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A B S T R A C T   

Coinage production of ancient powers such as Athens and Rome is usually inferred from die statistics of monetary 
issues. The present work applies a Kaplan-Meier analysis of resistance to failure to 29 sets of well-documented 
monetary issues. The failure rate function assumes a U-shaped form known in reliability engineering literature 
as the ‘bathtub curve’. With the geometric distribution of die failure being demonstrably violated for a large 
fraction of the data sets, the die distribution of each data set was instead fitted by a mixture of two Weibull 
distributions corresponding to two failure regimes. Dies can be divided into bad dies, failing early for various 
reasons, and good dies, failing late by fatigue. The dual populations reflect the efforts of the smiths at the time to 
produce bronze dies that would meet two conflicting needs: the reduction of premature die failure (= infant 
mortality) and the limitation of ductile deformation during minting. The variable proportions of the two pop
ulations suggest that not all workshops had fully mastered die technology. Because of the dichotomy induced by 
contrasting mechanical properties, corrections for missing dies based on singletons and causes of die failure must 
be carefully assessed for each data set.   

1. Introduction 

Quantifying monetary production in ancient societies that left little 
or no minting accounts, or imprecise and biased citations, is crucial to 
understanding ancient economies and how fast societies adopted minted 
bullion as a means of payment (= monetization). A common strategy is a 
three-step process. First, the number of original dies, one of the two 
metallic pieces used to strike a coin, one for each side of the coin, is 
determined from the corpus of coins available for a single issue. 
Generally, facing-up (obverse) dies are more robust that facing-down 
(reverse) dies. Second, a correction is made to account for the missing 
dies, i.e., those that are not present in the corpus. More than 20 statis
tical methods have been proposed for this task, the results of which are 
generally considered unproblematic as long as the ratio of number of 
coins/number of dies (n/d) is higher than 3 (Callataÿ, 1995). This is the 
case for most ancient Greek coinages for which (n/d) commonly exceeds 
10. Third, the original number of dies is multiplied by what is considered 
the average production of a die, which is a much more contentious issue. 
Whenever comparisons between the number of dies and the number of 
coins found in hoards are possible, relatively simple first-order rules 
hold up: dies used to mint large silver coins were more productive than 

dies used for smaller denominations, while dies used for striking bronze 
coins were wearing out or failing faster than those used to strike silver 
coins (Sellwood, 1963; Faucher, 2009, 2011, 2013). This is the case of 
coins bearing the name of Alexander the Great; the cistophori minted in 
multiple localities by the Attalids, kings of Pergamon (282-128 B.C.E.) 
(Callataÿ, 2013; Meadow, 2013); and the various issues of the Roman 
Republic coinage. 

Now, what is the average production of a die? Explicitly written 
sources relevant to this question are nearly non-existent (Kinns, 1983). 
In contrast, a dozen favorable cases exist for which extrapolated volumes 
of struck coins can be placed into precisely dated contexts (Callataÿ, 
1995). The results provided by this rare evidence appear coherent. At
tempts at striking coins under conditions mimicking those of ancient 
mints also have been made but so far reliable results are few (Sellwood, 
1963; Faucher, 2009, 2011, 2013). While these experiments are of in
terest in terms of metallurgy and thus relevant to some extent to the 
issues discussed below, in particular that of the most defective dies, they 
may not inform on highly productive dies (Buttrey and Cooper, 1994). 
An alternative promising approach is finite element modeling of mint
ing, which has the advantage of restoring the distribution of stress and 
strain during coin striking (Brekelmans et al., 1988; Alexandrino et al., 
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2018, 2019). 
The monetary flux out of a particular mint is reflected by the pro

duction of its issues. Production is modulated not only by the number of 
active dies but also by their effective yield. The average production of a 
population of dies clearly depends on how these dies behave once put 
into production. It seems pointless to spend resources crafting dies that 
would fail before they met with some sort of specifications. Although the 
cost of producing dies is unknown, it is clear that over time their designs 
became increasingly sophisticated and that the technology was 
improved to enhance productivity, which must have come with a cost. 
Questions are: how important is premature failure, also known as burn- 
out or infant mortality? In other words, many dies with a small pro
duction, while prominent in die studies, had a small contribution to the 
entire volume. What about the average die with an average production? 
Experiments are useful (Sellwood, 1963; Faucher et al., 2009, 2011, 
2013) but of very limited extent, which render them somewhat unreli
able for deriving average die productivities. A critical matter is whether 
the overall volume of a given issue may be dominated by particularly 
sturdy dies with a very large production. These questions have been 
variously addressed in the past. It was first common practice to represent 
a given die distribution by the symmetric normal approximation to a 
binomial distribution (Good, 1953; Good and Toulmin, 1956; Carter and 
Moore, 1980) (Fig. 1, curve A). This symmetrical model was, however, 
shown to be unacceptable for a number of reasons and, in the 1980s, the 
negative binomial distribution, a variant of the Poisson distribution, 
with a negative asymmetric curve (Fig. 1, curve B), then a gamma dis
tribution, became the favored representations (Carter, 1983; Esty and 
Carter, 1992). Around the same time, Callataÿ (1987), after scrutinizing 
hundreds of data sets from ancient Greece and Rome, focused on those 
with large numbers of infrequent dies (singletons, doubletons, etc.), and 
proposed a negative binomial distribution accounting for infant mor
tality combined with a binomial distribution accounting for the sur
viving specimens (Fig. 1, curve C). Callataÿ’s (1987) point was 
particularly important because the correction for missing dies developed 
by Esty (1984) and Carter (1983, 1992) critically depends on singleton 
frequencies. 

