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Abstract  12 

Coinage production of ancient powers such as Athens and Rome is usually inferred from die statistics of 13 

monetary issues. The present work applies a Kaplan-Meier analysis of resistance to failure to 29 sets of 14 

well-documented monetary issues. The failure rate function assumes a U-shaped form known in 15 

reliability engineering literature as the ‘bathtub curve’. With the geometric distribution of die failure 16 

being demonstrably violated for a large fraction of the data sets, the die distribution of each data set was 17 

instead fitted by a mixture of two Weibull distributions corresponding to two failure regimes. Dies can 18 

be divided into bad dies, failing early for various reasons, and good dies, failing late by fatigue. The 19 

dual populations reflect the efforts of the smiths at the time to produce bronze dies that would meet two 20 

conflicting needs: the reduction of premature die failure (= infant mortality) and the limitation of ductile 21 

deformation during minting. The variable proportions of the two populations suggest that not all 22 

workshops had fully mastered die technology. Because of the dichotomy induced by contrasting 23 

mechanical properties, corrections for missing dies based on singletons and causes of die failure must be 24 

carefully assessed for each data set. 25 

1. Introduction  26 

Quantifying monetary production in ancient societies that left little or no minting accounts, or imprecise 27 

and biased citations, is crucial to understanding ancient economies and how fast societies adopted 28 

minted bullion as a mean of payment (= monetization). A common strategy is a three-step process. First, 29 

the number of original dies, one of the two metallic pieces used to strike a coin, one for each side of 30 

the coin, is determined from the corpus of coins available for a single issue. Generally, facing-up 31 

(obverse) dies are more robust that facing-down (reverse) dies. Second, a correction is made to account 32 

for the missing dies, i.e., those that are not present in the corpus. More than 20 statistical methods have 33 

been proposed for this task, the results of which are generally considered unproblematic as long as the 34 

ratio of number of coins/number of dies (n/d) is higher than 3 (Callataÿ, 1995). This is the case for most 35 

ancient Greek coinages, for which (n/d) commonly exceeds 10. Third, the original number of dies is 36 

multiplied by what is considered the average production of a die, which is a much more contentious 37 
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issue. Whenever comparisons between the number of dies and the number of coins found in hoards are 38 

possible, relatively simple first-order rules hold up: dies used to mint large silver coins were more 39 

productive than dies used for smaller denominations, while dies used for striking bronze coins were 40 

wearing out or failing faster than those used to strike silver coins (Sellwood, 1963; Faucher, 2009, 2011, 41 

2013). This is the case of coins bearing the name of Alexander the Great; the cistophori minted in 42 

multiple localities by the Attalids, kings of Pergamon (282-128 B.C.E.) (Callataÿ, 2013; Meadow, 43 

2013); and the various issues of the Roman Republic coinage. 44 

 45 

Now, what is the average production of a die? Explicitly written sources relevant to this question are 46 

nearly non-existent (Kinns, 1983). In contrast, a dozen favorable cases exist for which extrapolated 47 

volumes of struck coins can be placed into precisely dated contexts (Callataÿ, 1995). The results 48 

provided by this rare evidence appear coherent. Attempts of striking coins under conditions mimicking 49 

those of ancient mints also have been made but so far reliable results are few (Sellwood, 1963; Faucher, 50 

2009, 2011, 2013). While these experiments are of interest in terms of metallurgy and thus relevant to 51 

some extent to the issues discussed below, in particular that of the most defective dies, they may not 52 

inform on highly productive dies (Buttrey and Cooper, 1994). An alternative promising approach is 53 

finite element modeling of minting, which has the advantage of restoring the distribution of stress and 54 

strain during coin striking (Brekelmans et al., 1988; Alexandrino et al., 2018,2019). 55 

 56 

The monetary flux out of a particular mint is reflected by the production of its issues. Production is 57 

modulated not only by the number of active dies but also by their effective yield. The average 58 

production of a population of dies clearly depends on how these dies behave once put into production. . 59 

It seems pointless to spend resources crafting dies that would fail before they met with some sort of 60 

specifications. Although the cost of producing dies is unknown, it is clear that over time their designs 61 

became increasingly sophisticated and that the technology was improved to enhance productivity, which 62 

must have come with a cost. Questions are: how important is premature failure, also known as burn-out 63 

or infant mortality? In other words, many dies with a small production, while prominent in die studies, 64 

had a small contribution to the entire volume. What about the average die with an average production? 65 

Experiments are useful (Sellwood, 1963; Faucher et al., 2009, 2011, 2013) but of very limited extent, 66 

which render them somewhat unreliable for deriving average die productivities. A critical matter is 67 

whether the overall volume of a given issue may be dominated by particularly sturdy dies with a very 68 

large production. These questions have been variously addressed in the past. It was first common 69 

practice to represent a given die distribution by the symmetric normal approximation to a binomial 70 

distribution (Good, 1953; Good and Toulmin, 1956; Carter and Moore, 1980) (Fig. 1, curve A). This 71 

symmetrical model was, however, shown to be unacceptable for a number of reasons and, in the 1980s, 72 

the negative binomial distribution, a variant of the Poisson distribution, with a negative asymmetric 73 

curve (Fig. 1, curve B), then a gamma distribution, became the favored representations (Carter, 1983; 74 



Esty and Carter, 1992). Around the same time, Callataÿ (1987), after scrutinizing hundreds of data sets 75 

from ancient Greece and Rome, focused on those with large numbers of infrequent dies (singletons, 76 

doubletons, etc.), and proposed a combination of a negative binomial distribution accounting for infant 77 

mortality with a binomial distribution accounting for the surviving specimens (Fig. 1, curve C). 78 

Callataÿ’s (1987) point was particularly important because the correction for missing dies developed by 79 

Esty (1984) and Carter (1983, 1992) critically depends on singleton frequencies. 80 

 81 

 82 

 83 

 84 

Figure 1. Different models used to account for the frequency of dies (modified from Callataÿ, 1987). 85 

