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The present epoch of accelerated cosmic expansion is supposed to be driven by an unknown
constituent called dark energy, which in the standard model takes the form of a cosmological constant,
characterized by a constant equation of state with w ¼ −1. An interesting perspective over the role and
nature of dark energy can be achieved by drawing a parallel with a previous epoch of accelerated
expansion, inflation, which we assume to be driven by a single scalar field, the inflaton. Since the Planck
satellite has constrained the value of the scalar spectral index ns away from 1, the inflaton cannot be
identified with a pure cosmological constant, as is also suggested by the fact that inflation ended. Thus, it
is interesting to verify whether a hypothetical observer would have been able to measure the deviation of
the equation of state parameter of the inflaton from −1. To do so, we consider a class of single-field slow-
roll inflationary models dubbed HSRfig, where the hierarchy of Hubble slow-roll parameters is truncated
at the ith order. The models are tested through a Markov chain Monte Carlo analysis based on
combinations of the latest Planck and BICEP2/Keck data sets, and the resulting chains are converted into
sets of allowed evolution histories of w. HSRf1g is excluded observationally since it would predict that
ns ¼ 1, in contrast with the recent Planck constraints, while we find that HSRf2g would prefer w > −1,
but is disfavored by the addition of the BICEP2/Keck data. The overall best description for the data is
provided by HSRf3g, which yields a 68% upper bound of 1þ w < 0.0014. Therefore, if the current era
of accelerated expansion happens to have the same equation of state as inflation during the observable
epoch, then current and upcoming cosmological observations will not be able to detect that w ≠ −1. This
provides a cautionary tale for drawing conclusions about the nature of dark energy on the basis of the
nonobservation of a deviation from w ¼ −1.

DOI: 10.1103/PhysRevD.104.023522

I. INTRODUCTION

The observational evidence for the accelerated expansion
of the Universe [1,2] led to postulating the existence of a
cosmic source with a negative pressure, the so-called dark
energy. In the framework of the standard cosmological
model, dark energy takes the form of a “cosmological
constant”, with symbol Λ, which is interpreted as a vacuum
energy with a homogeneous distribution in time and space
and is characterized by a constant equation of state
w≡ p̄=ρ̄ ¼ −1. While its abundance at the present time

is well constrained by observations, yielding approximately
68.9% of the total cosmic energy density [3], its nature and
properties are poorly understood, making it one of the key
issues in modern theoretical physics.
As already suggested in a previouswork [4], an innovative

approach to investigate the role of dark energy consists in
drawing a comparison with a postulated earlier epoch of
accelerated expansion in the history of the Universe; cosmic
inflation [5]. Inflation is thought to have led to a rapid
increase of the cosmic scale factor some time before big bang
nucleosynthesis and, in the simplest description, to have been
driven by a single scalar field, often dubbed inflaton. While
the inflaton can indeed be interpreted as a form of dynamical
dark energy, it cannot be identified with a pure cosmological
constant with w ¼ −1, since it is thought to have rapidly
decayed away at the end of inflation. Thus, the question
arises whether the equation of state parameterw significantly
deviated from −1 during the inflationary era, allowing a
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hypothetical observer to appreciate the difference with
respect to a pure cosmological constant.
In order to constrain the evolution of w during inflation,

it is necessary to link it to an observable. The temperature
and polarization anisotropies in the cosmic microwave
background (CMB) radiation turn out to be ideal candi-
dates, since they are thought to mirror the primordial
curvature perturbations generated in the inflationary epoch.
In recent years, these anisotropies were characterized with
high precision, among others, by the Planck mission [6],
yielding strong cosmological constraints from the temper-
ature and polarization maps of the CMB. In this study, we
carry out a Monte Carlo Markov chain analysis with the
Planck likelihoods from the final 2018 data release [6,7]
and the joint BICEP2/Keck-WMAP-Planck likelihood of
[8], which we expect to provide complementary informa-
tion. Overall, we aim to update the results obtained in [4]
with the most recent data sets and, additionally, we choose
to broaden the previous analysis by distinguishing among
three single-field inflationary models with the common
assumption of slow roll. The constraints on w and the
cosmological implications will be discussed in each case
and the best-fitting model will be identified on the basis of
Bayesian model selection [9].