More recently, Esty (2011) assessed that both models (B), the 
negative binomial distribution of Carter (1980), and (C), the mixed 
distribution hypothesized by Callataÿ (1987), were flawed. He 
concluded that die statistics is best represented by the geometrical 
model, i.e., a constant-failure distribution indicative of a Poisson pro
cess, and derived simple analytical formulas based on die counts, sin
gletons, and sample size to estimate the number of missing dies. The 
present work reassesses Esty’s (2011) assumptions and their relevance 
to the statistical parameters derived from the 608 data sets gathered by 
Callataÿ (1997, 2003) for the following reasons:  

1. Although these data sets represent some of the best-known samples 
and provide a glimpse of original die distribution, a perspective 
based on other mints, in particular those of the Roman Republic, 
would be useful. The denarii of Crepusius can be considered a sample 
of high quality for Roman Republican coinage because the propor
tion of singletons is low (Buttrey, 1976) and their coverage, i.e., the 
proportion of non-singletons, is high (Esty, 1986). The (n/d) ratio 
(number of coins/number of dies) of this data set remains in the low 
range of most Greek data sets.  

2. It has been noticed that even for the best-documented samples with 
(n/d) > 10 and coverage > 99% for which formulas postulate that 
essentially all the produced dies are known, new dies continue to 
appear, enlarging the sample. Based on ten die studies, Callataÿ 
(1993) concluded that Carter’s (1983) formulas based on the (n/d) 
ratio, long dominant among numismatists for estimating the number 
of unobserved dies and relying on model (B) of Fig. 1, overestimate 
the original number of dies when the n/d ratio is < 3 and underes
timate- it after that point.  

3. The master variable of existing minting models is the time elapsed 
since start of production. Although some texts have carefully dealt 
with this variable, it depends on a number of assumptions (Carter 
and Carter, 1983), such as the number of anvils, human error, and 
work scheduling, all factors difficult to verify. 

4. Esty assumed the materiality of the geometric/exponential distri
bution and this assumption should be assessed. 

Even with extremely well-documented samples, singletons continue 

Fig. 1. Different models used to account for the frequency of dies (modified 
from Callataÿ, 1987). (A) Normal distribution, (B) negative binomial or Poisson 
distribution (Esty and Carter, 1992), and (C) mixture of two distributions 
involving infant mortality and metal fatigue (Callataÿ, 1987). 

Fig. 2. Ratios of number of coins to obverse dies (n/d on the x-axis) and fre
quency d1/d of singleton dies (on the y-axis). Redrawn from Callataÿ (in press). 
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to be surprisingly numerous, which is a strong indication of high infant 
mortality. As shown in Fig. 2, the proportion of singletons remains large 
regardless of data set quality: up to 40% for a ratio (n/d) of 5, up to 30% 
for a ratio (n/d) of 10, and up to 15% for a ratio (n/d) of 15. The example 
of a single issue of drachms of the Euboean League (Callataÿ 1997: n◦

147) with (n/d) > 40 and nevertheless counting more than 10% of 
singletons (3 out of 28) is a strong caveat that a purely statistical 
approach to die studies is inadequate. This is the basis of the present 
work, which revisits the data from the combined perspective of die 
survival and mechanical properties of dies. The purpose of this approach 
is to assess the minting process using principles of reliability engineering 
(Billinton and Allan, 1992; Nash, 2016) to derive both the lifetime of 
dies and the survival rate of coins from die statistics of large issues. We 
will apply the theory to the die productivity of 23 issues from the 
Archaic and Classical Greece compiled by Callataÿ (1997, 2003), one 
Alexander issue from Damascus (Glenn, 2018), three Roman Republican 
issues abundantly discussed in the literature (e.g., Buttrey, 1976; Carter 
and Ross, 1992), and the Yehud issue (obverse and reverse) (Callataÿ, in 
press) to ensure the validity and general value of the results. The 29 data 
sets cover a broad range of (n/d) ratios, including data sets with rather 
low (n/d) values, such as those of the Yehud coinage characterized by an 
extremely high proportion of singletons (Callataÿ, in press), as well as 
data sets from the numbered Roman Republican issues of Crepusius 
(RRC 361, Buttrey, 1976) and Censorinus (RRC 360, Debernardi et al., 
2020) as an additional reference. 

Survival theory is a largely descriptive approach that uses the sta
tistics of failure, though not of failure time because this variable is not 
available, but of the number of coins (yield) struck by dies used for a 
particular issue. The distribution of the yields among different dies or 
groups of dies, and in particular their scatter, offer an under-used source 
of information on the minting process. Survival theory is widely used in 
a variety of fields from engineering to medicine to identify the factors 
causing failure or death in order to control them. Although closely 
connected, the concepts ruling the mechanical properties of metals and 
alloys (Meyers and Chawla, 2008) are not identical and the survival 
models therefore will be properly set apart from each other. 

2. A die survival theory 

The tenet intrinsic to the present work is the significance of the die 
multiplicity scale: singletons signal dies with a smaller production than 
doubletons, which themselves have a smaller production than tripletons, 
etc. It therefore makes no difference how the coins are dispatched once 
produced and we can assume that the production is immediately stored 
and mixed in a vault where it will never be spent. Time is a variable that 
has pervaded publications trying to support statistical models (e.g., 
Carter and Moore, 1980; Carter, 1983; Callataÿ, 1987) and the diffi
culties of parameterizing such a vision have been reviewed multiple 
times (e.g., Buttrey, 1994). Time will therefore not be considered an 
objective control variable of coin production and will not be used for the 
present purpose. 

It will further be assumed that dies are either functional or irrepa
rably damaged. For the purpose of illustration, we will first assume that 
all the coins of a given issue have been recovered. di is the number of 
dies, often improperly called die frequency, observed i times. Here i will 
be referred to as die multiplicity and is clearly a function of how many 
specimens in total have been recovered. For example, d1 is the number of 
singletons, d2 the number of doubletons, d3 the number of tripletons, etc. 
Tables of di vs i are die histograms in which the a priori bin width is unity. 
d = Σi di is the total number of dies in the population, and fi (i) = di/d the 
frequency of dies with multiplicity i. The subscript i refers to numbers 

and fractions of dies. Fi (i) =
∑j=i

j=0
fi(j) is the cumulated fraction of dies 

summed over the bins 1 to i, while R (i) = 1 − Fi(i) is the fraction of dies 
surviving at that point. 

