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Introduction

Being given a regular concave ux f ∈ C 2 ([0, 1]) verifying f (ρ) ≥ 0, f (0) = f (1) = 0; ∃! ρ ∈ (0, 1), for a.e. ρ ∈ (0, 1), f (ρ)(ρ -ρ) > 0, (

and a nite family of trajectories (y i ) i∈[[1;J]] and constraints (q i ) i∈[[1;J]] dened on (s i , T i ) (0 ≤ s i < T i ), we tackle the following problem:

       ∂ t ρ(x, t) + ∂ x (f (ρ(x, t))) = 0 (x, t) ∈ R × (0, +∞) = Ω ρ(x, 0) = ρ 0 (x) x ∈ R ∀i ∈ [[1; J]], (f (ρ) -ẏi (t)ρ)| x=y i (t) ≤ q i (t) t ∈ (s i , T i ).
(1.2)

Systems of the type (1.2) have naturally arisen in the recent years. Let us give a non-exhaustive review on how our Problem (1.2) relates to the existing literature.

The authors of [START_REF] Delle Monache | Trac reconstruction using autonomous vehicles[END_REF][START_REF] Garavello | A multiscale model for trac regulation via autonomous vehicles[END_REF] considered a model very similar to (1.2). In their framework, (y i ) i represented the trajectories of autonomous vehicles, and the authors aimed at modeling the regulation impact on a few autonomous vehicles on the trac ow. In the same framework but with dierent applications in mind, the model of [START_REF] Laurent-Brouty | A macroscopic trac ow model accounting for bounded acceleration[END_REF] accounts for the boundedness of trac acceleration. Note that in each of these models, the trajectories of the moving interfaces (y i ) i were not given a priori, but rather obtained as solutions to an ODE involving the density of trac, a mechanism reminiscent of [START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF][START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in trac ow modeling: an existence result[END_REF][START_REF] Sylla | Inuence of a slow moving vehicle on trac: Well-posedness and approximation for a mildly nonlocal model[END_REF] for instance. Let us also mention the work of [START_REF] Gasser | Vehicular trac ow dynamics on a bus route[END_REF] where the authors studied a dierent model for the situation of several moving bottlenecks.

The numerical aspect of (1.2) was treated in [START_REF] Chalons | A conservative scheme for non-classical solutions to a strongly coupled pde-ode problem[END_REF] (for one trajectory) and [START_REF] Delle Monache | A numerical scheme for moving bottlenecks in trac ow[END_REF] (for multiple trajectories), where the authors modeled the moving bottlenecks created by buses on a road.

In a class of problems close to (1.2), i.e. without constraint on the ux, but still with coupling interfaces/density, the authors of [START_REF] Ferrara | A macroscopic model for platooning in highway trac[END_REF] described the interaction between a platoon of vehicles and the surrounding trac ow on a highway.

Problem (1.2) can be seen as a conservation law with discontinuous ux and special treatments at the interfaces. In that directions, the authors of [START_REF] Karlsen | Convergence of the lax-friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent ux[END_REF][START_REF] Andreianov | Entropy conditions for scalar conservation laws with discontinuous ux revisited[END_REF][START_REF] Andreianov | New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous ux[END_REF][START_REF] Bressan | Vanishing viscosity solutions for conservation laws with regulated ux[END_REF][START_REF] Towers | An existence result for conservation laws having BV spatial ux heterogeneities-without concavity[END_REF] studied such problems but with the classical vanishing viscosity coupling at the interfaces.

In several of these works [START_REF] Garavello | A multiscale model for trac regulation via autonomous vehicles[END_REF][START_REF] Laurent-Brouty | A macroscopic trac ow model accounting for bounded acceleration[END_REF], the existence issue is tackled using the wave-front tracking procedure which is very sensible to the details of the model. On the other hand, when numerical schemes are considered, see [START_REF] Delle Monache | A numerical scheme for moving bottlenecks in trac ow[END_REF][START_REF] Chalons | A conservative scheme for non-classical solutions to a strongly coupled pde-ode problem[END_REF], the numerical analysis is usually left out.