(A) Normal distribution, (B) negative binomial or Poisson distribution (Esty and Carter, 1992), and (C) 86 

mixture of two distributions involving infant mortality and metal fatigue (Callataÿ, 1980, 1987). 87 

 88 

More recently, Esty (2011) assessed that both models (B), the negative binomial distribution of Carter 89 

(1980), and (C), the mixed distribution hypothesized by Callataÿ (1987), were flawed. He concluded 90 

that die statistics is best represented by the geometrical model, i.e., a constant-failure distribution 91 

indicative of a Poisson process, and derived simple analytical formulas based on die counts, singletons, 92 

and sample size to estimate the number of missing dies. The present work reassesses Esty’s (2011) 93 

assumptions and their relevance to the statistical parameters derived from the 608 data sets gathered by 94 

Callataÿ (1997, 2003) for the following reasons:  95 

1. Although these data sets represent some of the best-known samples and provide a glimpse of 96 

original die distribution, a perspective based on other mints, in particular those of the Roman 97 

Republic, would be useful. The denarii of Crepusius can be considered a sample of high quality for 98 

Roman Republican coinage because the proportion of singletons is low (Buttrey, 1976) and their 99 

coverage, i.e., the proportion of non-singletons, is high (Esty, 1986). The (n/d) ratio (number of 100 

coins/number of dies) of this data set remains in the low range of most Greek data sets.  101 

2. It has been noticed that even for the best-documented samples with (n/d) > 10 and coverage > 99% 102 

for which formulas postulate that essentially all the produced dies are known, new dies continue to 103 
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appear, enlarging the sample. Based on ten die studies, Callataÿ (1993) concluded that Carter’s 104 

(1983) formulas based on the (n/d) ratio, long dominant among numismatists for estimating the 105 

number of unobserved dies and relying on model (B) of Fig. 1, overestimates the original number 106 

of dies when the n/d ratio is < 3 and underestimates it after that point. 107 

3. The master variable of existing minting models is the time elapsed since start of production. 108 

Although some texts have carefully dealt with this variable, it depends on a number of assumptions 109 

(Carter and Carter, 1983), such as the number of anvils, human error, and work scheduling, all 110 

factors difficult to verify. 111 

4. Esty assumed the materiality of the geometric/exponential distribution and this assumption should 112 

be assessed. 113 

 114 

Even with extremely well-documented samples, singletons continue to be surprisingly numerous, which 115 

is a strong indication of high infant mortality. As shown in Fig. 2, the proportion of singletons remains 116 

large regardless of data set quality: up to 40% for a ratio (n/d) of 5, up to 30% for a ratio (n/d) of 10, and 117 

up to 15% for a ratio (n/d) of 15. The example of a single issue of drachms of the Euboean League 118 

(Callataÿ 1997: n° 147) with (n/d) > 40 and nevertheless counting more than 10% of singletons (3 out of 119 

28) is a strong caveat that a purely statistical approach to die studies is inadequate. This is the basis of 120 

the present work, which revisits the data from the combined perspective of die survival and mechanical 121 

properties of dies. The purpose of this approach is to assess the minting process using principles of 122 

reliability engineering (Billinton and Allan, 1992; Nash, 2016) to derive both the lifetime of dies and the 123 

survival rate of coins from die statistics of large issues. We will apply the theory to the die productivity 124 

of 23 issues from the Archaic and Classical Greece compiled by Callataÿ (1997, 2003), one Alexander 125 

issue from Damascus (Glenn, 2018), three Roman Republican issues abundantly discussed in the 126 

literature (e.g., Buttrey, 1976; Carter and Ross, 1992), and the Yehud issue (Callataÿ, in press) to ensure 127 

the validity and general value of the results. The 29 data sets cover a broad range of (n/d) ratios, 128 

including data sets with rather low (n/d) values, such as those of the Yehud coinage characterized by an 129 

extremely high proportion of singletons (Callataÿ, in press), as well as data sets from the numbered 130 

Roman Republican issues of Crepusius (RRC 361, Buttrey, 1976) and Censorinus (RRC 360, 131 

Debernardi et al., 2020) as an additional reference. 132 

 133 

 134 



 135 

Figure 2. Ratios of number of coins to obverse dies (n/d on the x-axis) and frequency d1/d of singleton 136 

dies (on the y-axis). Redrawn from Callataÿ (2021).  137 

 138 

Survival theory is a largely descriptive approach that uses the statistics of failure, though not of failure 139 

time because this variable is not available, but of the number of coins (yield) struck by dies used for a 140 

particular issue. The distribution of the yields among different dies or groups of dies, and in particular 141 

their scatter, offer an under-used source of information on the minting process. Survival theory is widely 142 

used in a variety of fields from engineering to medicine to identify the factors causing failure or death in 143 

order to control them. Although closely connected, the concepts ruling the mechanical properties of 144 

metals and alloys (Meyers and Chawla, 2008) are not identical and the survival models therefore will be 145 

properly set apart from each other.  146 

2. A die survival theory 147 

The tenet intrinsic to the present work is the significance of the die multiplicity scale: singletons signal 148 

dies with a smaller production than doubletons, which themselves have a smaller production than 149 

tripletons, etc. It therefore makes no difference how the coins are dispatched once produced and we can 150 

assume that the production is immediately stored and mixed in a vault where it will never be spent. 151 

Time is a variable that has pervaded publications trying to support statistical models (e.g., Carter and 152 

Moore, 1980; Carter, 1983; Callataÿ, 1987) and the difficulties of parameterizing such a vision have 153 

been reviewed multiple times (e.g., Buttrey, 1994). Time will therefore not be considered an objective 154 

control variable of coin production and will not be used for the present purpose. 155 

