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A review is presented of some discussions about the fully-heavy tetraquarks made of two charmed quarks and two anticharmed antiquarks, and other multiquark states involving some heavy flavors.

Introduction

Exotic hadrons is a delicate subject, and it is even difficult to admit that one is interested in the subject: Do not tell my mother that I am working on exotic hadrons, she thinks I am a pianist in a brothel 1 There have been, indeed, embarrassing ups and downs, both on the experiment and theory sides, with an interlaced share of responsibilities. See, e.g., [START_REF] Richard | Exotic hadrons: review and perspectives[END_REF][START_REF] Ali | Multiquark Hadrons[END_REF][START_REF] Brambilla | The XYZ states: experimental and theoretical status and perspectives[END_REF][START_REF] Richard | Hadrons and Few-Body Physics[END_REF], for a sketch of the history.

For instance, erroneous amplitude analyzes have led to speculate on the existence of exotic hyperons with positive strangeness, the so-called Z-baryons. It is nowadays acknowledged that a serious understanding of the KN system requires a minimal amount of spindependent measurements. Not surprisingly, the same authors have carried out somewhat questionable analyzes of the nucleon-antinucleon annihilation into two pseudoscalar mesons, tentatively leading to the existence of broad baryonium resonances.

More recently, there has been debates on the predictions of simple models. One can take, for instance, a simple pairwise, chromoelectric model

H = N i=1 p 2 i 2 M - 3 16 i< j λi . λ j v(r i j ) , (1) 
where M is the mass of the quark in the QQQQ system, λ, the color operator, and the factor such that the interaction is mediated by the exchange of a color octet, v(r) being the quarkonium potential. The question is whether or not the ground state lies below the threshold for spontaneous dissociation into two QQ singlets, and there are conflicting answers in the literature. If one cannot address and resolve safely that question, who will believe that our community can handle more ambitious approaches?

We should thus advocate for a careful treatment of the multiquark systems, even in the simplistic schemes. It took decades to the community of atomic and nuclear physics to device powerful tools such as the Faddeev-Yakubosky equations, or the hyperspherical expansion, or a variational calculation based on the correlated Gaussian (for refs., see, e.g., [START_REF] Richard | Hadrons and Few-Body Physics[END_REF]), thus enabling us to understand delicate structures such as the Efimov states, the positronium molecule, of the 3 Λ H hypernucleus. Who will reasonably believe that for an N-body, color-singlet, quark system governed by Eq. (1), one can solve for 2-body subsystems, iteratively, and never enter the cumbersome techniques of 3-body or 4-body dynamics? In other words, is any baryon made of a diquark and a quark, and any tetraquark a 2-body system made of a diquark and an antidiquark? A related question deals with the terminology: in the 70s, Chan H.M., and others, carefully named "diquonium" the very peculiar four-quark configuration with a strong clustering of the two quarks and of the two antiquarks, leaving room for other shapes [START_REF] Chan | Color Chemistry: A Study of Metastable Multi -Quark Molecules[END_REF]. Nowadays, the diquark lobby has imposed a cheeky confusion between tetraquark and diquonium.

Chromo-harmonic confinement

Let us consider a special case of (1) where M = 1 and v(r) = r 2 . Introducing the usual Jacobi variables

x = r 2 -r 1 , y = (2 r 3 -r 1 -r 1 )/ √ 3 , (2) 
and their conjugate momenta, the intrinsic part of H reads

H int = p 2 x + 3 4 x 2 + p 2 y + 3 4 y 2 , (3) 
while in a naive diquark approach, one first solves for the diquark with a potential x 2 /2, and then the diquarkquark system with a potential 3 y 2 /2. So the x part of the potential is lowered by 50%, and the corresponding energy by about 25%. It is easily seen that the comparison also holds for any quark-mass configuration MMm, whatever the mass ratio M/m is adopted. For tetraquarks, there are two independent color configuration to build a color singlet. We adopt here the notation of [START_REF] Chan | Color Chemistry: A Study of Metastable Multi -Quark Molecules[END_REF], namely T = 3-3 and M = 6-6 in the qq-q q basis. For a pure T state, the intrinsic Hamiltonian reads

H int = p 2 x + 3 4 x 2 + p 2 y + 3 4 y 2 + p 2 z + 1 2 z 2 , (4) 
and again, in a naive diquark approximation, the color factors 3/4 are replaced by 1/2, and this lowers artificially the energy. Actually, the chromo-harmonic Hamiltonian (4) was introduced by Gavela et al. [START_REF] Gavela | Exact selection rules for "chromo-harmonic" diquonium decay into mesons[END_REF], but in a different context. Their aim was to check the conjecture that the orbital excitations of the diquark-antidiquark system hardly decay into two mesons [START_REF] Chan | Color Chemistry: A Study of Metastable Multi -Quark Molecules[END_REF], and this is, indeed, the case in this model.