II. THEORETICAL FRAMEWORK

A. The equation of state of the inflaton

Throughout our analysis, we assume that inflation was
driven by a single scalar field, the inflaton ϕ, and that it
lasted for longer than approximately 60 e-foldings. This
allows us to consider the Universe as spatially flat and to
neglect any contribution to the total energy density ρ other
than that coming from the inflaton itself. Under these
assumptions, we adopted the modeling proposed in [4] in
order to relate the equation of state parameter w of the
inflaton to standard inflationary quantities. As already
pointed out in [4], this can be achieved by considering
the Hubble parameter H ≡ _a=a as the reference quantity
instead of the inflaton potential VðϕÞ. Since the total energy
density is dominated by the inflaton, this allows us to
directly link the equation of state parameter w to the
expansion rate, instead of expressing it in a less convenient
form in terms of the pressure and energy density of the
inflaton. Through this approach, the equations of motion
yield the following expression

1þ w ¼ −
2

3

_H
H2

; ð1Þ

where dots indicate (cosmic) time derivatives. This relation
can be further rewritten by introducing a hierarchy of
“Hubble slow-roll” (HSR) parameters ξn within the
Hamilton-Jacobi formalism [10], under the standard

assumption of slow roll [5]. We employ the hierarchy that
was originally introduced in [11] and choose to adopt the
same notation as in [12], where the first three parameters
are written as

ξ1ðϕÞ≡ ϵHðϕÞ ¼ 2M2
Pl

�
H0ðϕÞ
HðϕÞ

�
2

; ð2Þ

ξ2ðϕÞ≡ ηHðϕÞ ¼ 2M2
Pl
H00ðϕÞ
HðϕÞ ; ð3Þ

and

ξ3ðϕÞ≡ ζHðϕÞ ¼ 4M4
Pl
H000ðϕÞ
HðϕÞ

H0ðϕÞ
HðϕÞ : ð4Þ

Here, primes denote derivatives with respect to ϕ, MPl ≡
1=

ffiffiffiffiffiffiffiffiffi
8πG

p
is the reduced Planck mass, with G being

Newton’s constant, and we have set c ¼ ℏ ¼ 1 (G is set
to one as well further in our analysis). We note that each
successive parameter in the hierarchy contains a derivative
of H one order above the previous one.
By employing one of the results of the Hamilton-Jacobi

formalism,

_ϕ

2
¼ −M2

PlH
0; ð5Þ

together with Eqs. (1) and (2) and H0 ¼ _H= _ϕ, we obtain

1þ w ¼ 2

3
ξ1; ð6Þ

which provides the crucial link between w and a standard
inflationary quantity. Additionally, it can be shown that the
tensor-to-scalar ratio r and the scalar spectral index ns can
also be written in terms of the first two HSR parameters up
to the lowest order in slow roll (see e.g., [13])

r ¼ 16ξ1 ð7Þ

and

ns − 1 ¼ 2ξ2 − 4ξ1: ð8Þ

An interesting conclusion that can be a priori drawn from
Eq. (8) is that, since the Planck results have constrained the
value of ns away from 1 at the 8σ level [3], either ξ1 or ξ2
must be nonzero. Thus, Eq. (6) and the definition of the
HSR parameters imply that we must require that either
w ≠ −1 or dwdt ≠ 0 during inflation, in both cases ruling out a
pure cosmological constant with w ¼ const: ¼ −1.
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B. Inflationary models

The evolution of w, given by Eq. (6), was studied in
the context of three single-field inflationary models, with
the common underlying assumption of slow roll. Following
[12], we considered a Taylor expansion of the Hubble
parameter H around an arbitrary pivot value of the
inflaton ϕ�,

Hðϕ − ϕ�Þ ¼
Xn
i¼0

Ĥiðϕ − ϕ�Þn: ð9Þ

The Taylor coefficient of nth order can be expressed in
terms of the first n HSR parameters evaluated at ϕ� and an
additional parameter, which we denote as ξ�0,

ξ�0ðϕÞ≡ H4ðϕÞ
64H02ðϕÞM2

Pl

����
ϕ�

: ð10Þ

We find the following useful relations for the first four
Taylor coefficients, where we use the shortened notation ξ�n
for the HSR parameters evaluated at ϕ�:

Ĥ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π × ξ�0 × ξ�1

p
Ĥ1 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π × ξ�1

p
× Ĥ0

Ĥ2 ¼ 4π × ξ�2 × Ĥ0

Ĥ3 ¼ 4π × ξ�3 ×
Ĥ2

0

Ĥ1

: ð11Þ

In this study, we chose to truncate the Taylor series for
HðϕÞ in Eq. (9) at an order varying between one and three,
thus distinguishing between models with two, three and
four nonzero HSR parameters respectively.1 The zeroth-
order approximation was excluded, since, according to
Eq. (8), a null value of the first two HSR parameters would
imply ns ¼ 1 [and additionally w ¼ −1 via Eq. (6)], while
the latest Planck observations [3] constrain the value of ns
away from 1 by more than 8σ. In the following, we will
employ the labels HSRf2g, HSRf3g and HSRf4g, such
that the HSRfng model corresponds to the case where the
nth HSR parameter ξ�n is the first in the series to be set
to zero.

III. NUMERICAL INVESTIGATION

A. Data sets and tools

In order to constrain the aforementioned models (and
their respective parameters), we use the public Planck
likelihood code and associated data sets,2 namely the latest
2018 release containing the final temperature and

polarization (both E and B modes) measurements from
the satellite [6]. We consider both the low- and high-
multipole (l) data as well as the likelihood associated to the
lensing convergence map extracted from the same mea-
surements [7]. Additionally, as an alternative to the Planck
low-multipole B-mode polarization data, we also consider
the joint BICEP2/Keck-WMAP-Planck likelihood of [8],
which provides significantly more stringent constraints and
should noticeably affect our results. Three data set combi-
nations are considered thereafter:

(i) Planck low-l T=E=B likelihood and high-l
TT=TE=EE likelihoods (dubbed P18all here)

(ii) Planck low-l T/E likelihood, high-l TT=TE=EE
likelihoods, and low-lBICEP2=Keck (P18þ BK15)

(iii) Planck low-lT=E likelihood, high-lTT=TE=EE
likelihoods, low-lBICEP2=Keck, and Planck lens-
ing likelihood (P18þ lensþ BK15)

We investigate the constraints on our models from this
choice of data sets using a standard Markov Chain
Monte Carlo (MCMC) approach. For this purpose we
use ECLAIR, a publicly available3 suite of codes, which
interfaces with the popular CLASS Boltzman code [17] and
combines its outputs with likelihoods from state of the art
data sets, while using efficient MCMC sampling methods.
A detailed description of ECLAIR can be found in the
Appendix of Ilić et al. [18], and we only summarize briefly
its main features. To sample the parameter space, ECLAIR
uses the Goodman-Weare affine-invariant ensemble sam-
pling technique [19] via the Python implementation emcee
[20]. The convergence of the MCMC chains is assessed
using graphical and numerical tools included in the
ECLAIR code package. The resulting chains are then used
to determine the marginalized posterior distributions of the
parameters using the publicly available Python module
getdist [21].

B. Postprocessing

For each tested model, the MCMC chains for the
nonzero ξ� parameters were fed as inputs to an independent
Python code computing the equation of state parameter w
as a function of the value of the inflaton ϕ and the wave
number k of CMB perturbations. In order to achieve this,
the expression for HðϕÞ was reconstructed according to
Eqs. (9) and (11) and was then used to derive wðϕÞ from
Eqs. (2) and (6). As an example, Fig. 1 shows the set of
extrapolated wðϕÞ functions obtained for the HSRf3g
model with the P18all likelihood. The range of ϕ values
varies for each choice of parameter values and decreases as
w becomes more negative. The physical interpretation of
this behavior is that the inflaton rolls more and more slowly
along the shape of the potential, until it “freezes” for
w ¼ −1. This is due to the fact that, according to Eq. (6),

1These truncations are somewhat reminiscent of the flow-
equation approach, see e.g., [14–16].