Likewise, ni = i di = ifi (i) d is the number of coins in the i-th bin, n = Σi 
i di = Σi ni the total number of coins in the sample, and fk (i) = ni/n the 
coin frequency in bin i. Note that the subscript k refers to numbers and 
fractions of coins, not dies. The bin width is now variable and equal to ni. 
The total production of singletons, doubletons, and tripletons will 
therefore be 1d1 + 2d2 +3d3 = n1 + n2 + n3. 

What about failure frequency? The cumulated fraction of coins 
produced by the dies that struck 1, 2, or 3 coins is (n1 + n2 + n3))/n = fk 
(1) + fk (2) + fk (3). Let us now define ri as the number of surviving dies 
after the i-th failure, e.g.: 

d = d1 + d2 + r2 = d1 + d2 + d3 + r3 (1) 

However straightforward the relationships 

di = ri− 1 − ri (2a)  

fi(i)=F(i) − F(i − 1) (2b)  

may look, they show that di has the significance of a number of failed 
dies at multiplicity i. 

The standard ratio known as (n/d) (total number of coins/total 
number of dies), a characteristic index, is not homologous to a mean 
productivity, but has the dimension of multiplicity i. (n/d) is actually the 
average weighted values of multiplicity since 

(n / d)=
∑

fi(i)i= Si (3)  

where Si is the surface area beneath the histogram of die frequencies vs 
multiplicity. 

3. The failure probability function 

A number of useful parameters widely used in reliability engineering 
literature can be retrieved from the multiplicity histogram, including the 
failure probability function, the mean time to failure, and the total 
number of specimens consistent with the histogram (Bracquemond and 
Gaudoin, 2003; Rausand and Høyland, 2003; Nash, 2016). 

The function noted z(i) provides the estimate of the probability of die 
failure at each stroke. It is the ratio of the number of retired dies to the 
number of surviving dies times the number of strokes. This function is 
closely related to the Kaplan-Meier survival estimate widely used in 
medical studies (Goel et al., 2010). Taking tripletons as an example, d3 
dies, out of a total of d2, fail after 3 d3 blows: 

z(3)=
No of failed dies

No of surviving dies × number of strokes
=

d3

r2 × 3d3
=

1
3r2

(4) 

From this equation, we can retrieve several equivalent expressions, 
including the standard definition of the failure function: 

z(i)=
1

iri− 1
=

1
idR(i − 1)

=
1

id(1 − Fi(i) + fi(i))
(5) 

A continuous approximation for z(i) is 

z(i)=
di

r(i) × (idi)
=

ri− 1 − ri

ri × (idi)
=

ri− 1/d − ri/d
ri/d × (idi)

(6)  

and 

z(i)=
fi(i)

(1 − Fi(i)) × (idi)
≈ −

d ln(1 − Fi(i))
dk

(7)  

where k is the cumulated number of strokes. As a result, the failure 
probability function z(i) can be retrieved from the slope of the rela
tionship between ln(1 − Fi(i)) and the number of coins struck until i 

multiplicity 
∑l=i

l=1
nl. The failure probability of the geometric distribution 

and of its continuous equivalent, the exponential distribution (random 
failure), is constant. 
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The expected value of coin production per die (yield) can be defined 
as the weighted average of strokes per die until failure. If all the coins of 
the issue are available, the number of coins struck until the di dies of 
multiplicity i fail is simply the sum of all the coins struck up to multi
plicity of l = i. The mean number Y of coins struck until failure (apparent 
average die productivity) therefore is: 

Y =
∑

i
fk(i)i = Sk (8)  

where Sk is the surface area beneath the histogram of coin frequencies vs 
multiplicity i. 

4. Results 

Table 1 lists the basic data of the 29 issues targeted in the present 
study. The histogram of coin distributions among the classes of 
increasing multiplicity (Fig. 3) shows that not all data sets present a 
single peak. The abscissa in Fig. 3 are the weights fi(i) and fk(i) used to 
calculate (n/d) and Y, respectively, and are shifted with respect to one 
another. Y = Sk (red field) is shifted with respect to (n/d) = Si (blue field) 
towards higher values and the field is larger. Note that, because of early 
failure, there is little correlation between the number of coins and the 
number of dies. 

Plots of the fraction of failed dies vs the fractional output, or coins 
struck (Fig. 4), show a strong deviation from the diagonal line of con
stant failure probability (exponential distribution of the number of coins 
between successive failures). Nevertheless, the semi-log plot of the die 
survivor function (1-Fi(i)) vs k, which is the fraction of preserved coins 
struck ranked by increasing multiplicity (Eqn. (7)) (Fig. 5a), has a 
sideways sigmoid form. This shape is common to all the data sets. We 
chose to display this plot against the fraction of preserved coins struck 

rather than their actual number so as to work with a common scale. The 
slope <1 of the logarithmic plot of ln(1 − Fi(i)) (log of log) vs ln k (the 
cumulated number of coins) at low multiplicity (Fig. 5b) shows that the 
observed distribution of dies clearly deviates from the geometric dis
tribution. This observation is remarkable since this distribution plays a 
central role in die studies (Esty and Carter 1992; Esty, 2011; Callataÿ, in 
press). 