The contribution of this paper is to provide a robust mathematical setting both in the theoretical and numerical aspects of (1.2). The proof of uniqueness is based upon a combination of Kruzhkov classical method of doubling variables and the theory of dissipative germs in the framework of discontinuous ux [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous ux[END_REF] and it is analogous to the one of [START_REF] Andreianov | Entropy conditions for scalar conservation laws with discontinuous ux revisited[END_REF]. To prove existence, we build a nite volume scheme with a grid that adapts locally to the trajectories (y i ) i and to their crossing points, but remains a simple cartesian grid away from the interfaces. Our work can serve as a basis for constructing solutions to more involved models, e.g. via the splitting approach. As an example of application, we can point out the variant of our recent work [START_REF] Sylla | Inuence of a slow moving vehicle on trac: Well-posedness and approximation for a mildly nonlocal model[END_REF] with multiple slow vehicles involved; this is a mildly non-local analogue of the problem considered numerically in [START_REF] Delle Monache | A numerical scheme for moving bottlenecks in trac ow[END_REF].

INTRODUCTION

As the fundamental ingredient of the well-posedness proof and numerical approximation of (1.2), we will rst tackle the one trajectory/one constraint problem:

         ∂ t ρ + ∂ x (f (ρ)) = 0 ρ(•, 0) = ρ 0 (f (ρ) -ẏ(t)ρ)| x=y(t) ≤ q(t) t > 0, (1.3) 
with y ∈ W 1,∞ loc ((0, +∞)) and q ∈ L ∞ loc ((0, +∞)). Models in the class of (1.3) have been greatly investigated in the past few decades. Motivated by the modeling of tollgates and trac lights for instance, the authors of [START_REF] Colombo | A well posed conservation law with a variable unilateral constraint[END_REF] considered (1.3) with the trivial trajectory y ≡ 0 and proved a wellposedness result in the BV framework (i.e. with both q and ρ 0 with bounded variation, locally). The authors of [START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF] then extended the well-posedness in the L ∞ framework and also constructed a convergent numerical scheme. More recently, in [START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in trac ow modeling: an existence result[END_REF][START_REF] Delle Monache | Stability estimates for scalar conservation laws with moving ux constraints[END_REF][START_REF] Sylla | Inuence of a slow moving vehicle on trac: Well-posedness and approximation for a mildly nonlocal model[END_REF], the authors studied a variant of (1.3) in which ρ and ẏ were coupled via an ODE. The coupling was thought to model the inuence of a slow vehicle, traveling at speed ẏ, on road trac.

The reduction of (1.2) to localized problem (1.3) requires the construction of a nite volume scheme in the original coordinates (x, t), while the treatment of (1.3) in the literature is most often based upon the rectication of the interface via a variable change, see [START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in trac ow modeling: an existence result[END_REF][START_REF] Delle Monache | Stability estimates for scalar conservation laws with moving ux constraints[END_REF][START_REF] Sylla | Inuence of a slow moving vehicle on trac: Well-posedness and approximation for a mildly nonlocal model[END_REF]. For (1.2), this approach leads to a cumbersome and singular construction, see [START_REF] Andreianov | Entropy conditions for scalar conservation laws with discontinuous ux revisited[END_REF]. In our well-posedness analysis and approximation of (1.3), having in mind (1.2), we will not change the coordinate system.

Let us detail how the paper is organized. Sections 2-3 are devoted to Problem (1.3). We start by giving two denitions of solutions. One, most frequently used in trac dynamics (see [START_REF] Colombo | A well posed conservation law with a variable unilateral constraint[END_REF][START_REF] Andreianov | A macroscopic model to reproduce self-organization at bottlenecks[END_REF]), is composed of classical Kruzhkov entropy inequalities with reminder term taking into account the constraint and of a weak formulation for the constraint, see Denition 2.1. The second denition emanates from the theory of conservation laws with dissipative interface coupling (see [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous ux[END_REF][START_REF] Andreianov | New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous ux[END_REF]). It consists of Kruzhkov entropy inequalities with test functions that vanish along the interface {x = y(t)} and of an explicit treatment of the traces of the solution along the interface, see Denition 2.4. Before tackling the well-posedness issue, we prove that these two denitions are equivalent, see Propositions 2.6-2.6, similarly to what the authors of [START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF] did. Uniqueness follows from the stability obtained in Section 2, see Theorem 2.13. In Section 3, we construct a nite volume scheme for (1.3) and prove of its convergence. In the construction, we do not rectify the trajectory but instead we locally modify the mesh to mold the trajectory. Moreover, we fully make use of techniques and results put forward by the author of [START_REF] Towers | Convergence via OSLC of the Godunov scheme for a scalar conservation law with time and space ux discontinuities[END_REF] to derive localized BV estimates away from the interface, essential to obtain strong compactness for the approximate solutions created by the scheme, see Corollary 3.7. This is a way to highlight the generality of the compactness technique of [START_REF] Towers | Convergence via OSLC of the Godunov scheme for a scalar conservation law with time and space ux discontinuities[END_REF].