2Available at pla.esac.esa.int 3github.com/s-ilic/ECLAIR
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the more w approaches −1, the closer ξ1 will be to zero,
yielding a more and more extreme slow-roll regime.
This feature makes the constraints on w rather difficult to

interpret from the wðϕÞ plots. A clearer representation can
instead be obtained in k space, as shown in Fig. 2 for all
combinations of tested models and likelihoods. The wðkÞ
functions can be obtained by associating a k value to a
given ϕ through the “horizon-crossing condition” [22],
yielding the (comoving) scale at which the CMB pertur-
bations cross the Hubble radius and thus become cosmo-
logically relevant

k ¼ aHðϕðaÞÞ; ð12Þ

where a is the scale factor.
These computations require us to select an interval of

scales of interest. Figure 17 from [23] suggests that the
range that is accessible to observations by the Planck
satellite approximately lies between 10−3 and 10−1 Mpc−1.
Thus, we adopted the interval proposed by [12],
½kmin; kmax� ¼ ½2 × 10−4; 0.1� Mpc−1, which encloses the
observable range and also allows us to test the overall
behavior right outside of it. The pivot scale for the
primordial power spectrum was set to the standard value
in CLASS, k� ¼ 0.05 Mpc−1. On the other hand, the range
of tested ϕ values can be derived by obtaining an
expression for da

dk from Eq. (12) and integrating dϕ
dk ¼

dϕ
da

da
dk over the chosen k range. Thus, while the interval in

k is fixed, the one in ϕ depends on the reconstructed
functional form of H and, consequently, on the sampled
point in the parameter space.
From the values of the HSR parameters for each entry in

the MCMC chains, we also obtain the primordial scalar
spectral amplitude As, the scalar spectral index ns, and the
scalar-to-tensor ratio r as outputs of the CLASS Boltzmann
code. For our models, we find that these outputs agree with
the expression for r in Eq. (7), while the one for ns − 1 in
Eq. (8) has small corrections for HSRf4g due to higher-
order contributions.

C. Constraints from the MCMC analysis

The reconstructed constraints on wðkÞ obtained for the
three tested models are shown in Fig. 2 and listed in Table I.
The full one- and two-dimensional posterior distributions

FIG. 1. The evolution of the equation of state parameter w as a
function of the value of the inflaton field ϕ for the HSRf3gmodel
and the chains obtained with the P18all likelihood. Each line
corresponds to the function derived for one sampled point in the
parameter space.

FIG. 2. The evolution of w as a function of the comoving wave number k at horizon crossing, for each possible pairing of our three
tested inflationary models (left, middle and right panels) and three combinations of likelihoods (shown in blue, orange and green). The
shaded areas correspond to the 68% confidence intervals and the dotted lines indicate the 95% ones.
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on model (and derived) parameters are given in Fig. 3 in the
Appendix.
We immediately notice a strong dependence of the

results on the model choice; for HSRf2g, we detect a
clear deviation from w ¼ −1, while the w-posterior for
HSRf3g and HSRf4g are compatible with w ¼ −1.
Moreover, the results for HSRf4g show a flaring up of
the errors towards the limits of the chosen k range. In the
following, we will discuss these features in turn.

1. HSRf2g model

The detection of w ≠ −1 in the HSRf2g model can be
interpreted as being mainly related to the equilibrium
between the preferred values of the scalar spectral index
ns and the tensor-to-scalar ratio r. In fact, since ξ2 is zero in
this model, a nontrivial value of ξ1 is solely responsible for
pushing ns away from one in Eq. (8), as required by
observations. This also yields r ≠ 0 according to Eq. (7),
which would imply nonzero tensor perturbations. While
this is not a priori impossible, no unambiguous evidence
for gravitational waves has ever been found in previous
studies, suggesting that the data would instead prefer
smaller values of r. This results in opposite effects pushing
r both towards and away from zero at the same time and an
equilibrium is reached for a value of ns slightly closer to
one than in the other models and a nonzero ξ�1.

2. HSRf3g model

When allowing ξ�2 to vary in the HSRf3gmodel, ns and r
(equivalently w) are no longer strongly correlated. In this
case ξ�1, which governs the r and w constraints, is able to
reach zero, which is the value preferred by the data
according to the marginalized constraints. On the other
hand, ξ�2 is correlated with ξ

�
1, so that in particular the linear

combination ξ�2 − 2ξ�1, which is proportional to ns − 1

according to Eq. (8), is always nonzero.
The fact that the posterior shifts strongly when a new

parameter is added is an indication that the more complex
model HSRf3g is preferred. As we will discuss below, this
is however not a sufficient condition when using Bayesian
model comparison due to the “Occam’s razor” factor
inherent in this approach.
Nonetheless, based on the model comparison performed

in Sec. III D, we consider the HSRf3g model the most

appropriate choice within our model classes. We note that
the resulting 68% upper bound of 1þ w < 0.0014 signifi-
cantly improves the result obtained in the previous study
from [4].