Fully-heavy tetraquarks

One can easily solve the Hamiltonian (4), with a ground state energy

E T 4 = 3 √ 3 + 1/ √ 2 7.32 , (5) 
which is far above the energy of two mesons, E th = 6 in this model. If one repeats the exercise with a color M configuration, one finds a lower energy

E M 4 = 3 √ 5 + √ 6 /2 7.03 (6) 
still above the energy of two mesons. If one accounts for the T -M mixing, as done first in [..], the energy is lowered but the system remains unbound.

Of course, the M configuration cannot be understood in a naive diquark model, as the diquark is seemingly unbound, with a color coefficient (-3/16) λ1 . λ2 = -1/4, while the exact handling of the Hamiltonian gives a potential energy 3/8(x 2 + y 2 ) + • • • in which the coefficient of x 2 is positive.

If one now solves the fully-heavy tetraquark (1) with another potential, for instance with v(r) = -a/r + b r, a > 0, b > 0, one also gets the results that the M configuration is more favorable than the T one, and the colormixing does not rescue the binding. It is also found that the spin-spin force is not strong enough to produce a stable tetraquark in the fully-heavy sector.

One might wonder why the chromo-electric Hamiltonian does not bind the tetraquark, while its atomicphysics analog produces a weakly bound positronium molecule [START_REF] Hylleraas | Binding energy of the positronium molecule[END_REF]. An explanation has been provided in [START_REF] Richard | Few-body quark dynamics for doubly heavy baryons and tetraquarks[END_REF]. Let us consider the class of models

h(λ) = p 2 i + (1/3 + 2 λ) [v(r 12 ) + v(r 34 )] + (1/3 -λ) [v(r 13 ) + v(r 14 ) + v(r 23 ) + v(r 24 )] , ( 7 
)
where v is attractive. After suitable numbering, it corresponds to the threshold made of two mesons or two atoms (λ = 1/3), to the Ps 2 molecule for v(r) = -1/r and λ = -2/3, to a T -color tetraquark for λ = 1/12 and a M one for λ = -7/24. In the Hamiltonian h, the cumulated strength of attraction is 2, but it is spread differently among the pairs, depending on λ. For λ = 0, the Hamiltonian is fully symmetric, and from the variational principle, the ground-state energy e(λ) is higher for λ = 0 than for any λ 0. The ground-state energy is a concave function of λ, since λ enters linearly the Hamiltonian [START_REF] Thirring | A course in mathematical physics 3: quantum mechanics of atoms and molecules[END_REF], so 0 < λ 1 < λ 2 or 0 > λ 1 > λ 2 implies e(0) > e(λ 1 ) > e(λ 2 ). This demonstrates rigorously that a T tetraquark cannot lie below the two meson threshold in this model. If one assumes that the energy e(λ) is nearly symmetric, for instance parabolic, near λ = 0, one gets the plausible, but not full rigorous, result that |λ 1 | < |λ 2 | implies e(λ 1 ) > e(λ 2 ), which means that Ps 2 is stable and the M-diquonium is not. Of course, the stability of Ps 2 is explained differently in the textbooks on quantum chemistry, but there is no contradiction: the asymmetries in the strength parameters induces some deformation of the two positronium atoms which then can adopt a configuration which favors the attractive pairs. When calculating the tetraquark energy, one always finds the tetraquark energy close to the meson-meson threshold, so one should refrain from any unjustified approximation that could create binding artificially. In the literature, one finds sometimes too large a removal of the center-of-mass energy. Also in the cluster approximation, one replaces, say, v(r 13 ) + v(r 14 ) by 2 v(r 1c ) where c is the center of the [START_REF] Ali | Multiquark Hadrons[END_REF][START_REF] Brambilla | The XYZ states: experimental and theoretical status and perspectives[END_REF] pair. If v(r) is Coulombic and the (3, 4) system isotropic, the replacement is exact, from the well-know Gauss theorem. For a linear potential, this is an antivariational approximation, which might lead to misleading conclusions about the stability.