In Section 4, we get back to the original problem (1.2). Our strategy is to assemble the study of (1.2) from several local studies of (1.3) with the help of a partition of unity argument. This concerns, in particular, the convergence of nite volume approximation of (1.2) which is addressed via a localization argument. However, the scheme needs to be dened globally, which makes it impossible to use the rectication strategy as soon as the interfaces have crossing points, cf. [START_REF] Andreianov | Entropy conditions for scalar conservation laws with discontinuous ux revisited[END_REF] for a singular rectication strategy. Uniqueness and stability for the single trajectory problem The content of this section is not original in the sense that it is a rigorous adaptation and assembling of existing techniques reminiscent of [START_REF]pert. The spaces BV and quasilinear equations[END_REF][START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF][START_REF] Colombo | A well posed conservation law with a variable unilateral constraint[END_REF][START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF][START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous ux[END_REF].

Equivalent denitions of solutions

Throughout the paper, for all s ∈ R, we denote by

∀ρ ∈ [0, 1], F s (ρ) = f (ρ) -sρ and ∀a, b ∈ [0, 1], Φ s (a, b) = sgn(a -b)(F s (a) -F s (b))
the normal ux through {x = x 0 + st} (x 0 ∈ R) and its entropy ux associated with the Kruzhkov entropy ρ → |ρ -κ|, for all κ ∈ [0, 1], see [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF]. Let us also denote by Γ the trajectory:

Γ = {(x, t) ∈ Ω | x = y(t)}. Denition 2.1. A function ρ ∈ L ∞ (Ω; [0, 1]) is an admissible entropy solution to (1.3) with initial data ρ 0 ∈ L ∞ (R; [0, 1]) if (i) for all test functions ϕ ∈ C ∞ c (Ω), ϕ ≥ 0 and κ ∈ [0, 1],
the following entropy inequalities are veried:

¢ +∞ 0 ¢ R |ρ -κ|∂ t ϕ + Φ(ρ, κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x) -κ|ϕ(x, 0) dx + ¢ +∞ 0 R ẏ(t) (κ, q(t))ϕ(y(t), t) dt ≥ 0, (2.1) where R ẏ(t) (κ, q(t)) = 2 F ẏ(t) (κ) -min F ẏ(t) (κ), q(t) ;
(ii) for all test functions ϕ ∈ C ∞ c (Ω), ϕ ≥ 0 the following constraint inequalities are veried:

- ¤ Ω + ρ∂ t ϕ + f (ρ)∂ x ϕ dx dt ≤ ¢ +∞ 0 q(t)ϕ(y(t), t) dt , (2.2) 
where

Ω + = {(x, t) ∈ Ω | x > y(t)}.
Remark 2.1. Taking κ = 0, then κ = 1 in (2.1), from the condition ρ(x, t) ∈ [0, 1] a.e. we deduce that any admissible weak solution to Problem (1.3) is also a distributional solution to the conservation law

∂ t ρ + ∂ x f (ρ) = 0. If ρ is a regular enough solution, then for all test functions ϕ ∈ C ∞ c (Ω), ϕ ≥ 0, we have 0 = ¤ Ω + div (x,t) f (ρ) ρ ϕ dx dt = ¢ ∂Ω + f (ρ)ϕ ρϕ • -1 ẏ(t) dt - ¤ Ω + f (ρ) ρ • ∇ x,t ϕ dx dt = - ¢ +∞ 0 (f (ρ) -ẏ(t)ρ) |x=y(t) ϕ(y(t), t) dt - ¤ Ω + ρ∂ t ϕ + f (ρ)∂ x ϕ dx dt .
Moreover, if ρ satises the ux inequality of (1.3) a.e. on (0, +∞), then the previous computations lead to

- ¤ Ω + ρ∂ t ϕ + f (ρ)∂ x ϕ dx dt ≤ ¢ +∞ 0 q(t)ϕ(y(t), t) dt ;
this is where inequalities (2.2) come from. Note how they make sense irrespective of the regularity of ρ. Integrating on Ω -= {(x, t) ∈ Ω | x < y(t)} would lead to similar and equivalent inequalities.