The failure functions z(i) were calculated in two different ways: (1) 
from Eqn. (5) (blue bars in Fig. 6) and (2) from the slope of the natural 
logarithm of the die survivor function of Fig. 2 (Eqn. (7), red lines in 
Fig. 6). The two estimates are consistent with each other. At low values 
of i, z(i) decreases, passes by a minimum, and then increases for the most 
productive dies, which is a nearly systematic feature of the present 
hazard curves. An exception is the case of Censorinus denarii, which 
have rather small (n/d) ratios (<3.5). For the samples with higher (n/d) 
ratios, such as Syracuse tetradrachms, drachms from the Euboean Lea
gue, and Bruttium denarii (Fig. 4), the negative dz/dk edge is more 
prominent. 

The apparent average productivity Y of the dies exceeds (n/d) by a 
factor of 1.3–3.4, with a value of 7 for the 209-Drachms set (Table 1). 
This factor is unrelated to the number of dies and the number of coins, 
which demonstrates the quality of the data. 

5. Discussion 

The variety of properties necessary to describe the mechanical 
behavior of metals and alloys is large. Strength, refers to resistance to 
reversible deformation (elasticity), while hardness measures the resis
tance to localized deformation and is usually measured by applying 
stress with a sharp object. A material can be ductile (with reference to 
irreversible plastic deformation without failure beyond the yield point) 
or brittle (fragile). Toughness relates to the energy required to break a 
particular material. Because we ignore so much of the actual minting 
conditions in ancient mints (metal temperature, striking pace, working 
position, blow strength, etc.), the values of these critical properties are 
still the subject of many conjectures (Carter and Carter, 1983; Selldon, 
1963; Faucher, 2011, 2013). We here propose an indirect way of 
inferring die lifetime not through these properties but trough a survival 
analysis much reminiscent of the Kaplan-Meier handling of patient 
survival during therapy or reliability assessment in engineering. 

Coins are manufactured from a blank disk of silver, the flan, held 
between two bronze dies hit with a hammer at relatively low tempera
ture. The metallurgist’s ultimate task is to maximize plastic extrusion of 
the flan into an incuse with a variable amount of detail (heads, animals, 
etc.), while maintaining the bronze dies in the elastic regime in order to 
maximize their lifetime and ensure that the multiple blows they will 
sustain do not distort the engraving too quickly. The usual connection 
between lifetime and metal properties may be seen through the S–N 
Wöhler curves (measured stress vs the number of bending cycles to 
failure) and the standard Manson-Coffin model. This model describes 
failure as resulting from the combined elastic behavior at low stress and 
plastic behavior at high stress (Meyers and Chawla, 2008). Fatigue 
studies (Davis, 2001) suggest that, depending on material properties, 
high-tin bronzes typical of dies (Malkmus, 2008; Gitler and Ponting 
2006; Blet-Lemarquand and Duval, 2012) may reach their plastic 
regime, and therefore remain undeformed, for a maximum of about 105 

pressure cycles. Such estimates are marginally consistent with accepted 
values of die productivity derived from experiments (Selldon, 1963; 
Faucher, 2011, 2013), which ranges from 10,000 to 30,000, sometimes 
even more (Callataÿ, 2000). 

The sigmoidal shape of the curves shown in Fig. 5a, as opposed to the 
straight-line expected from a geometric distribution (the slope ∕= − 1 in 
Fig. 5b), and the variability of the failure rate function z (k) with output 
(Fig. 6) unambiguously show that failure probability per blow varies 
with the cumulated number of coins. For the geometric distribution, the 
failure rate function z(k) is constant. z(k) variations therefore measure 

Table 1 
Characteristics of the 29 data sets used in this work. Drachm is abbreviated as 
‘dr’, stater as ‘stat’, and ‘den’ as denarii.  

Present notation set# d n (n/d) d1 Y ref. 

Numismatic notation  o n (n/d) o1   

1997-147-Dr-Euboea 21 28 1128 40.3 3 68.7 1 
68-Tetradr-Messana 10 30 950 31.7 1 52.6 1 
44-Didr-Gela 8 30 870 29.0 1 47.3 1 
24-Didr-Tarent 6 37 839 22.7 0 29.4 1 
1997-12-Bruttium 24 47 1000 21.3 2 27.9 2 
Tetradr-Syracuse 22 75 1544 20.6 3 32.9 1 
95-Tetradr-Syracuse 13 37 674 18.2 3 29.8 1 
15-Didr-Velia 3 20 364 18.2 1 27.8 1 
99-Decadr-Syracuse 14 24 424 17.7 1 31.7 1 
19-Didr-Tarent 4 23 388 16.9 0 21.2 1 
180-Hemidr-Pharsalos 15 28 437 15.6 4 26.3 1 
93-Tetradr-Syracuse 12 63 978 15.5 3 21.3 1 
21-Didr-Tarent 5 59 897 15.2 8 29.4 1 
26-Didr-Tarent 7 49 573 11.7 3 29.3 1 
66-Tetradr-Messana 9 58 575 9.9 3 13.2 1 
Crepusius den 27 408 3810 9.3 26 13.8 3 
6-Stat-Metapontum 1 100 924 9.2 16 15.9 1 
255-Didr-Pixodaros 20 60 516 8.6 11 30.8 1 
Yehud-Obv 25 206 1768 8.6 75 67.9 4 
Tetradr-Alex-Damas 23 59 493 8.4 1 12.3 5 
Yehud-Rev 26 281 1923 6.8 92 37.0 4 
90-Tetradr-Syracuse 11 139 924 6.6 13 9.6 1 
Bursio-Rev den 27 405 2359 5.8 72 9.9 7 
198-Stat-Corinth 17 227 1302 5.7 58 13.2 1 
Bursio-Obv den 28 460 2359 5.1 77 8.3 7 
215-6thStat-Mytilene 19 177 779 4.4 41 8.7 1 
197-Stat-Corinth 16 112 444 4.0 37 9.4 1 
209-Dr-Sinope 18 163 594 3.6 110 28.2 1 
Censorinus den 29 419 1418 3.4 120 5.3 6 

References (1) Callataÿ (2003) (2) Callataÿ (1997) (3) Buttrey (1976) revised by 
Richard Schaefer (4) Callataÿ (in press). (5) Glenn (2018) (6) Debernardi et al. 
(2020) (7) De Ruyter (1996). 
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the deviation of the frequency histograms from the geometric distribu
tion used for many die studies (Esty, 1986, 2006, 2011) at low and high 
multiplicity. The continuous equivalent of the geometric distribution is 
the exponential distribution, which presents the same properties. 