 156 

It will further be assumed that dies are either functional or irreparably damaged. For the purpose of 157 

illustration, we will first assume that all the coins of a given issue have been recovered. di is the number 158 



of dies, often improperly called die frequency, observed i times. Here i will be referred to as die 159 

multiplicity and is clearly a function of how many specimens in total have been recovered. For example, 160 

d1 is the number of singletons, d2the number of doubletons, d3 the number of tripletons, etc. Tables of 161 

di vs i are die histograms in which the a priori bin width is unity. d = i di is the total number of dies in 162 

the population, and fi (i) = di /d the frequency of dies with multiplicity i. The subscript i refers to 163 

numbers and fractions of dies. Fi (i) = ∑ 𝑓𝑖
𝑗=𝑖
𝑗=0 (𝑗) is the cumulated fraction of dies summed over the bins 164 

1 to i, while R (i) = 1  Fi(i) is the fraction of dies surviving at that point.  165 

 166 

Likewise, ni = i di = ifi (i) d is the number of coins in the i-th bin, n = i i di = i ni the total number of 167 

coins in the sample, and fk (i) = ni/n the coin frequency in bin i. Note that the subscript k refers to 168 

numbers and fractions of coins, not dies. The bin width is now variable and equal to ni. The total 169 

production of singletons, doubletons, and tripletons will therefore be 1d1 + 2d2 +3d3 = n1 + n2 + n3.  170 

 171 

What about failure frequency? The cumulated fraction of coins produced by the dies that struck 1, 2, or 172 

3 coins is (n1 + n2 + n3))/n = fk (1) + fk (2) + fk (3). Let us now define ri as the number of surviving dies 173 

after the i-th failure, e.g.:  174 

 175 

 𝑑 = 𝑑1 + 𝑑2 + 𝑟2 = 𝑑1 + 𝑑2 + 𝑑3 + 𝑟3 (1) 176 

 177 

However straightforward the relationships  178 

 179 

 di = 𝑟𝑖−1  𝑟𝑖  (2a) 180 

 fi (i) = F (i)  F (i  1)  (2b)  181 

 182 

may look, they show that di has the significance of a number of failed dies at multiplicity i.  183 

 184 

The standard ratio known as (n/d) (total number of coins/total number of dies), a characteristic index, is 185 

not homologous to a mean productivity, but has the dimension of multiplicity i. (n/d) is actually the 186 

average weighted values of multiplicity since  187 

 188 

 (n/d) = ∑ 𝑓𝑖(𝑖) 𝑖 = 𝑆𝑖 (3) 189 

 190 

where Si is the surface area beneath the histogram of die frequencies vs multiplicity. 191 

3. The failure probability function  192 

A number of useful parameters widely used in reliability engineering literature can be retrieved from the 193 

multiplicity histogram, including the failure probability function, the mean time to failure, and the total 194 



number of specimens consistent with the histogram (Bracquemond and Gaudoin, 2003; Rausand and 195 

Høyland, 2003; Nash, 2016).  196 

 197 

The function noted z(i) provides the estimate of the probability of die failure at each stroke. It is the 198 

ratio of the number of retired dies to the number of surviving dies times the number of strokes. This 199 

function is closely related to the Kaplan-Meier survival estimate widely used in medical studies (Goel et 200 

al., 2010). Taking tripletons as an example, d3 dies, out of a total of d2, fail after 3 d3 blows:  201 

 202 

 z(3) = 
No of failed dies

No of surviving dies ×number of strokes
=

𝑑3

𝑟2×3𝑑3
=

1

3𝑟2
 (4) 203 

 204 

From this equation, we can retrieve several equivalent expressions, including the standard definition of 205 

the failure function: 206 

 207 

 z(i) = 
1

𝑖𝑟𝑖−1
=

1

𝑖𝑑𝑅(𝑖−1)
=

1

𝑖𝑑(1−𝐹𝑖(𝑖)+𝑓𝑖(𝑖))
 (5) 208 

 209 

A continuous approximation for z(i) is 210 

 211 

z(i) = 
𝑑𝑖

𝑟(𝑖)×(𝑖𝑑𝑖)
=

𝑟𝑖−1−𝑟𝑖

𝑟𝑖×(𝑖𝑑𝑖)
=

𝑟𝑖−1/𝑑−𝑟𝑖/𝑑

𝑟𝑖/𝑑×(𝑖𝑑𝑖)
 (6) 212 

and 213 

 z(i) = 
𝑓𝑖(𝑖)

(1−𝐹𝑖(𝑖))×(𝑖𝑑𝑖)
≈ −

𝑑 ln(1−𝐹𝑖(𝑖))

𝑑𝑘
 (7) 214 

 215 

where k is the cumulated number of strokes. As a result, the failure probability function z(i) can be 216 

retrieved from the slope of the relationship between ln(1 − 𝐹𝑖(𝑖)) and the number of coins struck until i 217 

multiplicity ∑ 𝑛𝑙
𝑙=𝑖
𝑙=1 . The failure probability of the geometric distribution and of its continuous 218 

equivalent, the exponential distribution (random failure), is constant. 219 

 220 

The expected value of coin production per die (yield) can be defined as the weighted average of strokes 221 

per die until failure. If all the coins of the issue are available, the number of coins struck until the 𝑑𝑖 dies 222 

of multiplicity i fail is simply the sum of all the coins struck up to multiplicity of l = i. The mean 223 

number Y of coins struck until failure (apparent average die productivity) therefore is:  224 

 225 

 Y = ∑ 𝑓𝑘(𝑖)𝑖𝑖 = 𝑆𝑘 (8) 226 

 227 



where Sk is the surface area beneath the histogram of coin frequencies vs multiplicity i.  228 

4. Results  229 

Table 1 lists the basic data of the 29 issues targeted in the present study. The histogram of coin 230 

distributions among the classes of increasing multiplicity (Fig. 3) shows that not all data sets present a 231 

single peak. The abscissa in Fig. 3 are the weights fi (i) and fk (i) used to calculate (n/d) and Y, 232 

respectively, and are shifted with respect to one another. Y = Sk (tan field) is shifted with respect to (n/d) 233 