Denition 2.1 is well suited for passage to the limit of a.e. convergent sequences of exact or approximate solutions. However, we cannot derive uniqueness by the standard arguments like in the classical case of Kruzhkov. Using an equivalent notion of solution, which we adapt from [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous ux[END_REF], based on explicit treatment of traces of ρ on Γ, we rather combine the arguments of [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF] and [START_REF]pert. The spaces BV and quasilinear equations[END_REF]. In this denition a couple plays a major role, the one which realizes the equality in the ux constraint in (1.3). More precisely, x rst s ≥ 0. By (1.1) and concavity of f , for all q ∈ [0, max F s ), the equation F s (ρ) = q admits exactly two solutions in [0, 1], see Figure 1, left. The same way, if s ≤ 0, then for all q ∈ [-ṡ, max F s ), the equation still admits two solutions in [0, 1]. The couple formed by these two solutions, denoted by ( ρ s (q), q ρ s (q)) in Denition 2.2 below, will serve both in the prove of uniqueness and existence. Following the previous discussion, in the sequel, we will assume that q veries the following assumption: for a.e. t > 0, q(t)

∈ [0, max F ẏ(t) ) if ẏ(t) ≥ 0 and q(t) ∈ [-ẏ(t), max F ẏ(t) ) if ẏ(t) < 0, (2.3) 
In particular, remark that for a.e. t > 0, ẏ(t) + q(t) ≥ 0.

(2.4) Denition 2.2. Let s ∈ R + and q ∈ [0, max F s ), or s ∈ R -and q ∈ [-s, max F s ). The admissibility germ for the conservation law in (1.3) associated with the constraint F s (ρ) |x=st ≤ q is the subset G s (q) ⊂ [0, 1] 2 dened as the union:

G s (q) = ( ρ s (q), q ρ s (q)) G 1 s (q) {(κ, κ) | F s (κ) ≤ q} G 2 s (q) {(k l , k r ) | k l < k r and F s (k l ) = F s (k r ) ≤ q} G 3 s (q)
, where, due to the bell-shaped prole of F s , the couple ( ρ s (q), q ρ s (q)) is uniquely dened by the conditions F s ( ρ s (q)) = F s (q ρ s (q)) = q and ρ s (q) > q ρ s (q). Lemma 2.3. For all s ∈ R + and q ∈ [0, max F s ), and for all s ∈ R -and q ∈ [-s, max F s ), the admissibility germ G s (q) is L 1 -dissipative in the sense that:

(i) for all (k l , k r ) ∈ G s (q), F s (k l ) = F s (k r ) (Rankine-Hugoniot condition); (ii) for all (k l , k r ), (c l , c r ) ∈ G s (q), Φ s (k l , c l ) ≥ Φ s (k r , c r ).
(2.5)

Proof. The point (i) is obvious from the denition. Let us prove the dissipative feature (2.5). The following table summarizes which values can take the dierence ∆ = Φ s (k l , c l ) -Φ s (k r , c r ) according with which parts of the germ the couples (k l , k r ), (c l , c r ) ∈ G s (q) belong to.

(c l , c r ) (k l , k r ) ∈ G 1 s (q) ∈ G 2 s (q) ∈ G 3 s (q) ∈ G 1 s (q) 0 0 0 or 2(q -F s (k l )) ∈ G 2 s (q) 0 0 0 or 2|F s (c) -F s (k l )| ∈ G 3 s (q) 0 or 2(q -F s (c l )) 0 or 2|F s (c l ) -F s (k)| 0 or 2|F s (c l ) -F s (k l )|
Having in mind the denition of G 3 s (q), we can conclude that ∆ ≥ 0.

