Photometric 3D-reconstruction

Yvain QUÉAU

CNRS researcher

GREYC laboratory Normandie Univ, UNICAEN, ENSICAEN, CNRS Caen, France

yvain.queau@ensicaen.fr

QCAV 2021 May 12th, 2021

About me

- 2015: PhD in computer vision in Toulouse
- Since 2018: CNRS researcher in Caen

Aim of the talk

How to obtain highly detailed 3D-models of the world ?

Photometric 3D-reconstruction of the Bayeux Tapestry (11th century, wool strings on linen)

Yvain QUÉAU

Aim of the talk

How to obtain highly detailed 3D-models of the world ?

Photometric 3D-reconstruction of a 50 euro cent coin

Outline

1 Introduction to photometric 3D-reconstruction

2 Shape-from-shading

3 Photometric stereo

4 The Inclusive Museum Guide project

Outline

1 Introduction to photometric 3D-reconstruction

2 Shape-from-shading

3 Photometric stereo

4 The Inclusive Museum Guide project

Photometric 3D-reconstruction as an inverse problem

Goal: invert the radiance function \mathcal{R} to recover the shape z (and, possibly, lighting ℓ and reflectance ρ) of the pictured surface

Context: shape-from-X

	Geometric techniques	Photometric techniques
Single image	Structured light	Shape-from-shading
	Shape-from-shadows	
	Shape-from-contours	
	Shape-from-texture	
	Shape-from-template	
Multi-images	Structure-from-motion	Photometric stereo
	Stereopsis	Shape-from-polarisation
	Shape-from-silhouettes	
	Shape-from-focus	

Geometric techniques aim at identifying and analysing features. This presentation rather focuses on two photometric techniques (shape-from-shading and photometric stereo), which aim at inverting a physics-based image formation model.

Geometric techniques

Mature workflows based on structure-from-motion and multi-view stereo are available, e.g. Alice Vision's Meshroom:

Limitations:

- May miss thin structures
- Only estimate shape, not reflectance

3D-scanning

3D-scanning = estimation of shape and color

Image

Reflectance

3D-model

(a)

- Geometric techniques (e.g. SfM, MVS) only recover shape (no color estimation)
- Photometric techniques (e.g., shape-from-shading, photometric stereo), which are based on inverting the image formation model, recover both (\approx inverse rendering)

Photometric techniques

Top-performing for the recovery of very thin structures Example: close-up on a 10 euros banknote

Photometric 3D-reconstruction =

Shape analysis through *luminous quantities measurement* (photo-metry), by reverting the image formation process

Yvain QuÉAU

Photometric techniques

Top-performing for the recovery of very thin structures Example: close-up on a 5 euros banknote

Digital cameras as luminance measurement devices

Consider a pixel *p* conjugate to a 3D-point *x* on the surface:

- The measured brightness (irradiance) *I(p)* is proportional (up to thermal noise, saturation, etc.) to the scene's luminance *L(x)*
- The scene's luminance L(x) is a function \mathcal{R} of shape (*z*), reflectance (ρ) and lighting (ℓ)

Forward image formation model

Considering all incident light directions $\omega \in \mathcal{H}(x) \subset \mathbb{S}^2$ yields the celebrated *rendering equation*:

$$I(\boldsymbol{p}) = \mathcal{R}(\boldsymbol{z}, \rho, \boldsymbol{\ell}) = \int_{\omega \in \mathcal{H}(\boldsymbol{x})} \rho \, \phi_{\omega} \max\{0, \underbrace{\mathbf{s}_{\omega} \cdot \mathbf{n}(\boldsymbol{z})}_{\text{shading}}\} d\omega$$

with **n** the surface normal at x, which characterizes the shape z

3D-reconstruction \approx Inverse rendering: $z = \mathcal{R}^{-1}(I)$

Photometric 3D-reconstruction

Yvain QuÉAU

General inverse problem

$$\mathbf{x}_{\mathbf{n}(z)}$$

$$I(\boldsymbol{p}) = \mathcal{R}(\boldsymbol{z}, \rho, \boldsymbol{\ell}) = \int_{\omega \in \mathcal{H}(\boldsymbol{x})} \rho \, \phi_{\omega} \max\{\mathbf{0}, \mathbf{s}_{\omega} \cdot \mathbf{n}(\boldsymbol{z})\} \mathrm{d}\omega$$

 \rightarrow Inverting this image formation model i.e., computing \mathcal{R}^{-1} , allows the estimation of the surface shape (characterized here by the normals $\mathbf{n}(z)$) and its material (characterized here by the reflectance ρ).