3. HSRf4g model

The resulting bound on w is similar to the HSRf3g
model but weaker, reflecting the addition of a free param-
eter. In this case, however, the value of w blows up at the
boundaries of the chosen k interval, as can be noticed from
Fig. 2. This result indicates that only a subset of the interval
is constrained by the data, an interpretation that is con-
sistent with the constraints on the observable Planck scales
from [23]. Moreover, the posterior distributions in Fig. 3
show that setting ξ�3 to zero is compatible with the
constraints, suggesting that this model is disfavored.
Nevertheless, it is again necessary to turn to model
comparison for a more quantitative check.

D. Bayesian model comparison

In order to quantitatively identify the model providing
the ‘best’ description, we employ the tools of Bayesian
model probability. In particular, we compute the Bayes
factor, which, given two models M1 and M2, is defined as
the ratio of marginal likelihoods

B12 ¼
PðDjM1Þ
PðDjM2Þ

: ð13Þ

Here, PðDjMiÞ is the probability of observing dataD in the
modelMi. If all models are equally likely a priori, this ratio
also corresponds to the relative model probability, such that
model M1 is favored for B12 > 1, while M2 is preferred in
the opposite case. We underline that the Bayes factor
should be seen as ‘betting odds’ and can be interpreted
according to Jeffreys’ scale [24], which roughly states that
jlog10 B12j > 1 can be considered as strong evidence and
jlog10 B12j > 2 as decisive.
In general, the quantity B12 is rather difficult to obtain.

However, the computations are simplified in the special
case of nested models, i.e., when a more complex model
M1 with (for simplicity) one extra parameter p becomes
equivalent to a simpler modelM2 when p is set to a specific
value p�. In this case, the Bayes factor can be obtained
through a procedure often dubbed Savage-Dickey Density
Ratio (SDDR), (see e.g., [25]) for a common parameter
vector q, the Bayes factor between the two models is
simply the ratio of the prior to the posterior for the
parameter p at the nested point, marginalized over the
common parameters q,

B12 ¼
Pðp ¼ p�jM1Þ

Pðp ¼ p�jM1; DÞ : ð14Þ

TABLE I. 95% confidence limits on 1þ w for all combinations
of the different models and likelihood sets considered.

HSRf2g HSRf3g HSRf4g
P18all 0.0050� 0.0013 <0.0042 <0.0059
P18þ BK15 0.0044� 0.0012 <0.0026 <0.0028
P18þ lensþ BK15 0.0045� 0.0012 <0.0025 <0.0029
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The SDDR makes a key point of Bayesian model com-
parison quite explicit; if the probability of p ¼ p� in the
posterior is very small, then the more complicated model
will be favored, as in the usual relative goodness of fit
comparison between the two models. However, even if the
simpler model provides a slightly worse fit, it can receive a
significant boost from the numerator of Eq. (14) if the prior
is much wider than the posterior. This is often called the
“Occam’s razor” factor.
In our analysis, the model HSRfng is always nested in

the model HSRfnþ 1g and corresponds to the case where
the parameter ξ�n is set to zero. Therefore, we can always
employ the SDDR in order to compute the Bayes factor,
which requires to select a prior on the nesting parameter ξ�n.
Since we would naturally expect the slow-roll parameters to
be smaller than, but generally of order one, a possible
choice is to use a flat prior on the range ½−1; 1�. However,
since we also expect these parameters to be ‘small’ during
slow roll, it makes sense to also consider narrower priors in
the form ½−A; A�, where A ≪ 1. In this study, we choose to
adopt A ≈ jns − 1j ≈ 0.04, since the deviation from a scale-
invariant spectrum provides an observational characteriza-
tion of the order of the slow-roll parameters during the
relevant period for our analysis. According to the SDDR in
Eq. (14), it is obvious that the Bayes factor in favor of the
simpler model for a prior with width 2A is equal to 1=A
times the Bayes factor of width 2, such that the narrower
prior given above makes the simpler model 25 times less
favored relative to the wide prior.
Table II contains the Bayes factors for all HSR models

for the selected flat priors widths ½−1; 1� (the ‘wide prior’
case) and ½−0.04; 0.04� (the ‘SR prior case’), always
relative to the simplest model, HSRf2g. We also give

the relative best-fit χ2 value for the models, even though we
underline that the χ2 difference is in general not a good
model comparison quantity, since a more complicated
nested model necessarily always has a lower minimal χ2

[i.e., it corresponds to the denominator part of Eq. (14)
only].