The model ( 1) corresponds to a pairwise interaction, with a color-octet exchange. For the linear part, the b r potential in mesons can be understood as the energy of a flux tube going straight from the quark to the antiquark. For the baryons, it has been suggested long ago that the flux tube adopt the structure of a Fermat-Torricelli Yshape [START_REF] Artru | String model with baryons: Topology, classical motion[END_REF][START_REF] Dosch | On composite hadrons in nonabelian lattice gauge theories[END_REF] linking each quark to a "junction", which is a kind of signature of the baryon number [START_REF] Montanet | Baryonium Physics[END_REF][START_REF] Rossi | The string-junction picture of multiquark states: an update[END_REF], as schematically pictured in Fig. 1. The baryon phe- The choice is between the minimum of the two possible quark-antiquark links and the connected configuration with two junctions, and this provides more attraction than the λ. λ ansatz, leading to some stable multiquarks, for instance bb bb , where b is fictitious heavy quark, different from the b quark by having the same mass or nearly the same mass. But it does not work for bb bb with identical b, since the rearrangement of the flux tubes in Fig. 2 implies changing freely the internal color wave function. It remains that there is some attraction between two quarkonia, possibly leading to resonances, which might explain the signal recently seen by LHCb [START_REF] Aaij | Observation of structure in the J/ψpair mass spectrum[END_REF]. In the quark model, one needs dedicated techniques to describe resonances, and these techniques differ from the ones used for bound states. For instance a group has shown that for the pentaquark QQqqq, the method of real scaling (sometimes called stabilization) enables to separate clearly the resonances from the background of states mimicking the continuum. This method, or another one, has to be applied to cccc configurations to confront the LHCb results.

Open-flavor tetraquarks

Another way to fight against the instability is to introduce some favorable symmetry breaking. It is well known that any asymmetry lowers the energy of the ground state. For instance, the one-dimensional harmonic oscillator h(α) = p 2 + x 2 + α x has an energy smaller than the energy for α = 0. This can be seen by direct calculation or by applying the variational principle, using as trial function the solution of the even part of h(α). This reasoning holds whenever a symmetry is broken: parity as in the above example, permutation symmetry, charge conjugation C, etc. When one deals with few-body systems, symmetry breaking usually lowers both the ground-state energy of the whole system and the energy of its threshold. But it often happens that the latter benefits more from the asymmetry, and thus that the stability is deteriorated by the symmetry breaking. For instance, if one breaks particle identity in e + e + e -e -, one observes that [START_REF] Bressanini | Stability of four-body systems in three and two dimensions: A theoretical and quantum monte carlo study of biexciton molecules[END_REF][START_REF] Varga | Recent applications of the stochastic variational method[END_REF].

M + m -M + m - becomes unbound if M/m 2.2 (or, of course, M/m 1/2.2)
The most favorable situation occurs for the breaking of C, as the threshold energy remains constant. Consider, indeed,

H = 1 2 M ( p 2 1 + p 2 2 ) + 1 2 m ( p 2 3 + p 2 4 ) + V . (8) 
It can be decomposed as

H = H 0 + H 1 , H 0 = 1 4 M + 1 4 m p 2 1 + p 2 2 + p 2 3 + p 2 4 + V , H 1 = 1 4 M - 1 4 m p 2 1 + p 2 2 -p 2 3 -p 2 4 . (9) 
From the variational principle, the ground state energies fulfill that E(H) < E(H 0 ), while H and its symmetric part H 0 have the same threshold. Thus the stability is improved if one starts form a symmetric Ps 2 in atomic physics, and in quark model calculations, the stability is reached for M/m large enough. The possibility of binding doubly-flavored tetraquark QQ q q tetraquark has been suggested many years ago, confirmed by several studies, and recently revisited, though in some of the latest contributions, the early references are advertently or inavertently omitted. See, e.g., [START_REF] Richard | Exotic hadrons: review and perspectives[END_REF] for refs.

For QQū d with J P = 1 + , the above chromoelectric mechanism is reinforced by a favorable interaction in the light sector. There is now a consensus that bbū d is stable. For ccū d, a calculation by Rosina et al. [START_REF] Janc | The T (cc) = DD * molecular state[END_REF], later improved by Barnea et al. [START_REF] Barnea | Four-quark spectroscopy within the hyperspherical formalism[END_REF], finds it stable, but this is somewhat model dependent. Note that in a naive diquark treatment, there is an excess of attraction due to the simplified dynamics, as already stressed, and also a lack of attraction due to the neglect of the M color component, so that in some cases, there is a fortuitous cancellation of errors.