Simplifying assumptions

In general, we need to simplify the forward model

$$I(p) = \mathcal{R}(z, \rho, \ell) = \int_{\omega \in \mathcal{H}(x)} \rho \, \phi_{\omega} \max\{0, \mathbf{s}_{\omega} \cdot \mathbf{n}(z)\} \mathrm{d}\omega$$

because of:

- the integral over all lighting directions
- the complexity of the function ρ (BRDF)

For simplicity, we often (but not always) assume that:

- There is a single, infinitely far away light source \rightarrow integrand is a Dirac and lighting is characterized by a vector $\ell \in \mathbb{R}^3$
- The surface is assumed Lambertian → reflectance is simply a map ρ : Ω → ℝ of *albedo* values

$$I(p) = \mathcal{R}(z, \rho, \boldsymbol{\ell}) = \rho \max\{\mathbf{0}, \boldsymbol{\ell} \cdot \mathbf{n}(z)\}$$

Simplified image formation model

Extending to RGB images, we obtain the following simplified image formation model:

where albedo (Lambertian reflectance) \equiv color, and shading \equiv lighting-geometry interaction.

Remark: this is the classic model used in "intrinsic image decomposition"

Credit: MIT Intrinsic Images Dataset

Simplified image formation model

Shading $S(z, \ell)$ represents lighting-geometry interaction:

where the surface normal **n** locally characterizes the surface's shape. *Shape-from-shading* aims at inverting this forward model, assuming known albedo and lighting

Outline

1 Introduction to photometric 3D-reconstruction

2 Shape-from-shading

3 Photometric stereo

4 The Inclusive Museum Guide project

Shape-from-shading: a classic ill-posed problem

Given an image $I : \Omega \subset \mathbb{R}^2 \to \mathbb{R}^m$, *Shape-from-Shading* (SfS) consists in inverting the image irradiance equation

 $I = \mathcal{R}(\mathbf{Z}, \boldsymbol{\rho}, \boldsymbol{\ell})$

with \mathcal{R} a *radiance* function depending on the unknown depth $z : \Omega \to \mathbb{R}$, surface reflectance $\rho : \Omega \to \mathbb{R}^m$, and incident lighting $\ell : \Omega \to \mathbb{S}^2$.

Simplifying assumptions

It is impossible to tell reflectance from shape and lighting !

 \rightarrow Lighting and reflectance are usually assumed to be known

Illustration of ill-posedness

Even with known reflectance ρ and lighting ℓ , shape estimation by SfS is an ill-posed inverse problem (Horn, 1970). Example: two solutions of $\mathbf{I} = \mathcal{R}(z, \rho, \ell)$ with $\mathbf{I} :=$ Lena, white reflectance ($\rho \equiv 1$) and frontal lighting ($\ell \equiv [0, 0, -1]^{\top}$):

One variational solution

Local ill-posedness in shape-from-shading

Even if ρ and ℓ are known, the normal cannot be estimated directly by inverting the forward model, because infinitely many normals, lying on a cone, are equally admittible

 \rightarrow A regularization mechanism is necessary. The most natural way to do so consists in considering a differential version of the forward model, assuming the surface is differentiable almost everywhere

Differential image formation model

Assuming orthographic projection, the scene's surface is characterized by a depth map $z : \Omega \subset \mathbb{R}^2 \to \mathbb{R}$ such that

$$\mathbf{n}(z) = \frac{1}{\sqrt{|\nabla z|^2 + 1}} \begin{bmatrix} \nabla z \\ -1 \end{bmatrix}$$

And thus we get the following nonlinear PDE in z:

$$I = \mathcal{R}(\boldsymbol{z}, \boldsymbol{\rho}, \boldsymbol{\ell}) = \frac{\boldsymbol{\rho}}{\sqrt{|\nabla \boldsymbol{z}|^2 + 1}} \langle \boldsymbol{\ell}, \begin{bmatrix} \nabla \boldsymbol{z} \\ -1 \end{bmatrix} \rangle$$