1. HSRf2g vs HSRf3g
When considering the P18all likelihood, the normalized

posterior for HSRf3g at ξ�2 ¼ 0 (i.e., the point where
HSRf3g is nested in HSRf2g) marginalized over all other
parameters is

Pðξ�2 ¼ 0Þ ¼ 5.55 for P18all: ð15Þ

The normalized prior on ξ�2 is equal to 0.5 (wide prior) or
12.5 (SR prior). Therefore, this results in a Bayes factor of
11.1 in favor of HSRf2g (the simpler model) for the wide
prior, and of 2.3 in favor of HSRf3g for the SR prior,
indicating either a strong preference for the simpler model
or an effectively undecided outcome, depending on the
prior width.
The fact that the HSRf2g model is preferred over the

HSRf3g model for the wide prior may appear surprising,
given that the HSRf3g fits the data better, with a Δχ2 ¼
−5.9 for a single extra parameter. As mentioned above, this
is due to the “Occam’s razor” factor; the 95% constraint on
ξ�2 in HSRf3g is

ξ�2 ¼ −0.013þ0.010
−0.008 for P18all; ð16Þ

which is much narrower than the priors, in particular than
the wide prior. This significant shrinking of the parameter
space into a region ‘close’ to the simpler model prediction
boosts the relative probability of HSRf2g and makes it
competitive with the HSRf3g model. This is particularly
interesting because HSRf2g gives radically different results
from the other models, yielding w ≠ −1 and consequently
leading to a ‘detection’ of primordial gravitational waves.
A solution to this impasse consists in including addi-

tional trustworthy data sets that are compatible with the
already used ones. In the P18þ BK15 data set, we chose
to add the low-l BICEP2=Keck data that constrains the
B-modes of the CMB polarization much better. We addi-
tionally considered the P18þ lensþ BK15 data set, with
the inclusion of the Planck lensing likelihood, but we find
that the results obtained in this case are qualitatively similar
to P18þ BK15.
Table II clearly shows that the χ2 difference between

HSRf2g and HSRf3g is much larger for P18þ BK15,
suggesting that the goodness of fit component of the SDDR
will now indeed favor HSRf3g more. Indeed, we find that

TABLE II. Bayes factors Bfigf2g and Δχ2 values between the
different HSRfig models considered here, always relative to the
HSRf2g model. The ‘wide prior’ case corresponds to a prior of
½−1; 1� on all slow-roll parameters, and the ‘SR prior’ case to a
prior of ½−0.04; 0.04�.
Model=data Bfigf2g [wide] Bfigf2g [SR] Δχ2

P18all
HSRf2g 1 1 0
HSRf3g 0.090 2.3 −5.9
HSRf4g 0.011 2.3 −6.5
P18þ BK15
HSRf2g 1 1 0
HSRf3g 1.3 31 −13.4
HSRf4g 0.14 33 −14.0
P18þ lensþ BK15
HSRf2g 1 1 0
HSRf3g 2.4 61 −13.8
HSRf4g 0.22 62 −14.0
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Pðξ�2 ¼ 0Þ ¼ 0.40 for P18þ BK15: ð17Þ

The resulting Bayes factors are then 1.3 (wide prior) and 31
(SR prior), both in favor of HSRf3g. While the choice of
wide prior still does not lead to a significant preference for
HSRf3g, the SR prior choice now strongly favors HSRf3g
over HSRf2g according to Jeffreys’ scale. The addition of
the Planck lensing data strengthens this preference by about
a factor of two and, while this does not qualitatively change
the outcome, it reinforces our view that HSRf3g should be
preferred over HSRf2g. Additionally, HSRf3g could be
considered more natural than HSRf2g, as both ξ1 and ξ2
contribute to ns at leading order in slow roll according
to Eq. (8).