= Si (blue field) towards higher values and the field is larger. Note that, because of early failure, there is 234 

little correlation between the number of coins and the number of dies.  235 

 236 

Plots of the fraction of failed dies vs the fractional output, or coins struck (Fig. 4), show a strong 237 

deviation from the diagonal line of constant failure probability (exponential distribution of the number 238 

of coins between successive failures). Nevertheless, the semi-log plot of the die survivor function (1-239 

Fi(i)) vs k, which is the fraction of preserved coins struck ranked by increasing multiplicity (Eqn. 7) 240 

(Fig. 5a), has a sideways sigmoid form. This shape is common to all the data sets. We chose to display 241 

this plot against the fraction of preserved coins struck rather than their actual number so as to work with 242 

a common scale. The slope <1 of the logarithmic plot of ln(1 − 𝐹𝑖(𝑖)) (log of log) vs ln k (the 243 

cumulated number of coins) at low multiplicity (Fig. 5b) shows that the observed distribution of dies 244 

clearly deviates from the geometric distribution. This observation is remarkable since this distribution 245 

plays a central role in die studies (Esty and Carter 1992; Esty, 2011; Callataÿ, in press) . 246 

 247 

The failure functions z(i) were calculated in two different ways: (1) from Eqn. 5 (blue bars in Fig. 6) and 248 

(2) from the slope of the natural logarithm of the die survivor function of Fig. 2 (Eqn. 7, red lines in 249 

Fig. 6). The two estimates are consistent with each other. At low values of i, z(i) decreases, passes by a 250 

minimum, and then increases for the most productive dies, which is a nearly systematic feature of the 251 

present hazard curves. An exception is the case of Censorinus denarii, which have rather small (n/d) 252 

ratios (< 3.5). For the samples with higher (n/d) ratios, such as Syracuse tetradrachms, drachms from the 253 

Euboean League, and Bruttium denarii (Fig. 4), the negative dz/dk edge is more prominent.  254 

 255 

The apparent average productivity Y of the dies exceeds (n/d) by a factor of 1.3 to 3.4, with a value of 7 256 

for the 209-Drachms set (Table 1). This factor is unrelated to the number of dies and the number of 257 

coins, which demonstrates the quality of the data. 258 

 259 

Table 1: Characteristics of the 29 data sets used in this work. Drachm is abbreviated as ‘dr’, stater as 260 

‘stat’, and ‘den’ as denarii. 261 

 262 

Present notation set# d n (n/d) d1 Y ref. 

Numismatic notation  o n (n/d) o1   



        

1997-147-Dr-Euboea 21 28 1128 40.3 3 68.7 1 

68-Tetradr-Messana 10 30 950 31.7 1 52.6 1 

44-Didr-Gela 8 30 870 29.0 1 47.3 1 

24-Didr-Tarent 6 37 839 22.7 0 29.4 1 

1997-12-Bruttium 24 47 1000 21.3 2 27.9 2 

Tetradr-Syracuse 22 75 1544 20.6 3 32.9 1 

95-Tetradr-Syracuse 13 37 674 18.2 3 29.8 1 

15-Didr-Velia 3 20 364 18.2 1 27.8 1 

99-Decadr-Syracuse 14 24 424 17.7 1 31.7 1 

19-Didr-Tarent 4 23 388 16.9 0 21.2 1 

180-Hemidr-Pharsalos 15 28 437 15.6 4 26.3 1 

93-Tetradr-Syracuse 12 63 978 15.5 3 21.3 1 

21-Didr-Tarent 5 59 897 15.2 8 29.4 1 

26-Didr-Tarent 7 49 573 11.7 3 29.3 1 

66-Tetradr-Messana 9 58 575 9.9 3 13.2 1 

Crepusius den 27 408 3810 9.3 26 13.8 3 

6-Stat-Metapontum 1 100 924 9.2 16 15.9 1 

255-Didr-Pixodaros 20 60 516 8.6 11 30.8 1 

Yehud-Obv 25 206 1768 8.6 75 67.9 4 

Tetradr-Alex-Damas 23 59 493 8.4 1 12.3 5 

Yehud-Rev 26 281 1923 6.8 92 37.0 4 

90-Tetradr-Syracuse 11 139 924 6.6 13 9.6 1 

Bursio-Rev den 27 405 2359 5.8 72 9.9 7 

198-Stat-Corinth 17 227 1302 5.7 58 13.2 1 

Bursio-Obv den 28 460 2359 5.1 77 8.3 7 

215-6thStat-Mytilene 19 177 779 4.4 41 8.7 1 

197-Stat-Corinth 16 112 444 4.0 37 9.4 1 

209-Dr-Sinope 18 163 594 3.6 110 28.2 1 

Censorinus den 29 419 1418 3.4 120 5.3 6 
 263 

References (1) Callataÿ (2003) (2) Callataÿ (1997) (3) Buttrey (1976) revised by Richard Schaefer (4) 264 

Callataÿ (in press). (5) Glenn (2018) (6) Debernardi et al. (2020) (7) De Ruyter (1996). 265 

 266 



 267 

 268 

 269 

Figure 3. Example of histograms showing die fractions (in blue) and coin fractions (in tan) (x-270 

coordinate) as a function of the coins struck (y-coordinate). (n/d) is the surface area of the blue field, 271 

while Y is the surface area of the tan field. Brown-shaded areas represent overlap of the blue and tan 272 

fields. This plot shows that, in general, the largest number of coins is not necessarily produced by the 273 

most abundant dies. Sixteen samples out of 29 were selected for this plot to present a printable overview 274 

of shape variability. 275 

 276 
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 279 

Figure 4. Plot of the fraction of failed dies vs the fractional output (coins struck) for eight data sets. The 280 

diagonal line shows the relationship expected for a regime of constant failure probability per blow 281 