Eikonal model

An important instance of the differential model

$$I = \mathcal{R}(\boldsymbol{z}, \boldsymbol{\rho}, \boldsymbol{\ell}) = \frac{\boldsymbol{\rho}}{\sqrt{|\nabla \boldsymbol{z}|^2 + 1}} \langle \boldsymbol{\ell}, \begin{bmatrix} \nabla \boldsymbol{z} \\ -1 \end{bmatrix} \rangle$$

is that of a white surface ($\rho \equiv 1$) under frontal lighting ($\boldsymbol{\ell} = [0, 0, -1]^{\top}$). This yields the celebrated *eikonal equation*:

$$|\nabla z| = \sqrt{\frac{1}{l^2} - 1}$$

The concave/convex ambiguity

The eikonal equation

$$|\nabla z| = \sqrt{\frac{1}{l^2} - 1}$$

characterizes the gradient's magnitude, but not its sign: this is the concave/convex ambiguity:

Left: example of the 1D-surface $z = 1 - x^2$. Right: Under vertical lighting, three other solutions (amongst an infinity), which are differentiable almost everywhere, satisfy the same eikonal equation.

The concave/convex ambiguity

Humans solve the concave/convex ambiguity intuitively because we learnt that the world is mostly "convex"

A volcano in Hawaii (copyright Whitman Richards), looking like a cracter if the image is rotated by π .

Among all the solutions to the eikonal equation, it is thus reasonable to look for the "maximum" one

Eikonal shape-from-shading

Example of maximal viscosity solution estimate, on a real-world dataset:

3D-reconstruction at iteration 512

Results are reasonable, yet they could be improved by adding regularization (e.g., to ensure smoothness, or to enforce adequation to a low-resolution prior) \rightarrow **Variational methods**

Application to RGB-D sensing

Shape

RGB image

Depth image has

- noise and quantization
 - missing areas
 - coarse resolution

RGB image has

- less noise and quantization
- no missing area
- high resolution

Goal:

Combine data to get high-resolution shape

Yvain QUÉAU

Application to RGB-D sensing

Depth image

Shape RGB image

High-resolution shape

Depth image has

- noise and quantization
 - missing areas
 - coarse resolution

RGB image has

- less noise and quantization
- no missing area
- high resolution

Goal:

Combine data to get high-resolution shape

Yvain QuÉAU

Joint depth super-resolution and shape-from-shading

Given a low-resolution depth map $z_0 : \Omega_{LR} \to \mathbb{R}$, *depth* super-resolution consists in inverting a forward downsampling model

$$z_0 = Dz$$

with $z : \Omega_{HR} \to \mathbb{R}$ the (unknown) high-resolution depth, and *D* a downsampling operator

- D is not invertible: there are infinitely many ways to interpolate between two points ("high-frequency" ambiguity)
- → Among the possible interpolations, we will choose the one which is consistent with the image formation model
- The low-resolution depth will serve as prior to solve the "low-frequency" ambiguities of SfS (e.g., concave/convex)

Joint depth super-resolution and shape-from-shading

In real-world:

- albedo is rarely uniform
- lighting is rarely frontal

 \rightarrow Simultaneous estimation of high-resolution shape, *piecewise-constant* reflectance and *spherical harmonics* lighting within an energy minimization framework

Variational formulation

$$\min_{\substack{\boldsymbol{z}:\Omega_{HR}\to\mathbb{R}\\ \boldsymbol{\rho}:\Omega_{HR}\to\mathbb{R}^{3}\\ \ell\in\mathbb{R}^{4}}} \quad \left\| \boldsymbol{I}-\boldsymbol{\rho}<\ell, \begin{bmatrix} \boldsymbol{n}(\boldsymbol{z})\\ \boldsymbol{1} \end{bmatrix} > \right\|_{\ell_{2}(\Omega_{HR})}^{2} + \underbrace{\boldsymbol{\mu} \|\boldsymbol{z}_{0}-\boldsymbol{D}\boldsymbol{z}\|_{\ell_{2}(\Omega_{LR})}^{2}}_{\text{super-resolution}}$$

Here:

 \blacksquare P_1 is a minimal surface regularization term on shape:

 $P_1(z) = \|\mathrm{d}A(z)\|_{\ell_1(\Omega_{HR})}$

P₂ is a Potts regularization term on albedo:

$$P_2(\boldsymbol{\rho}) = \|\nabla \boldsymbol{\rho}\|_{\ell_0(\Omega_{HR})} = \sum_{\boldsymbol{p} \in \Omega_{HR}} \begin{cases} 0, & \text{if } |\nabla \boldsymbol{\rho}(\boldsymbol{p})|_F = 0\\ 1, & \text{otherwise} \end{cases}$$

Some results

Input depth

Input RGB

Depth estimate

Some results

Some results

Some results

Input RGB

Depth image

Albedo estimate

Depth estimate

Outline

1 Introduction to photometric 3D-reconstruction

2 Shape-from-shading

3 Photometric stereo

4 The Inclusive Museum Guide project

Photometric stereo

When no prior knowledge is available, it is hopeless to achieve a reasonable 3D-reconstruction based on SfS

Photometric stereo (Woodham, 1978) is an extension of SfS which considers multiple images of the surface, taken from the **same viewing angle** but under **varying lighting**. It can unambiguously recover geometry, and it is the only shape-from-X technique which is able to **estimate reflectance**

Well-posedness of photometric stereo

- m = 1 image (SfS), known albedo: infinitely many possible unit-length normals in each point
- **m** = 2 images, known albedo: up to two possible normals

Yvain QuÉAU

■ m ≥ 3: unique approximate solution - problem is over-constrained (thus albedo can be estimated !)

Linear photometric stereo model

Local estimation of shape and reflectance

- If: a) m ≥ 3, b) lighting vectors ℓⁱ are known, and c) they are non-coplanar,
- Vector $\mathbf{m}(\rho, \mathbf{z})$ can be estimated in each pixel,
- Then we deduce the normal **and albedo** by

$$\rho = |\mathbf{m}(\rho, z)|$$
$$\mathbf{n}(z) = \frac{\mathbf{m}(\rho, z)}{|\mathbf{m}(\rho, z)|}$$

Eventually, normals $\mathbf{n}(z)$ are *integrated* into depth z

Yvain QuÉAU

Two-stage resolution of photometric stereo

Such a pipeline can be extended to unknown or non-distant lighting, non-Lambertian reflectance, perspective camera, etc.

Outliers in photometric stereo

Real-world objects rarely meet the linear Lambertian model:

- self-shadows
- cast-shadows
- inter-reflections
- kinks and discontinuities.
- slight camera displacements...

Bear

Cat

Pot1

Reading

The "Diligent" image dataset

Handling outliers

Outliers to the Lambertian model can be taken into account either by:

- Considering a more evolved reflectance model, e.g., Cook-Torrance (yields numerical difficulties)
- 2) Training on a large dataset (current state-of-the-art)
- Adopting a robust solving strategy (very efficient if outliers are "sparse"). E.g.:

$$\min_{\boldsymbol{Z},\rho} \sum_{i=1}^{m} \iint_{\boldsymbol{X}\in\Omega} \Phi\left(\left| \rho(\boldsymbol{X}) \boldsymbol{\ell}^{i} \cdot \left[\nabla \boldsymbol{Z}(\boldsymbol{X})^{\top}, -1 \right]^{\top} - \boldsymbol{I}^{i}(\boldsymbol{X}) \right| \right) \mathrm{d}\boldsymbol{X}$$

with ϕ a robust estimator (1-norm, Cauchy, etc.)

3D-reconstruction of the Diligent dataset

3D-reconstruction of metallic coins

1 euro (Italy)

50 cents (Spain)

3D-reconstructions

1 yuan (China)

3D-reconstructions of the human skin

3D-reconstruction of faces

Reaching pixel accuracy

Since the camera is still, we can get one depth and albedo estimate per pixel \rightarrow the only limitation is the camera resolution – in theory

Yet, triggering the camera may induce slight displacements (up to a few pixels) and cause geometry hallucination. \Rightarrow Images should be registered using, e.g., low-rank :

slightly misaligned images with varying lighting

registered with lowrr

Reaching pixel accuracy

Yvain QUÉAU

Effect of image registration on 3D-reconstruction by photometric stereo

Reaching pixel accuracy

Yvain QUÉAU

3D-reconstruction of the Bayeux Tapestry from a hand-held image sequence

Outline

1 Introduction to photometric 3D-reconstruction

2 Shape-from-shading

3 Photometric stereo

4 The Inclusive Museum Guide project

Context of the project

- Goal: Make visual artworks accessible to visually-impaired people ("inclusive" approach)
- Funding: Normandy region and ANR projects "Inclusive Museum Guide" (2019-2024)
- Partners: Caen univ., Rouen univ., CNRS, Bayeux museum, Royal Holloway univ., Westminster univ.