The failure rate function z(k) usually shows a U-shaped form (Fig. 6), 
known as the ‘bathtub curve’, which supports the supposition that most 
dies are used up or at least employed until near failure. A strong 
assumption will be made here: dies fail because of metal failure and not 
because of human error, such as excessive blows or coin misalignment 
with the blow direction. Failure theory is well advanced in reliability 
engineering (see a variety of examples in Nash, 2016). A typical bathtub 
curve can be seen as representing two superimposed regimes (Nash, 
2016): (1) an early regime of rapid failure (low production, here 

translating into low die multiplicity) due to defective dies manufactured 
with carbon segregation, bubbles, inclusions, and cracks initially present 
in the metal (‘infant mortality’ or ‘burn-in’); and (2) a metal fatigue 
regime in which some dies fail prematurely because of structural dam
age, such as build-up of dislocation walls and crack growth caused by 
repeated blows. The detrimental infant mortality regime can be nearly 
suppressed, which causes a strong asymmetry of the curve (e.g., the 
Censorinus data set) and reveals the remarkable talent of the metallur
gists at the time. 

The fundamental principle of die studies is that classes with the 
smallest multiplicity are those most likely to be depleted by early die 
failure. The less-preferred alternative would be that die counts in pre
served samples do not faithfully represent the corresponding 

0 0.1 0.2
0

50

100
M

ul
tip

lic
ity

i
68-Tetradr-Messana

 n/d=31.7

0 0.1 0.2
0

50

100
44-Didr-Gela

 n/d=29.0

0 0.1 0.2
0

20

40

60
1997-12-Bruttium denar

 n/d=21.3

0 0.1 0.2
0

50

100
Tetradr-Syracuse

 n/d=20.6

0 0.1 0.2
0

20

40

60

M
ul

tip
lic

ity
i

95-Tetradr-Syracuse
 n/d=18.2

0 0.1 0.2
0

20

40

60
15-Didr-Velia

 n/d=18.2

0 0.1 0.2
0

20

40

60
99-Decadr-Syracuse

 n/d=17.7

0 0.1 0.2
0

20

40
19-Didr-Tarent

 n/d=16.9

0 0.1 0.2
0

20

40

60

M
ul

tip
lic

ity
i

180-Hemidr-Pharsalos
 n/d=15.6

0 0.1 0.2
0

20

40

60
21-Didr-Tarent

 n/d=15.2

0 0.1 0.2
0

10

20

30
66-Tetradr-Messana

 n/d=9.9

0 0.1 0.2
0

10

20

30
Crepusius

 n/d=9.3

0 0.1 0.2
0

20

40

M
ul

tip
lic

ity
i

6-Stat-Metapontum
 n/d=9.2

0 0.1 0.2
0

100

200

300
Yehud-Obv

 n/d=8.6

0 0.1 0.2
0

10

20

30
Tetradr-Alex-Damas

 n/d=8.4

0 0.1 0.2
0

50

100

150
Yehud-Rev

 n/d=6.8

0 0.1 0.2
Fraction of Dies/Coins

0

10

20

30

M
ul

tip
lic

ity
i

90-Tetradr-Syracuse
 n/d=6.6

0 0.1 0.2
Fraction of Dies/Coins

0

20

40

198-Stat-Corinth
 n/d=5.7

0 0.1 0.2
Fraction of Dies/Coins

0

10

20

30
215-6thStat-Mytilene

 n/d=4.4

0 0.1 0.2
Fraction of Dies/Coins

0

10

20
Censorinus

 n/d=3.4

Fig. 3. Example of histograms showing die fractions (in blue) and coin fractions (in red) (x-coordinate) as a function of the coins struck (y-coordinate). (n/d) is the 
surface area of the blue field, while Y is the surface area of the red field. Brown-shaded areas represent overlap of the blue and red fields. This plot shows that, in 
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distributions in the original populations. The slope of the arrays in 
Fig. 5a is equal to minus the probability failure function z (i). The steep 
slope at the upturning edge of the curve at low multiplicity to the left 
shows that many dies fail after a short period of activity. In contrast, the 
steep slope at the down-turning edge at high multiplicity to the right 
indicates failure by metal fatigue. 

With the geometric distribution having been discounted by the pre
sent analysis, alternative probability distributions must be sought. The 
constant slopes in Fig. 5b, in which ln(1 − Fi(i)) is plotted vs ln k, each on 

a log scale, suggests that a Weibull distribution should be a good rep
resentation, at least at low multiplicity. Reliability engineering studies 
offer multiple examples of such behavior: steel rods, electrical insu
lation, airplane components, etc. (Nash, 2016). Related studies exist in 
medicine when the survival of patients under treatment is compared 
with that of patients receiving a placebo (Kaplan-Meier analysis, see 
Goel et al., 2010). In the latter case, patients dropping out of the trial or 
known to have survived until the end of it must be included in the sta
tistics. These cases are said to censor the trial and techniques exist to 
handle them. For minting, censoring should be applied to dies decom
missioned before failure, e.g., dies set aside for any reason but failure, 
and to dies surviving, if any, at the end of the minting operation, but the 
relevant data are missing. It should therefore be kept in mind that this is 
a limitation to applying reliability concepts to die studies. 