(homogeneous Poisson process).  282 

 283 

     284 

 285 

Figure 5. (a) (left-hand side panel) Die survivor function (proportion of surviving dies after k blows vs 286 

the fractional coin output recovered) on a semi-logarithmic scale for eight data sets. The thin lines are 287 

the cubic smoothing splines run through the points and used to calculate z (k). The slopes of the curves 288 

are the negative of the failure function z (k), which is the apparent probability of failure per stroke. The 289 

upturning segment represents early failure. The drooping tail suggests deviation from the random failure 290 

regime and indicates metal fatigue which depleted the class of dies with high multiplicity. The 291 

sigmoidal shape of the curves demonstrates significant deviations from the geometric distribution and 292 
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its continuous equivalent, the exponential distribution, at low and high multiplicity. (b) (right-hand side 293 

panel) Log-log plot of ln(1 − 𝐹𝑖(𝑖)) (log of log) vs k (the cumulated number of coins). A single 294 

geometric distribution would give a straight-line with a slope of (red line). At low multiplicity, the 295 

linear alignments emphasize a non-geometric distribution of dies with prominent infant mortality. 296 

Breaks in the slope emphasize the presence of more than one sub-population.  297 

 298 

 299 

 300 

 301 

Figure 6. Selection of plots of the failure function vs die multiplicity for 20 of the 29 data sets targeted 302 

in the present study. The failure functions z(i) were calculated in two different ways: (1) from Eqn. 5 303 

(blue bars) and (2) from the slope of the natural logarithm of the die survivor function of Fig. 2 (Eqn. 7). 304 

The U-shape of these curves is typical of bathtub functions known from survival studies in mechanical 305 

and electrical engineering. A plateau at intermediate die multiplicity indicates a constant failure rate, 306 

which in turn indicates that the geometric distribution is a locally suitable approximation. In most cases, 307 

the failure rate at low and high multiplicities is much higher, which indicates that the frequency 308 

histogram deviates from the geometric distribution. Some plots are very asymmetric, which reflects a 309 

good mastery of infant mortality by the mint workers. 310 
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5. Discussion  312 

The variety of properties necessary to describe the mechanical behavior of metals and alloys is large. 313 

Strength, refers to resistance to reversible deformation (elasticity), while hardness measures the 314 

resistance to localized deformation and is usually measured by applying stress with a sharp object. A 315 

material can be ductile (with reference to irreversible plastic deformation without failure beyond 316 

the yield point) or brittle (fragile). Toughness relates to the energy required to break a particular 317 

material. Because we ignore so much of the actual minting conditions in ancient mints (metal 318 

temperature, striking pace, working position, blow strength, etc.), the values of these critical properties 319 

are still the subject of many conjectures (Carter and Carter, 1983; Selldon, 1963; Faucher, 2011, 2013). 320 

We here propose an indirect way of inferring die lifetime not through these properties but trough a 321 

survival analysis much reminiscent of the Kaplan-Meier handling of patient survival during therapy or 322 

reliability assessment in engineering.  323 

 324 

Coins are manufactured from a blank disk of silver, the flan, held between two bronze dies hit with a 325 

hammer at relatively low temperature. The metallurgist’s ultimate task is to maximize plastic extrusion 326 

of the flan into an incuse with a variable amount of detail (heads, animals, etc.), while maintaining the 327 

bronze dies in the elastic regime in order to maximize their lifetime and ensure that the multiple blows 328 

they will sustain do not distort the engraving too quickly. The usual connection between lifetime and 329 

metal properties may be seen through the S-N Wöhler curves (measured stress vs the number of bending 330 

cycles to failure) and the standard Manson-Coffin model. This model describes failure as resulting from 331 

the combined elastic behavior at low stress and plastic behavior at high stress (Meyers and Chawla, 332 

2009). Fatigue studies (Davis, 2001) suggest that, depending on material properties, high-tin bronzes 333 

typical of dies (Malkmus, 2008; Gitler and Ponting 2006; Blet-Lemarquand and Duval, 2012) may 334 

reach their plastic regime, and therefore remain undeformed, for a maximum of about 105 pressure 335 

cycles. Such estimates are marginally consistent with accepted values of die productivity derived from 336 

experiments (Selldon, 1963; Faucher, 2011, 2013), which ranges from 10,000 to 30,000, sometimes 337 

even more (Callataÿ, 2000).  338 

 339 

The sigmoidal shape of the curves shown in Fig. 5a, as opposed to the straight-line expected from a 340 

geometric distribution (the slope   in Fig. 5b), and the variability of the failure rate function z (k) 341 

with output (Fig. 6) unambiguously show that failure probability per blow varies with the cumulated 342 

number of coins. For the geometric distribution, the failure rate function z(k) is constant. z(k) variations 343 

therefore measure the deviation of the frequency histograms from the geometric distribution used for 344 

many die studies (Esty, 1986, 2066, 2011) at low and high multiplicity. The continuous equivalent of 345 

the geometric distribution is the exponential distribution, which presents the same properties. 346 

 347 



The failure rate function z(k) usually shows a U-shaped form (Fig. 6), known as the ‘bathtub curve’, 348 

which supports the supposition that most dies are used up or at least employed until near failure. A 349 

strong assumption will be made here: dies fail because of metal failure and not because of human error, 350 

such as excessive blows or coin misalignment with the blow direction. Failure theory is well advanced 351 

in reliability engineering (see a variety of examples in Nash, 2016). A typical bathtub curve can be seen 352 

as representing two superimposed regimes (Nash, 2016): (1) an early regime of rapid failure (low 353 

production, here translating into low die multiplicity) due to defective dies manufactured with carbon 354 

segregation, bubbles, inclusions, and cracks initially present in the metal (‘infant mortality’ or ‘burn-355 

in’), and (2) a metal fatigue regime in which some dies fail prematurely because of structural damage, 356 

such as build-up of dislocation walls and crack growth caused by repeated blows. The detrimental infant 357 

mortality regime can be nearly suppressed, which causes a strong asymmetry of the curve (e.g., the 358 