2. HSRf4g and models with more parameters

We again begin by considering the P18all data set,
yielding

Pðξ�3 ¼ 0Þ ¼ 4.0 for P18all ð18Þ

for the normalized posterior at the point where HSRf3g is
nested in HSRf4g. This looks comparable to the result in
the previous subsection, but the situation is actually some-
what different. In fact, the 95% confidence bounds on the
extra parameter are now

ξ�3 ¼ 0.06� 0.09 for P18all ð19Þ

i.e., the value of ξ�3 is well compatible with zero, but the
error bars are wider, such that the value of the normalized
posterior at the peak is lowered with respect to above.
Including further data sets does not significantly change the
situation. This reflects another property of the Bayes factor
that can be well understood from the SDDR; if we add a
completely unconstrained parameter (for example one
which the problem at hand simply does not depend on),
the posterior will be equal to the prior. In that case, Eq. (14)
implies that B12 ¼ 1, i.e., the Bayes factor does not
distinguish between the two models and, in general, the
simpler model should be taken as the preferred one.
Therefore, even though the HSRf3g model is only favored
by a factor of 8 with the wide prior and yields Bf4gf3g ¼ 1.0
with the SR prior for the reason explained above, we
consider HSRf3g as the model providing the ‘best’
description to the data.
We can also compute the Bayes factor between HSRf4g

and HSRf2g through the relative model probabilities

PðDjHSRf4gÞ
PðDjHSRf2gÞ ¼

PðDjHSRf4gÞ
PðDjHSRf3gÞ

PðDjHSRf3gÞ
PðDjHSRf2gÞ : ð20Þ

As HSRf4g is never significantly preferred over HSRf3g,
this leads again to a strong (nearly decisive) preference for
HSRf2g over HSRf4g for the wide prior choice, and an
undecided outcome for the SR prior when only considering
the P18all data. For P18þ BK15, we obtain effectively the
same outcome as for HSRf3g, i.e., no strong indication is
found with the wide prior, while HSRf2g is disfavored with
the SR prior.
When truncating the HSR hierarchy at higher order in

models HSRf5g, HSRf6g, and so on, the additional
parameters will in general be even more weakly constrained
than ξ�3. Since HSRf4g is already not preferred over
HSRf3g precisely because of the weak constraint on the
extra parameter, it is quite unlikely that including further
parameters will provide a better description of the data. For
this reason, we do not investigate models that involve a
higher-order expansion than HSRf4g.

E. A comment on the standard cosmological model

When studying the cosmological standard model at late
times, the only inflation-related parameters that are usually
varied are As and ns, while r is generally assumed to be
zero. In the context of single-field slow-roll inflation
models, this is not exactly possible, as all light degrees
of freedom, including gravitons, are excited during the
period of accelerated expansion. For this reason, we are
also not able to set r exactly to zero, as this would require
setting ξ�1 ¼ 0, which would result in all Taylor coefficients
vanishing (for finite ξ�0), cf. Eq. (11).
We can however simulate this situation by choosing ξ�1 to

be very small a priori. As d lnðξ1Þ=d ln a ¼ 2ðξ2 − ξ1Þ ≈
ns − 1 when ξ1 ≪ ξ2 (see e.g., [4]), we see that ξ1 will
remain small for many e-foldings if it is set to be small
enough initially. This is therefore not an impossible model,
but it appears rather unnatural to have Ĥ1 ≪ Ĥ2 in the
Taylor expansion about the arbitrary pivot value ϕ�.
Nonetheless, it is possible to make 1þ w arbitrarily small
in this way, yielding an agreement with observations as
good as in the HSRf3g model, except that ξ�1 is limited to
tiny values through its prior.