When failure probability is not constant, as in the present case, the 
most widely used failure probability function is indeed the continuous 
Weibull distribution with cumulative function (c.d.f): 

F(k) = 1 − e
−

(

k
λ

)β

(9) 

It can be checked that β = 1 gives the exponential distribution and 
that a plot of ln [ln(1 − Fi(i))] vs ln k gives a straight-line with a slope of 
− β. The Weibull point distribution function (p.d.f.) is 

f (k) =
β
λ

(
k
λ

)β− 1

e
−

(

k
λ

)β

(10)  

where λ is the scale parameter and β the shape parameter or Weibull 
modulus, which varies inversely with the spread of the failure range 
(Meyers and Chawla, 2008). A discrete Weibull mass distribution 
function can also be used after λβ is replaced by the new parameter 
− 1/ln q: 

f (k) = qkβ
− q(k+1)β

(11) 

(Nakagawa and Osaki, 1975). Again, the geometric distribution is 
obtained for β = 1. At this stage, however, the discussion will be 
developed using the continuous Weibull p.d.f. The hazard function of 
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for eight data sets. The diagonal line shows the relationship expected for a 
regime of constant failure probability per blow (homogeneous Poisson process). 

Fig. 5. (a) (left-hand side panel) Die survivor function (proportion of surviving dies after k blows vs the fractional coin output recovered) on a semi-logarithmic scale 
for eight data sets. The thin lines are the cubic smoothing splines run through the points and used to calculate z (k). The slopes of the curves are the negative of the 
failure function z (k), which is the apparent probability of failure per stroke. The upturning segment represents early failure. The drooping tail suggests deviation 
from the random failure regime and indicates metal fatigue which depleted the class of dies with high multiplicity. The sigmoidal shape of the curves demonstrates 
significant deviations from the geometric distribution and its continuous equivalent, the exponential distribution, at low and high multiplicity. (b) (right-hand side 
panel) Log-log plot of ln(1 − Fi(i)) (log of log) vs k (the cumulated number of coins). A single geometric distribution would give a straight-line with a slope of − 1 (red 
line). At low multiplicity, the linear alignments emphasize a non-geometric distribution of dies with prominent infant mortality. Breaks in the slope emphasize the 
presence of more than one sub-population. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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the Weibull distribution is 

z(k)=
f (k)

1 − F(k)
=

β
λ

(
k
λ

)β− 1

(12) 

When β < 1, the slope dz/dk is negative and positive otherwise. 
In metallurgical terms, Weibull analysis provides an estimate of the 

distribution of microcrack length within a given object. If β is large, 
failure occurs over a narrow range of blows because cracks will go off 
nearly simultaneously. If β is small, cracks will go off and failure spread 

over a much larger number of blows. This is, for example, the case of 
brick. We therefore tested the statement that the die histograms (in blue, 
Fig. 3) are a mixture of two continuous Weibull p.d.f. The test was made 
on the cumulative distribution function, which has a non-decreasing, 
much smoother shape than the point density function. The function 
was fitted to the observed cumulated fraction of failed dies as a function 
of the number of coins struck using the expression: 

F(k) =ωF1(k) + (1 − ω)F2(k) (13)  
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where F1(k; β1, λ1) and F2(k; β2, λ2) are two Weibull c.d.f. (Eqn. (9)) and ω 
is a number such as 0 ≤ ω ≤ 1. This approach is in line with Callataÿ’s 
(1987, 2000, in press) suggestion of a mixed distribution controlled by 
infant mortality and metal fatigue, but with negative binomial p.d.f.‘s 
replaced by two Weibull p.d.f.‘s. The results listed in Table 2 have been 
obtained using the multi-dimensional ‘Levenberg-Marquardt’ algorithm, 
also known as damped least-squares, implemented by Matlab (e.g., 
https://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm). Some 
of the fits are shown in Fig. 7. 

The fit is, in general, remarkable but with occasional deviations at 
high multiplicity. The shape factors form two groups well centered 
around the values β1 = 0.79 and β2 = 2.4, which suggests a relatively 
stable die technology. The scale parameter λ1 is variable but does not 
correlate with the number of coins n, while λ2 ~ 0.6 n. The metal fatigue 

population is reduced in some data sets, e.g., Yehud obverses, 26 and 
209, which may reveal poorer control of die technology. Another 
remarkable observation is the relatively small range of ω, β1, and β2, 
which implies that the dies seem to all have a similar proportion of 
mishap and wear out following the same law. The Weibull modulus is 
invariant upon multiplication of k by a constant and therefore does not 
depend on the number of coins in the sample. The value β2 of the 
modulus is at least one order of magnitude lower than the values 
determined for modern steel and iron (Ono, 2019) and more in the range 
of modern ceramics and pottery (Meyers and Chawla, 2008; Ono, 2019). 
In general, ductile materials, such as copper and steel, have β values 
between 10 and 100, while lower values are associated with brittle 
metals and alloys. What is striking about these results is the large pro
portion, typically 75%, of dies classified as defective. Some workshops, 
for which the production is accounted for by a single population of dies 
with infant-mortality characteristics, may not have achieved full control 
of the art of producing super-productive dies or failed to hire dependable 
workers. 

Let us finally return to the models of Fig. 1 by drawing the distri
bution of coin frequency of a typical data set with n = 1000 coins, 54% 
of dies belonging to the population of infant mortality, β1 = 0.7 and β2 =

2.45, and λ1 = 80 and λ2 = 600 (Fig. 8). By typical is meant that these 
values represent a behavior common to the variety of cases depicted in 
Fig. 7. With cumulative coin output replacing time, it is clear that 
Callataÿ’s (1987) model C is the closest to observation, although, as a 
result of the pervasive infant mortality, with a less pronounced hump. 
Expressing this model as a function of die multiplicity would require 
assumptions on the distribution of lifetimes, which is beyond the scope 
of this work. 

