obtain the presentation of the
G2
m,C-action on X. Consider the immersion T := G2

m,C ↪→ G4
m,C, (s, t) 7→ (s, t, st2, s2t). We denote

TY := G4
m,C/T, M := Homgr(T,Gm,C), M ′ := Homgr(G4

m,C,Gm,C) and MY := Homgr(TY ,Gm,C).
Then, we have the split short exact sequences of Remark 2.8 with:

F ∗ :=
[
1 0 1 2
0 1 2 1

]
; P ∗ :=


−1 −2
−2 −1
1 0
0 1

; τ̃ ′ :=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

; τ̃Y = τ̃ :=
[
0 1
1 0

]
.

The section s : N ′ → N defined by s :=
[
1 0 0 0
0 1 0 0

]
is Γ-equivariant. Let Y be the toric

variety defined by the following fan obtained from P (see [2, §11] for details):

−2 −1 1

−2

−1

1

v1

v2

v3

v4

Since this fan is stable under the lattice involution τ̂Y , the R-group structure τY extends to an
R-structure σY on Y . Let D be the divisor defined in Example 3.6, where D1, . . . , D4 are the toric
divisors obtained from the rays v1, . . . , v4 respectively.

An Altmann-Hausen presentation of the (G2
m,C, τ2)-action on (A4

C, σ
′) is given by ((Y, σY ),D, h =

1). An Altmann-Hausen presentation of the (G2
m,C, τ2)-action on (X,σ) is given by ((YX , σYX

),DX , hX),
where:

• YX is the closure of the image of G4
m,C ∩X in Y ;

• DX := ∆3 ⊗D3 ∩ YX + ∆4 ⊗D4 ∩ YX ;
• σYX

= σY
∣∣
YX

; and
• hX := 1.

5.3. Circles actions on normal affine R-varieties. By definition, a S1-action on a algebraic
R-variety (X,σX) is an action of the torus (Gm,C, τ1) on (X,σX). Note that Gm,C acts on X and
the algebra C[X] is graded by M ∼= Z. By [6, Lemma 1.7], C[X]m 6= 0 for all m ∈M , so the weight
cone of this action is ωM := MQ.

In this case, the pair (D, h) on the quotient (Y, σY ) mentioned in Theorem 4.3 (ii) consists
of a proper polyhedral divisor D =

∑
[ai, bi]⊗Di and a Γ-invariant rational function h on Y such

that σ∗Y (D(m)) = D(−m) + divY (h−m) for all m ∈M (we recover [6, Theorem 2.7]).
In the case of S1-actions, we do not have H1(Γ,C(Y )∗) = {1}. Indeed, in contrast to the split

case, we cannot apply Hilbert’s theorem 90 because the action defined on C(Y )∗ does not extend
to an action on the field C(Y ) (see the proof of Lemma 4.10).

Let Y = Spec(C) endowed with the complex conjugation, and let G := Homgr(Z,C(Y )∗) ∼=
Homgr(Z,C∗) ∼= C∗. The Γ-action on G ∼= C∗ is given by γ ?z := z̄ −1. A cocycle is thus a complex
number z ∈ C∗ such that zz̄ −1 = 1, that is a real number. This cocycle is equivalent to 1 ∈ C∗ if
there exists w ∈ G ∼= C∗ such that z = w−1w̄ −1 =|w|−2> 0. Then, H1(Γ,C∗) ∼= {±1}.

Example 5.4. (See [6, Proposition 3.1]). There are only two R-forms of Gm,C compatible with an
S1-action: the real circle X1 = S1 and X−1 = Spec(R[x, y]/(x2+y2+1)). An R-structure associated
to X1 is σ1 := τ1 : Gm,C → Gm,C, z 7→ z −1 and an R-structure associated to X−1 is σ−1 : Gm,C →
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Gm,C, z 7→ −z −1. Consider the action by translation µ : Gm,C × Gm,C → Gm,C, (t, x) 7→ tx. The
varieties X1 and X−1 are endowed with an S1-action since the following diagram commutes for
i ∈ {−1, 1}:

Gm,C ×Gm,C Gm,C

Gm,C ×Gm,C Gm,C

µ

τ1 × σi σi

µ

The R-variety (Y = Spec(C), σY ), where σY is the complex conjugation, is a real Altmann-Hausen
quotient of both X1 and X−1.

A pair (D1, h1) on Y consists of the trivial divisor and the real number h1 = 1 ∈ C(Y )∗ = C∗.
Note however that H1(Γ,C∗) 6= {1}.

A pair (D−1, h−1) on Y consists of the trivial divisor and the real number h−1 = −1 ∈
C(Y )∗ = C∗. Note that we cannot find a complex number g ∈ C(Y )∗ such that the cocycle
h−1 satisfy h−1 = gḡ, so we cannot find a presentation where the Γ-invariant rational function h
mentioned in Theorem 4.6 is equal to 1.
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