Denition 2.4. A function ρ ∈ L ∞ (Ω; [0, 1]) is a G ẏ(q)-entropy solution to (1.3) with initial data ρ 0 ∈ L ∞ (R; [0, 1]) if: (i) for all test functions ϕ ∈ C ∞ c (Ω\Γ), ϕ ≥ 0 and κ ∈ [0, 1],
the following entropy inequalities are veried:

¢ +∞ 0 ¢ R |ρ -κ|∂ t ϕ + Φ(ρ, κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x) -κ|ϕ(x, 0) dx ≥ 0; (2.6) 
(ii) for a.e. t > 0, (ρ(y(t)-, t), ρ(y(t)+, t)) ∈ G ẏ(t) (q(t)).

(2.7)

Remark 2.2. Condition (2.7) is to be understood in the sense of strong traces along Γ. An important fact we stress is that it is not restrictive to assume that entropy solutions, i.e. bounded functions verifying (2.6), admit strong traces. Usually, it is ensured provided a nondegeneracy assumption on the ux function:

for any nonempty interval (a, b) ⊂ (0, 1), f |(a,b) is not constant, ( 2.8) 
In the context of trac ow, however, we sometimes consider uxes which do not verify (2.8). Such uxes, which have linear parts, usually model constant trac velocity for small densities. In those situations, and when y ≡ 0, one can prove that under a mild assumption on the constraint, if the initial data has bounded variation, then solutions to (1.3) are in L ∞ ((0, T ); BV(R)), and traces are then to be understood in the sense of BV(R) functions, see [START_REF] Sylla | Inuence of a slow moving vehicle on trac: Well-posedness and approximation for a mildly nonlocal model[END_REF]Theorem 3.2]. Also note that the germ formalism can be adapted to the situations where the ux is degenerate and no variation bound is assumed, see [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous ux[END_REF]Remarks 2.2,2.3].

We now prove that Denitions 2.1 and 2.4 are equivalent.

Proposition 2.5. Any admissible entropy solution to (1.3) is a G ẏ(q)-entropy solution.

Proof. Fix ρ ∈ L ∞ (Ω) an admissible entropy solution to (1.3), ϕ ∈ C ∞ c (Ω), ϕ ≥ 0 and κ ∈ [0, 1]. If ϕ vanishes along Γ, then (2.1) becomes (2.6). Moreover, it is known that the Rankine-Hugoniot condition is contained in (2.1). Combining it with (2.2) gives us: for a.e. t > 0, F ẏ(t) (ρ(y(t)-, t)) = F ẏ(t) (ρ(y(t)+, t)) ≤ q(t).

(2.9)

Let us show that for a.e. t > 0, (ρ(y(t)-, t), ρ(y(t)+, t)) ∈ G ẏ(t) (q(t)).

Case 1: ρ(y(t)-, t) ≤ ρ(y(t)+, t). Condition (2.9) implies that (ρ(y(t)-, t), ρ(y(t)+, t)) ∈ G 2 ẏ(t) (q(t))∪ G 3 ẏ(t) (q(t)).

Case 2: ρ(y(t)-, t) > ρ(y(t)+, t). Suppose now that ϕ ∈ C ∞ c (Ω) and x n ∈ N * . By a standard approximation argument, we can apply (2.1) with the Lipschitz test function ξ n ϕ, where ξ n is the cut-o function:

ξ n (x, t) =            1 if |x -y(t)| < 1 n 2 -n|x -y(t)| if 1 n ≤ |x -y(t)| ≤ 2 n 0 if |x -y(t)| > 2 n .
This yields:

¢ +∞ 0 ¢ R |ρ -κ| ξ n ∂ t ϕ + n ẏ(t) sgn(x -y(t))1 { 1 n <|x-y(t)|< 2 n } ϕ dx dt + ¢ +∞ 0 ¢ R Φ(ρ, κ) ξ n ∂ x ϕ -n sgn(x -y(t)1 { 1 n <|x-y(t)|< 2 n } ϕ dx dt + ¢ +∞ 0 R ẏ(t) (κ, q(t))ϕ(y(t), t) dt ≥ 0.
Taking the limit when n → +∞, we obtain:

¢ +∞ 0 Φ ẏ(t) (ρ(y(t)-, t), κ) -Φ ẏ(t) (ρ(y(t)+, t), κ) + R ẏ(t) (κ, q(t)) ϕ(y(t), t) dt ≥ 0 which implies that for a.e. t > 0 and for all κ ∈ [0, 1],