Bayeux tapestry

70m-long medieval wool and linen *embrodery* telling the conquest of England by William, Duke of Normandy, in 1066

Bayeux tapestry: Edward

Story starts with the death of old king Edward...

Bayeux tapestry: William

Edward had chosen his cousin William for his succession on the British throne

Bayeux tapestry: Harold

Yet Edward's brother-in-law Harold took the throne

Bayeux tapestry: the Northmen armada

William's armada crossed the Channel

Bayeux tapestry: the battle of Hastings

... and William defeated Harold during the battle of Hastings, hence becoming King of England

The IMG project

Question: how can we make visually-impaired people "feel" such artifacts, knowing that

they cannot see it

they cannot touch it (the tapestry is protected by glass)

 \rightarrow Re-think the way we access visual artworks: audio-descriptions, navigation tools, tactile representations,

Towards a tactile representation of visual artworks

Goal: extract micro-geometry of the scene ("texture"), in view of 3D-printing

Challenges: no direct access (behind glass), fragility to light exposure, thinness of the wool strings...

Campaign preparation: handling the glass

Proof of concept experiment by M. Pizenberg during lockdown # 1: self-made embrodery behind a glass, with sticked spheres for calibrating a moving flash light source

Campaign preparation: handling the glass

Captured images

3D-reconstruction

Fine-scale structures are revealed. Robust photometric stereo algorithms are able to handle reflections and shadows induced by the glass

Campaign preparation: limiting light

The tapestry is fragile, so we need to limit the luminous flux we will project onto it \rightarrow very short camera exposure time of 1/200s, and use of a synchronized flash light source

Campaign preparation: measuring light

To get access to the tapestry, we had to obtain agreement from authorities, announcing how much light would be projected \rightarrow need to measure the luminous flux emitted by the flash, by calibrating the camera response and using a lux-meter

Instant light intensity measured by a lux-meter, to verify the sensor linearity

Campaign preparation: measuring light

Images of a Lambertian plane at 60, 150 and 270 cm from flash

Campaign preparation: measuring light

→ total surfacic energy at 1*m*, for 12 shots per scene: 312 lux.s (\approx 6 sec. of the already in-place lighting system) ⇒ acceptable for authorities

Data acquisition

Selection of 12 parts of the tapestry for digitization, and in-situ image acquisition in January 2021:

Acquisition of the death of Harold sequence

The death of Harold sequence

Acquired data and 3D-reconstruction:

The death of Harold sequence

Acquired data and 3D-reconstruction:

The death of Harold sequence

Acquired data and 3D-reconstruction:

Yvain QUÉAU
The death of Harold sequence

Acquired data and 3D-reconstruction:

Photometric 3D-reconstruction

The Mont St-Michel sequence

References

- Durou, J.-D., Falcone, M., Quéau, Y., and Tozza, S. Advances in Photometric 3D-Reconstruction. Springer, 2020.
- Haefner, B., Peng, S., Verma, A., Quéau, Y., and Cremers, D. "Photometric Depth Super-Resolution". In: *IEEE Trans*actions on Pattern Analysis and Machine Intelligence (PAMI) (2020).
- Quéau, Y., Wu, T., Durou, J.-D., Lauze, F., and Cremers, D. "A Non-Convex Variational Approach to Photometric Stereo under Inaccurate Lighting". In: *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*. 2017.
- Pizenberg, M., Quéau, Y., and Elmoataz, A. "Low-rank registration of images captured under unknown, varying lighting". In: International Conference on Scale Space and Variational Methods in Computer Vision (SSVM). 2021.

Thank you for your attention !

ご清聴ありがとうございました

Yvain QUÉAU