IV. CONCLUSIONS

In this paper, we revisit the results of [4] concerning the
bounds on the equation of state parameter of the inflaton.
The original constraints were obtained using the CMB
measurements of the WMAP satellite, and we find that the
Planck satellite data, especially when combined with the
BICEP2/Keck data, reduces the uncertainty on the equation
of state parameter w by about one order of magnitude.
We choose to describe (single-field) inflation by intro-

ducing a hierarchy of Hubble slow-roll parameters. Within
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this formalism, we consider three different models corre-
sponding to truncating the hierarchy, and therefore a Taylor
expansion of the Hubble parameter H during inflation, at
order 2, 3, or 4. From a pure goodness-of-fit perspective,
the models with three or four parameters provide a better fit
to the data than the simplest model with only two free
parameters. However, Bayesian model comparison, which
includes an “Occam’s razor” factor based on the shrinking
of the parameter space between prior and posterior,
indicates that the two-parameter model is not significantly
disfavored when employing the Planck CMB data only.
Adding the BICEP2/Keck data sets instead leads to a weak
to strong preference for more than two parameters, depend-
ing on the prior.
The choice of model has important physical implications

in the context of our analysis. In the case of the simplest
model, in fact, we find that the value of the equation of state
parameter w is directly linked to the deviation ns − 1 of the
scalar perturbations from a scale-invariant spectrum. Thus,
since Planck detects ns < 1 with a significance over 8σ, we
obtain a strong constraint of w > −1, which also implies a
nonzero value of the tensor-to-scalar ratio r and therefore
the presence of primordial gravitational waves. On the
other hand, this behavior is not observed in the case of more
complex models, where w ¼ −1 and r ¼ 0 are included in
the posterior. Thus, the fact that the two-parameter model is
disfavored when considering additional data sets is a
nontrivial result.
Based on the comparison performed with the combined

Planck and BICEP2/Keck data sets, we conclude that the
best description is provided by the three-parameter model,
HSRf3g, for which we obtain a 68% upper limit of
1þ w < 0.0014. It is interesting to note that, through
Eqs. (9) and (11), the preference for this model indicates
that both H0ðϕ�Þ and H00ðϕ�Þ are nonzero. This suggests
a fairly complex time-evolution of the ‘primordial
dark energy’, requiring a description with at least two
parameters.
This result provides useful insights when put into

relation with the present cosmic epoch. Indeed, while in
general there is no direct link between the inflaton
dynamics in the early universe and the late-time dark

energy,4 it is nonetheless interesting to compare the two,
as both phenomena lead to a period of accelerated expan-
sion. We underline that this type of comparison is generally
complicated, and the translation of our inflation results to
today’s dark energy requires the hypothesis that the latter
happens to be in a regime similar to the inflaton during the
period when the observable scales left the horizon (i.e., a
slow-roll regime). Provided that this is the case, the
resulting deviation of the equation of state from w ¼ −1
would be around one order of magnitude smaller than the
expected precision of the next generation of cosmological
surveys even under optimistic assumptions (see e.g., [28]),
and it would thus be difficult to detect it.
Therefore, the results of this study can be interpreted as a

cautionary tale for the ongoing quest for the nature of dark
energy. The lack of an observational detection of w ≠ −1 in
the next decade might reinforce the conclusion that the
current accelerated expansion of the Universe is indeed
driven by a cosmological constant. However, provided that
the physical phenomena underlying inflation and the
present epoch can be compared, our analysis implies that,
if w remains compatible with −1, strong conclusions
concerning the nature of dark energy will still be premature.
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APPENDIX: TRIANGLE PLOTS FROM THE
MCMC COMPUTATIONS

In Fig. 3, we show the detailed 1D and 2D marginalized
posterior distributions for our model parameters ξ�i (with
i ¼ 0, 1, 2, 3) and the derived parameters As, ns and r for all
combinations of data sets used in the present work.

4It is possible to construct models where the early and late
‘dark energy’ are connected. Since this is somewhat outside the
scope of this article, we only mention here the Higgs-Dilaton
model [26,27] where indeed a late-time dark energy equation of
state very close to w ¼ −1 is predicted.
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FIG. 3. 2D confidence contours (68% and 95%) and 1D marginalized posterior distributions for the HSR parameters, the primordial
power spectrum amplitude As, the scalar spectral index ns, and the scalar-to-tensor ratio r obtained with all our combinations of models
and data sets. The plots for the HSRf2g, HSRf3g and HSRf4gmodels are shown in blue, orange and green respectively when referring
to the results obtained with the P18all data set in the lower left triangle of the plot, and in red, violet and brown when including the
BICEP2/Keck (solid) and Planck lensing data too (dashed) in the upper right part.
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