Φ ẏ(t) (ρ(y(t)-, t), κ) -Φ ẏ(t) (ρ(y(t)+, t), κ) + R ẏ(t) (κ, q(t)) ≥ 0.
Taking in particular κ = argmax(F ẏ(t) ), we get:

Φ ẏ(t) (ρ(y(t)-, t), κ) -Φ ẏ(t) (ρ(y(t)+, t), κ) + 2(F ẏ(t) (κ) -q(t)) ≥ 0. (2.10)
Since ρ(y(t)-, t) > ρ(y(t)+, t), (2.10) leads to F ẏ(t) (ρ(y(t)-, t)) ≥ q(t), which combined with (2.9), implies F ẏ(t) (ρ(y(t)-, t)) = F ẏ(t) (ρ(y(t)+, t)) = q(t). We deduce that (ρ(y(t)-, t), ρ(y(t)+, t)) ∈ G 1 ẏ(t) (q(t)), which completes the proof.

Proposition 2.6. Any G ẏ(q)-entropy solution to (1.3) is an admissible entropy solution.

Proof. Fix ρ ∈ L ∞ (Ω) a G ẏ(q)-entropy solution to (1.3), ϕ ∈ C ∞ c (Ω), ϕ ≥ 0, κ ∈ [0, 1]
and n ∈ N * . We still denote by ξ n the cut-o function from the last proof. We write ϕ = (1 -ξ n )ϕ + ξ n ϕ. Since

φ n = (1 -ξ n )ϕ vanishes along Γ, we have I = ¢ +∞ 0 ¢ R |ρ -κ|∂ t ϕ + Φ(ρ, κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x) -κ|ϕ(x, 0) dx + ¢ +∞ 0 R ẏ(t) (κ, q(t))ϕ(y(t), t) dt = ¢ +∞ 0 ¢ R |ρ -κ|∂ t φ n + Φ(ρ, κ)∂ x φ n dx dt + ¢ R |ρ 0 (x) -κ|φ n (x, 0) dx ≥0 + ¢ +∞ 0 ¢ R |ρ -κ|∂ t (ξ n ϕ) + Φ(ρ, κ)∂ x (ξ n ϕ) dx dt + ¢ R |ρ 0 (x) -κ|ξ n (x, 0)ϕ(x, 0) dx + ¢ +∞ 0 R ẏ(t) (κ, q(t))ϕ(y(t), t) dt ≥ ¢ +∞ 0 ¢ R |ρ -κ| ξ n ∂ t ϕ + n ẏ(t) sgn(x -y(t))1 { 1 n <|x-y(t)|< 2 n } ϕ dx dt + ¢ +∞ 0 ¢ R Φ(ρ, κ) ξ n ∂ x ϕ -n sgn(x -y(t)1 { 1 n <|x-y(t)|< 2 n } ϕ dx dt + ¢ R |ρ 0 (x) -κ|ξ n (x, 0)ϕ(x, 0) dx + ¢ +∞ 0 R ẏ(t) (κ, q(t))ϕ(y(t), t) dt .
Taking the limit when n → +∞, we obtain:

I ≥ ¢ +∞ 0 Φ ẏ(t) (ρ(y(t)-, t), κ) -Φ ẏ(t) (ρ(y(t)+, t), κ) + R ẏ(t) (κ, q(t)) ∆(t,κ) ϕ(y(t), t) dt .
To conclude, we are going to prove that for a.e. t > 0 and for all κ ∈ [0, 1], ∆(t, κ) ≥ 0. Remember that by assumption, for a.e. t > 0, (ρ(y(t)-, t), ρ(y(t)+, t)) ∈ G ẏ(t) (q(t)). The following table, in which we dropped the ẏ(t)/q(t)-indexing, summarizes which values can take the dierence ∆(t, κ) according to the position of κ with respect to the couple (ρ(y(t)-, t), ρ(y(t)+, t)), which is simply denoted by (ρ l , ρ r ). Note that the case marked by × is impossible.