Censorinus data set) and reveals the remarkable talent of the metallurgists. 359 

 360 

The fundamental principle of die studies is that classes with the smallest multiplicity are those most 361 

likely to be depleted by early die failure. The less-preferred alternative would be that die counts in 362 

preserved samples do not faithfully represent the corresponding distributions in the original populations. 363 

The slope of the arrays in Fig. 5 is equal to minus the probability failure function z (i). The steep slope at 364 

the upturning edge of the curve at low multiplicity to the left shows that many dies fail after a short 365 

period of activity. In contrast, the steep slope at the down-turning edge at high multiplicity to the right 366 

indicates failure by metal fatigue.  367 

 368 

With the geometric distribution having been discounted by the present analysis, alternative probability 369 

distributions must be sought. The constant slopes in Figure 5b, in which ln(1 − 𝐹𝑖(𝑖)) is plotted vs ln k, 370 

each on a log scale, suggests that a Weibull distribution should be a good representation, at least at low 371 

multiplicity. Reliability engineering studies offer multiple examples of such behavior: steel rods, 372 

electrical insulation, airplane components, etc. (Nash, 2016). Related studies exist in medicine when the 373 

survival of patients under treatment is compared with that of patients receiving a placebo (Kaplan-Meier 374 

analysis, see Goel et al., 2010). In the latter case, patients dropping out of the trial or known to have 375 

survived until the end of it must be included in the statistics. These cases are said to censor the trial and 376 

techniques exist to handle them. For minting, censoring should be applied to dies decommissioned 377 

before failure, e.g., dies set aside for any reason but failure, and to dies surviving, if any, at the end of 378 

the minting operation, but the relevant data are missing. It should therefore be born in mind that this is a 379 

limitation to applying reliability concepts to die studies. 380 

 381 

When failure probability is not constant, like in the present case, the most widely used failure 382 

probability function is indeed the continuous Weibull distribution with cumulative function (c.d.f): 383 

 384 



 𝐹(𝑘) = 1 − 𝑒−(
𝑘

𝜆
)

𝛽

  (9) 385 

 386 

It can be checked that  gives the exponential distribution and that a plot of ln [ln(1 − 𝐹𝑖(𝑖))] vs ln 387 

k gives a straight line with a slope of  The Weibull point distribution function (p.d.f.) is 388 

 389 

 𝑓(𝑘) =
𝛽

𝜆
(

𝑘

𝜆
)

𝛽−1

𝑒−(
𝑘

𝜆
)

𝛽

 (10) 390 

 391 

where is the scale parameter and  the shape parameter or Weibull modulus, which varies inversely 392 

with the spread of the failure range (Meyers and Chawla, 2008). A discrete Weibull mass distribution 393 

function can also be used after  is replaced by the new parameter ln q: 394 

 395 

 𝑓(𝑘) = 𝑞𝑘𝛽
− 𝑞(𝑘+1)𝛽

 (11) 396 

 397 

(Nakagawa and Osaki, 1975). Again, the geometric distribution is obtained for At this stage, 398 

however, the discussion will be developed using the continuous Weibull p.d.f. The hazard function of 399 

the Weibull distribution is 400 

 401 

 𝑧(𝑘) =
𝑓(𝑘)

1−𝐹(𝑘)
=

𝛽

𝜆
(

𝑘

𝜆
)

𝛽−1

 (12) 402 

 403 

When , the slope dz/dk is negative and positive otherwise.  404 

 405 

In metallurgical terms, Weibull analysis provides an estimate of the distribution of microcrack length 406 

within a given object. If  is large, failure occurs over a narrow range of blows because cracks will go 407 

off nearly simultaneously. If  is small, cracks will go off and failure spread over a much larger number 408 

of blows. This is, for example, the case of brick. We therefore tested the statement that the die 409 

histograms (in blue, Fig. 3) are a mixture of two continuous Weibull p.d.f. The test was made on the 410 

cumulative distribution function, which has a non-decreasing, much smoother shape than the point 411 

density function. The function was fitted to the observed cumulated fraction of failed dies as a function 412 

of the number of coins struck using the expression: 413 

 414 

 𝐹(𝑘) = 𝜔𝐹1(𝑘) + (1 − 𝜔)𝐹2(𝑘) (13) 415 

 416 

where F(k;) and F(k;) are two Weibull c.d.f. (Eqn. 9) and  is a number such as 0 ≤ 417 

 ≤ 1. This approach is in line with Callataÿ’s (1987, 2000, in press) suggestion of a mixed distribution 418 



controlled by infant mortality and metal fatigue, but with negative binomial p.d.f.’s replaced by two 419 

Weibull p.d.f.’s. The results listed in Table 2 have been obtained using the multi-dimensional 420 

‘Levenberg-Marquardt’ algorithm, also known as damped least-squares, implemented by Matlab (e.g., 421 

https://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm). Some of the fits are shown in Fig. 7. 422 

 423 

The fit is, in general, remarkable but with occasional deviations at high multiplicity. The shape factors 424 

form two groups well centered around the values  0.79 and 2.4, which suggests a relatively 425 

stable die technology. The scale parameter 1 is variable but does not correlate with the number of coins 426 

n, while 2 ~ 0.6 n. The metal fatigue population is reduced in some data sets, e.g., Yehud obverses, 26 427 

and 209, which may reveal poorer control of die technology. Another remarkable observation is the 428 

relatively small range of , , and , which implies that the dies seem to all have a similar proportion 429 

of mishap and wear out following the same law. The Weibull modulus is invariant upon multiplication 430 

of k by a constant and therefore does not depend on the number of coins in the sample. The value  of 431 

the modulus is at least one order of magnitude lower than the values determined for modern steel and 432 

iron (Ono, 2019) and more in the range of modern ceramics and pottery (Meyers and Chawla, 2008; 433 