The contrast between the two failure regimes provides a response to 
the smith dilemma: how to make dies that do not crack early but 
nevertheless resist deformation after thousands of blows? Tin-rich 
bronzes with Sn contents up to 20% are used for dies (Malkmus, 2008; 
Gitler and Ponting 2006; Blet-Lemarquand-Duval, 2012). All dies are 
melted so as to homogenize the alloy and remove bubbles, inclusions, 
and defects, which, after human error, are probably the main causes of 
early failure and infant mortality. Upon cooling, in addition to the 
ductile Cu–Sn solid solution, known as α-phase, high-tin bronzes crys
tallize a brittle component called δ phase (Saunders and Miodownik, 
1990). If a quenched bronze cast is tempered, i.e., reheated, the two 
phases separate by spinodal decomposition, a process of phase separa
tion by uphill diffusion, resulting in a hardened, cohesive alloy (Cribb 
and Ratka, 2002). Mao et al. (2018) showed that α dendrites substan
tially reinforce the strength of grain boundaries with the best result 
obtained for alloys with a peritectic composition of 22% Sn. While this 
truly magic proportion clearly was known to ancient metallurgists 
around the Mediterranean, how well tempering, which would have 
strongly affected die lifetimes, was understood is uncertain but was a 
critical factor of mint productivity. 

We arrive at the following findings:  

• The double die population hypothesis put forward by Callataÿ 
(1987) is confirmed for 23 out of 29 data sets. The populations of dies 
used to mint a particular issue are therefore intrinsically heteroge
neous: the two regimes of infant mortality and metal fatigue should 
be viewed as reflecting mechanically distinct populations. The pre
sent model allows this dichotomy, which has been discussed previ
ously in qualitative terms only (Callataÿ 1995, 2008, 2011), to now 
be handled in quantitative terms.  

• Semi-log plots of surviving dies vs cumulated output and failure rate 
plots demonstrate that almost every population participating in the 
mixture deviates from a simple geometric distribution. 

• Singleton abundances are not in general dependable estimates rele
vant to whole coinage issues, in particular not to the most productive 
part of a given coin population. The statistical properties of the metal 
fatigue groups are not revealed by the abundance of singletons, 

Table 2 
Results of fitting Eqn. (13) to the observed cumulated fractions of failed dies. ω is 
the fraction of the first population, λ1 its scale factor of population, and β1 its 
shape factor, with similar notation for population 2. n is the number of coins in 
the issue and res the mean squared deviation between the fitted values and the 
data. The Weibull modulus β is invariant upon multiplication of k by a constant. 
This is not the case of λ, and therefore no statistics on λ1 and λ2 are given. The 
samples have been ordered by increasing values of β1 to emphasize the data sets 
with β1 ~ 1 for which Esty’s (2011) singleton-based correction will remain 
accurate.   

ω λ1 β1 λ2 β2 n resa 

1997-147-Dr- 
Euboea 

0.57 68.6 0.521 610 1.72 1128 0.011 

180-Hemidr- 
Pharsalos 

0.58 34.4 0.594 245 1.97 437 0.0087 

68-Tetradr- 
Messana 

0.56 56.5 0.617 562 2.14 950 0.0069 

95-Tetradr- 
Syracuse 

0.49 57.9 0.62 336 1.56a 674 0.0095 

21-Didr-Tarent 0.63 61.6 0.687 516 2.04 897 0.0048 
44-Didr-Gela 0.59 106.8 0.688 485 2.01 870 0.0105 
99-Decadr- 

Syracuse 
0.53 28.3 0.697 220 1.66 424 0.0083 

Tetradr-Syracuse 0.59 186.3 0.703 914 2.27 1544 0.0074 
93-Tetradr- 

Syracuse 
0.61 138.6 0.719 639 2.43 978 0.0089 

6-Stat- 
Metapontum 

0.71 115.6 0.722 593 2.73 924 0.0081 

Yehud-Obv 0.94 200.7 0.729 253 2.06 1768 0.0033 
15-Didr-Velia 0.56 45.1 0.734 210 2.17 364 0.0072 
255-Didr- 

Pixodaros 
0.61 44.6 0.743 231 1.8 516 0.0044 

66-Tetradr- 
Messana 

0.54 79.9 0.766 358 2.45 575 0.0095 

19-Didr-Tarent 0.58 63.9 0.800 261 2.89 388 0.0097 
90-Tetradr- 

Syracuse 
0.57 132.4 0.812 570 2.59 924 0.0095 

26-Didr-Tarent 0.87 90.5 0.814 370 3.35 573 0.0058 
Crepusius 0.65 581.6 0.822 2443 2.76 3810 0.0098 
1997-12- 

Bruttium-den 
0.59 181.2 0.827 636 2.54 1000 0.0111 

198-Stat-Corinth 0.73 167.9 0.828 762 2.48 1302 0.0046 
24-Didr-Tarent 0.54 129.3 0.855 540 2.68 839 0.0060 
215-6thStat- 

Mytilene 
0.71 120.4 0.891 474 2.79 779 0.0037 

Tetradr- 
Alexander- 
Damascus 

0.61 88.8 0.909 303 2.48 493 0.0073 

197-Stat-Corinth 0.73 65.1 0.915 263 2.63 444 0.0035 
Censorinus 0.70 243 0.957 967 3.42 1418 0.0064 
Bursio-Rev den 0.72 626 0.862 116 5.23 2359 0.0306 
Bursio-Obv den 0.74 833 0.882 124 5.61 2359 0.0188 
Yehud-Rev 0.83 73.2 1.047 451 1.11a 1923 0.0017 
209-Dr-Sinope 0.86 81 1.345 316 2.74 594 0.0006 
average 0.63  0.79  2.43   
std dev. 0.13  0.16  0.46   

*Not included in the statistics. 
a (Mean squared error)1/2. 
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doubletons, or any member of the infant mortality group. For many 
data sets, this conclusion likely will have strong impact on the 
correction for missing dies using the theories and formulas devel
oped by Esty (1984). These formulas can, however, still be used by 
restricting the calculations to the sub-population corresponding to 
infant mortality (Fig. 5b) whenever the β1 value is close to unity, 
thereby hinting at a nearly geometric distribution, such as for the 
reverse Yehud and the Censorinus coinages. Likewise, keeping in 
mind that the geometric assumption is not in general appropriate, 
large data sets with fewer singletons and therefore high coverage, 
such as the Crespusius and Censorinus coinages, and set #90 of the 
Syracuse tetradrachms, should still provide adequate results for the 
missing die corrections. For the population as a whole, we do not at 
this time have any better suggestions as to how to account for the 
missing dies in a more robust way.  