Pentaquarks

We already mentioned the LHCb pentaquarks and the interesting attempts to describe them in a quark model with the method of real scaling. One should stress that other flavor or spin configurations are predicted, for instance ccsqq. In Ref. [[20], it was pointed out that some states with higher spin or isospin than the LHCb pentaquarks might be bound, by a subtle cooperative effect of both chromelectric and chromomagnetic interactions. Such states should be searched for in dedicated final states that do not always involve a J/ψ.

Heavy hexaquarks

Last year a very interesting lattice QCD calculation was published, claiming that the some fully-heavy hexaquarks are stable with respect to their lowest threshold for dissociation into two baryons [START_REF] Junnarkar | Deuteronlike Heavy Dibaryons from Lattice Quantum Chromodynamics[END_REF], for instance

cccbbb < bbb + ccc . ( 10 
)
This result motivated other studies. In [START_REF] Richard | Very heavy flavored dibaryons[END_REF], a potential model was adopted, and the six-body problem solved carefully. No bound state was found. So the question remains open, and, of course, theorists have plenty of time to debate before such very exotic states could be searched for experimentally.

In potential model calculations, one can study how bbbccc behaves when one starts from equal masses m b = m c , in which case the hexaquark is unbound, and let m b increase and m c decrease: it is found that the hexaquark benefits less from the symmetry breaking than its threshold bbb + ccc.

To repeat the reasoning that was made earlier for tetraquarks, the lack of binding for the equal-mass case QQQQQQ comes from that the potential is distributed equally among all pairs, while in the threshold QQQ + QQQ, only 6 out of the 15 pairs experience a potential v(r)/2, in the notation of (1), while the interaction is switched off for the 9 other pairs.

Outlook

In recent years, new configurations have been accessed, and the results have stimulated many interesting studies. In constituent models, the early speculations on multiquarks have been focused on the chromomagnetic part of the interaction. It is now realized that the chromoelectric part can also be a source of binding, when the masses are arranged optimally. The differences and analogies with few-charge systems in atomic physics provide a deeper understanding of the quark dynamics in exotic hadrons.

The concept of diquark remains controversial. As an approximation to the quark model, it is definitely ruled out. As a kind of effective constituent, it provides a tempting simplification. However, one of the appealing aspects of QCD is its non-Abelian nature, which invites to a collective dynamics where all constituents contribute. Freezing out subsystems spoils the subtlety of the binding mechanisms.

In the course of the studies of baryons and multiquarks, and in the survey of the abundant literature, one also realizes how powerful and how forgotten is he Born-Oppenheimer approximation. For a doubly-heavy baryon QQq, one can derive an effective QQ interaction which generates at once the lowest levels. Amazingly, the QQ effective potentials of QQq and QQ q q are rather similar, though there is no pronounced antidiquark clustering of the light antiquarks. 2 This is perhaps there the true diquark effect, or quark-antidiquark symmetry. Anyhow, the almost exact identity of the QQq and QQ q q Born-Oppenheimer potentials explains the inequalities written down in [START_REF] Eichten | Heavy-quark symmetry implies stable heavy tetraquark mesons Q i Q j qk ql[END_REF]. After all, in the spectroscopy of heavy quark systems, almost everything is governed by a Born-Oppenheimer scheme. The quarkonium potential is the effective QQ potential corresponding to the gluon energy at given Q-Q separation, the next potential generating the hybrids [START_REF] Hasenfratz | The Effects of Colored Glue in the QCD Motivated Bag of Heavy Quark -anti-Quark Systems[END_REF]. When light q q pairs take over on the gluons, one gets a picture of the XYZ mesons, or at least some of them [START_REF] Braaten | Born-Oppenheimer Approximation for the XYZ Mesons[END_REF]. But, perhaps, open flavor exotics are even more suited for implementing Born-Oppenheimer in the dynamics.
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 1 Figure 1: Schematic representation of the linear confinement for mesons (left) and baryons (right)

Figure 2 :

 2 Figure 2: Schematic representation of the linear confinement for tetraquarks: flip-flop (left) and connected string (right)

In contrast, the ppe -and ppe -e -Born-Oppenheimer are rather different in atomic physics, as in one of the cases, the pp pair is not neutralized by the light cloud surrounding it.
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