Ono, 2019). In general, ductile materials, such as copper and steel, have  values between 10 and 100, 434 

while lower values are associated with brittle metals and alloys. What is striking about these results is 435 

the large proportion, typically 75%, of dies classified as defective. Some workshops, for which the 436 

production is accounted for by a single population of dies with infant-mortality characteristics, may not 437 

have achieved full control of the art of producing super-productive dies or failed to hire dependable 438 

workers. 439 

 440 

Let us finally return to the models of Fig. 1 by drawing the distribution of coin frequency of a typical 441 

data set with n = 1000 coins, 54% of dies belonging to the population of infant mortality, 0.7 and 442 

2.45, and 1 = 80 and 2 = 600 (Fig. 8). By typical is meant that these values represent a behavior 443 

common to the variety of cases depicted in Fig. 7. With cumulative coin output replacing time, it is clear 444 

that Callataÿ’s (1987) model C is the closest to observation, although, as a result of the pervasive infant 445 

mortality, with a less pronounced hump. Expressing this model as a function of die multiplicity would 446 

require assumptions on the distribution of lifetimes, which is beyond the scope of this work.  447 

 448 

The contrast between the two failure regimes provides a response to the smith dilemma: how to make 449 

dies that do not crack early but nevertheless resist deformation after thousands of blows? Tin-rich 450 

bronzes with Sn contents up to 20% are used for dies (Malkmus, 2008; Gitler and Ponting 2006; Blet-451 

Lemarquand-Duval, 2012). All dies are melted so as to homogenize the alloy and remove bubbles, 452 

inclusions, and defects, which, after human error, are probably the main causes of early failure and 453 

infant mortality. Upon cooling, in addition to the ductile Cu-Sn solid solution, known as -phase, high-454 



tin bronzes crystallize a brittle component called  phase (Saunders and Miodownik, 1990). If a 455 

quenched bronze cast is tempered, i.e., reheated, the two phases separate by spinodal decomposition, a 456 

process of phase separation by uphill diffusion, resulting in a hardened, cohesive alloy (Cribb and 457 

Ratka, 2002). Mao et al. (2009) showed that  dendrites substantially reinforce the strength of grain 458 

boundaries with the best result obtained for alloys with a peritectic composition of 22% Sn. While this 459 

truly magic proportion clearly was known to ancient metallurgists around the Mediterranean, how well 460 

tempering, which would have strongly affected die lifetimes, was understood is uncertain but was a 461 

critical factor of mint productivity.  462 

 463 

 464 

 465 

 466 

Figure 7. Examples of fits of the mixed Weibull distribution (Eqn. 13) to the observed cumulated 467 

fractions of failed dies vs the cumulated coin production. Blue: observed fractions; red: fitted 468 

distributions.  469 
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  470 



 471 

Table 2: Results of fitting Eqn. 13 to the observed cumulated fractions of failed dies.  is the fraction of 472 

the first population,  its scale factor of population, and  its shape factor, with similar notation for 473 

population 2. n is the number of coins in the issue and res the mean squared deviation between the fitted 474 

values and the data. The Weibull modulus  is invariant upon multiplication of k by a constant. This is 475 

not the case of , and therefore no statistics on and are given. The samples have been ordered by 476 

increasing values of  to emphasize the data sets with ~ 1 for which Esty’s (2011) singleton-based 477 

correction will remain accurate. 478 

 479 

      n res† 

        

1997-147-Dr-Euboea 0.57 68.6 0.521 610 1.72 1128 0.011 

180-Hemidr-Pharsalos 0.58 34.4 0.594 245 1.97 437 0.0087 

68-Tetradr-Messana 0.56 56.5 0.617 562 2.14 950 0.0069 

95-Tetradr-Syracuse 0.49 57.9 0.62 336 1.56† 674 0.0095 

21-Didr-Tarent 0.63 61.6 0.687 516 2.04 897 0.0048 

44-Didr-Gela 0.59 106.8 0.688 485 2.01 870 0.0105 

99-Decadr-Syracuse 0.53 28.3 0.697 220 1.66 424 0.0083 

Tetradr-Syracuse 0.59 186.3 0.703 914 2.27 1544 0.0074 

93-Tetradr-Syracuse 0.61 138.6 0.719 639 2.43 978 0.0089 

6-Stat-Metapontum 0.71 115.6 0.722 593 2.73 924 0.0081 

Yehud-Obv 0.94 200.7 0.729 253 2.06 1768 0.0033 

15-Didr-Velia 0.56 45.1 0.734 210 2.17 364 0.0072 

255-Didr-Pixodaros 0.61 44.6 0.743 231 1.8 516 0.0044 

66-Tetradr-Messana 0.54 79.9 0.766 358 2.45 575 0.0095 

19-Didr-Tarent 0.58 63.9 0.800 261 2.89 388 0.0097 

90-Tetradr-Syracuse 0.57 132.4 0.812 570 2.59 924 0.0095 

26-Didr-Tarent 0.87 90.5 0.814 370 3.35 573 0.0058 

Crepusius 0.65 581.6 0.822 2443 2.76 3810 0.0098 

1997-12-Bruttium-den 0.59 181.2 0.827 636 2.54 1000 0.0111 

198-Stat-Corinth 0.73 167.9 0.828 762 2.48 1302 0.0046 

24-Didr-Tarent 0.54 129.3 0.855 540 2.68 839 0.0060 

215-6thStat-Mytilene 0.71 120.4 0.891 474 2.79 779 0.0037 

Tetradr-Alexander-Damascus 0.61 88.8 0.909 303 2.48 493 0.0073 

197-Stat-Corinth 0.73 65.1 0.915 263 2.63 444 0.0035 

Censorinus 0.70 243 0.957 967 3.42 1418 0.0064 

Bursio-Rev den 0.72 626 0.862 116 5.23 2359 0.0306 

Bursio-Obv den 0.74 833 0.882 124 5.61 2359 0.0188 

Yehud-Rev 0.83 73.2 1.047 451 1.11† 1923 0.0017 

209-Dr-Sinope 0.86 81 1.345 316 2.74 594 0.0006 

        

average 0.63  0.79  2.43   

std dev. 0.13  0.16  0.46   

 480 



 481 

* Not included in the statistics † (Mean squared error)1/2 482 

 483 

Figure 8. Typical frequency distribution versus output k for a data set with n = 1000 coins. 54% of dies 484 

belong to the population of infant mortality, 0.7 and 2.45, and 1 = 80 and 2 = 600. The 485 

mixture of the two populations, infant mortality and metal fatigue, makes Callataÿ’s (1987) model C 486 