• The die distributions among different multiplicities reflect efforts to 
accommodate two mutually conflicting needs: the reduction of infant 
mortality due to brittle failure of the bronze alloy used for dies, and 
the limitation of metal deformation during minting owing to alloy 
ductility. 

These results have implications for the commonplace numismatic 
strategy, which consists in three steps: (1) estimate the original number 
of dies and their multiplicity, (2) use the number of singletons and the 
formulas developed by Esty (1984) and Carter (1983, 1992) to assess the 
number of missing dies, and (3) multiply this number by the average 
number of coins a die is supposed to strike. The present results indicate 
that, even for well-documented samples, large proportions of singletons 
inevitably overestimate the number of struck coins. The infant-mortality 
population has little relevance to the remainder of coin production and 

0 500 1000
0

0.5

1
1-

(F
i(i)

68-Tetradr-Messana

0 500 1000
0

0.5

1
44-Didr-Gela

0 500 1000
0

0.5

1
1997-12-Bruttium denar

0 1000
0

0.5

1
Tetradr-Syracuse

0 500
0

0.5

1

1-
(F

i(i)

95-Tetradr-Syracuse

0 200 400
0

0.5

1
15-Didr-Velia

0 500
0

0.5

1
99-Decadr-Syracuse

0 200 400
0

0.5

1
19-Didr-Tarent

0 500
0

0.5

1

1-
(F

i(i)

180-Hemidr-Pharsalos

0 500 1000
0

0.5

1
21-Didr-Tarent

0 500
0

0.5

1
66-Tetradr-Messana

0 2000 4000
0

0.5

1
Crepusius

0 500 1000
0

0.5

1

1-
(F

i(i)

6-Stat-Metapontum

0 1000 2000
0

0.5

1
Yehud-Obv

0 500
0

0.5

1
Tetradr-Alex-Damas

0 1000 2000
0

0.5

1
Yehud-Rev

0 500 1000
Cumulated Nb of Coins

0

0.5

1

1-
(F

i(i)

90-Tetradr-Syracuse

0 500 1000
Cumulated Nb of Coins

0

0.5

1
198-Stat-Corinth

0 500
Cumulated Nb of Coins

0

0.5

1
215-6thStat-Mytilene

0 500 1000
Cumulated Nb of Coins

0

0.5

1
Censorinus

Fig. 7. Examples of fits of the mixed Weibull distribution (Eqn. (13)) to the observed cumulated fractions of failed dies vs the cumulated coin production. Blue: 
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this article.) 
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assigning large values (e.g., 20,000 coins per die, as commonly assumed 
for large Greek silver coinages) to singletons that actually failed early on 
may lead to erroneous results. The option of discarding from steps 2 and 
3 singletons for any sample with (n/d) > 7 (Fig. 2) is not justified and 
physically wrong. Such limitations may not significantly affect the 
best-documented samples (Table 1) such as the drachms of the Euboean 
League, for which production would be reduced by some 10% (25 x 20, 
000 instead of 28 x 20,000 coins). Consequences, however, may be 
much more dramatic for other data sets. For the Yehud coinage, tiny 
silver coins are characterized by a large proportion of singletons (36%, 
or 75 out of 208) despite an (n/d) ratio of 8.8. 

Understanding actual coinage production is key to understanding the 
strength of economy and its resilience to changing financial situations 
through war and trade (Patterson, 1972). The main limitation to 
furthering the understanding of monetary production remains the esti
mated average value of coin production, e.g., 20,000 coins per obverse 
die for large silver coins. The number 20,000 is widely used for Greek 
tetradrachms. The generally low ratios (n/d) obtained for Roman 
Republican denarii issues, despite their long-time circulation, have been 
assigned, at least in part, to a lower productivity than their Greek 
counterparts. In addition, die productivity also depends on coin weight 
and human metallurgical expertise and this must be kept in mind when 
dealing with different coinages such a Greek, Roman denarii, or Yehud. 
The respective roles of natural alloy failure and human error in deter
mining this number is unclear. Estimates are independent of the coins 
themselves and is derived from cross-checking various kinds of evi
dence, such as survival rates in the long range, historically favorable 
circumstances allowing to guess daily productivity, or the epigraphic 
record of Delphi for the Amphictionic coinage (Kinns, 1983). 

6. Conclusions 

This study has for the first time extracted the failure features of dies 
in view of a future, better, though yet-to-be-formulated die estimator 
than that currently in use of Esty (2011), which, as demonstrated here, 
can be applied only to some sub-populations, not data sets as a whole. It 

has further been shown that the Weibull distribution is a better fit than 
the geometric distribution, especially for Greek coinage, where, 
possibly, smiths did not yet fully master tempering, a technique which, 
in contrast, seems to have been skillfully operated for Roman Republic 
coinage, one to two hundred years later. The scarcity of die studies on 
Roman Republic silver coinage (Buttrey, 1976; De Ruyter, 1996; 
Debernardi, 2020) compared to the wealth of studies on its Greek 
counterpart and the near-absence of literary sources do not allow us to 
develop this particular point of ancient metallurgy, but hopefully the 
present work will foster numismatic interest for this period. 
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