(Fig. 1) the best analog for the actual data. 487 

 488 

 489 

We arrive at the following findings: 490 

 The double die population hypothesis put forward by Callataÿ (1987) is confirmed for 23 out of 491 

29 data sets. The populations of dies used to mint a particular issue are therefore intrinsically 492 

heterogeneous: the two regimes of infant mortality and metal fatigue should be viewed as 493 

reflecting mechanically distinct populations. The present model allows this dichotomy, which 494 

has been discussed previously in qualitative terms only (Callataÿ 1995, 2008, 2011), to now be 495 

handled in quantitative terms. 496 

 Semi-log plots of surviving dies vs cumulated output and failure rate plots demonstrate that 497 

almost every population participating in the mixture deviates from a simple geometric 498 

distribution. 499 

 Singleton abundances are not in general dependable estimates relevant to whole coinage issues, 500 

in particular not to the most productive part of a given coin population. The statistical properties 501 

of the metal fatigue groups are not revealed by the abundance of singletons, doubletons, or any 502 

member of the infant mortality group. For many data sets, this conclusion likely will have strong 503 

impact on the correction for missing dies using the theories and formulas developed by Esty 504 

(1984). These formulas can, however, still be used by restricting the calculations to the sub-505 

population corresponding to infant mortality (Fig. 5b) whenever the 1 value is close to unity, 506 

thereby hinting at a nearly geometric distribution, such as for the reverse Yehud and the 507 

Censorinus coinages. Likewise, keeping in mind that the geometric assumption is not in general 508 
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appropriate, large data sets with fewer singletons and therefore high coverage, such as the 509 

Crespusius and Censorinus coinages, and set #90 of the Syracuse tetradrachms, should still 510 

provide adequate results for the missing die corrections. For the population as a whole, we do 511 

not at this time have any better suggestions as to how to account for the missing dies in a more 512 

robust way. 513 

 The die distributions among different multiplicities reflect efforts to accommodate two mutually 514 

conflicting needs: the reduction of infant mortality due to brittle failure of the bronze alloy used 515 

for dies, and the limitation of metal deformation during minting owing to alloy ductility. 516 

 517 

These results have implications for the commonplace numismatic strategy, which consists in three steps: 518 

(1) estimate the original number of dies and their multiplicity, (2) use the number of singletons and the 519 

formulas developed by Esty (1984) and Carter (1983, 1992) to assess the number of missing dies, and 520 

(3) multiply this number by the average number of coins a die is supposed to strike. The present results 521 

indicate that, even for well-documented samples, large proportions of singletons inevitably overestimate 522 

the number of struck coins. The infant-mortality population has little relevance to the remainder of coin 523 

production and assigning large values (e.g., 20,000 coins per die, as commonly assumed for large Greek 524 

silver coinages) to singletons that actually failed early on may lead to erroneous results. The option of 525 

discarding from steps 2 and 3 singletons for any sample with (n/d) > 7 (Fig. 2) is not justified and 526 

physically wrong. Such limitations may not significantly affect the best-documented samples (Table 1) 527 

such as the drachms of the Euboean League, for which production would be reduced by some 10% (25 x 528 

20,000 instead of 28 x 20,000 coins). Consequences, however, may be much more dramatic for other 529 

data sets. For the Yehud coinage, tiny silver coins are characterized by a large proportion of singletons 530 

(36%, or 75 out of 208) despite an (n/d) ratio of 8.8.  531 

 532 

Understanding actual coinage production is key to understanding the strength of economy and its 533 

resilience to changing financial situations through war and trade (Patterson, 1972). The main limitation 534 

to furthering the understanding of monetary production remains the estimated average value of coin 535 

production, e.g., 20,000 coins per obverse die for large silver coins. The number 20,000 is widely used 536 

for Greek tetradrachms. The generally low ratios (n/d) obtained for Roman Republican denarii issues, 537 

despite their long-time circulation, have been assigned, at least in part, to a lower productivity than their 538 

Greek counterparts. In addition, die productivity also depends on coin weight and human metallurgical 539 

expertise and this must be kept in mind when dealing with different coinages such a Greek, Roman 540 

denarii, or Yehud. The respective roles of natural alloy failure and human error in determining this 541 

number is unclear. Estimates are independent of the coins themselves and is derived from cross-542 

checking various kinds of evidence, such as survival rates in the long range, historically favorable 543 

circumstances allowing to guess daily productivity, or the epigraphic record of Delphi for the 544 

Amphictionic coinage (Kinns, 1983).  545 



 546 

6. Conclusions 547 

This study has for the first time extracted the failure features of dies in view of a future, better, though 548 

yet-to-be-formulated die estimator than that currently in use of Esty (2011), which, as demonstrated 549 

here, can be applied only to some sub-populations, not data sets as a whole. It has further been shown 550 

that the Weibull distribution is a better fit than the geometric distribution, especially for Greek coinage, 551 

where, possibly, smiths did not yet fully master tempering, a technique which, in contrast, seems to have 552 

been skillfully operated for Roman Republic coinage, one to two hundred years later. The scarcity of die 553 

studies on Roman Republic silver coinage (Buttrey, 1976; De Ruyter, 1996; Debernardi, 2020) 554 

compared to the wealth of studies on its Greek counterpart and the near-absence of literary sources do 555 

not allow us to develop this particular point of ancient metallurgy, but hopefully the present work will 556 

foster numismatic interest for this period. 557 
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