κ (ρ l , ρ r ) ∈ G 1 ∈ G 2 ∈ G 3 κ < min{ρ l , ρ r } 0 R(κ, q(t)) 0 κ > max{ρ l , ρ r } 0 R(κ, q(t)) 0 κ between ρ l and ρ r 0 × 2(F (κ) -F (ρ l )) + R(κ, q(t))
Clearly, ∆(t, κ) ≥ 0, which proves that I ≥ 0, hence ρ satises (2.1). Moreover, by assumption, for a.e. t > 0, (ρ(y(t)-, t), ρ(y(t)+, t)) ∈ G ẏ(t) (q(t)). This implies, in particular, that ρ satises the ux constraint inequality (f (ρ) -ẏ(t)ρ) |x=y(t) ≤ q(t) in the a.e. sense. By Remark 2.1, ρ satises (2.2) as well i.e. ρ is an admissible entropy solution to (1.3).

Uniqueness of G-entropy solutions

We now prove uniqueness using Denition 2.4.

Lemma 2.7 (Kato inequality)

. Fix ρ 0 , σ 0 ∈ L ∞ (R; [0, 1]), y ∈ W 1,∞
loc ((0, +∞)) and q, r ∈ L ∞ loc ((0, +∞)). We denote by ρ (respect. σ) a G ẏ(q)-entropy solution (respect. G ẏ(r)-entropy solution) to Problem (1.3) corresponding to initial data ρ 0 (respect. σ 0 ). We suppose that q, r satisfy (2.3). Then for all test functions ϕ ∈ C ∞ c (Ω), ϕ ≥ 0, we have

¢ +∞ 0 ¢ R |ρ -σ|∂ t ϕ + Φ(ρ, σ)∂ x ϕ dx dt + ¢ R |ρ 0 (x) -σ 0 (x)|ϕ(x, 0) dx + ¢ +∞ 0 Φ ẏ(t) (ρ(y(t)+, t), σ(y(t)+, t)) -Φ ẏ(t) (ρ(y(t)-, t), σ(y(t)-, t)) ϕ(y(t), t) dt ≥ 0.
(2.11)

Proof. Take φ = φ(x, t, χ, τ ) ∈ C ∞ c (Ω 2 ), φ ≥ 0 with support contained in the set Ω\Γ 2 .
The classical method of doubling variables leads us to:

¨|ρ(x, t) -σ(χ, τ )|(∂ t φ + ∂ τ φ) + Φ(ρ(x, t), σ(χ, τ ))(∂ x φ + ∂ χ φ) dx dt dχ dτ + ¦ |ρ 0 (x) -σ(χ, τ )|φ(x, 0, χ, τ ) dx dχ dτ + ¦ |ρ(x, t) -σ 0 (χ)|φ(x, t, χ, 0) dx dt dχ ≥ 0.
(2.12) Again, a standard approximation argument allows us to apply (2.12) with the Lipschitz function

φ n (x, t, χ, τ ) = γ n (x, t)ϕ x + χ 2 , t + τ 2 δ n x -χ 2 δ n t -τ 2 where ϕ = ϕ(X, T ) ∈ C ∞ c (Ω) is a nonnegative test function, (δ n
) n is a smooth approximation of the Dirac mass at the origin, and

γ n (x, t) =              0 if |x -y(t)| < 1 n n |x -y(t)| - 1 n if 1 n ≤ |x -y(t)| ≤ 2 n 1 if |x -y(t)| > 2 n .
Using the fact that for a.e. t > 0,

∂ t φ n + ∂ τ φ n = -n ẏ(t) sgn(x -y(t))1 { 1 n <|x-y(t)|< 2 n } ϕ x + χ 2 , t + τ 2 δ n x -χ 2 δ n t -τ 2 + γ n (x, t)∂ T ϕ x + χ 2 , t + τ 2 δ n x -χ 2 δ n t -τ 2 
∂ x φ n + ∂ χ φ n = n sgn(x -y(t))1 { 1 n <|x-y(t)|< 2 n } ϕ x + χ 2 , t + τ 2 δ n x -χ 2 δ n t -τ 2 + γ n (x, t)∂ X ϕ x + χ 2 , t + τ 2 δ n x -χ 2 δ n t -τ 2 ,
we obtain:

¨|ρ(x, t) -σ(χ, τ )|(∂ t φ n + ∂ τ φ n ) dx dt dχ dτ -→ n→+∞ - ¢ +∞ 0 ẏ(t) |ρ(y(t)+, t) -σ(y(t)+, t)| -|ρ(y(t)-, t) -σ(y(t)-, t)| ϕ(y(t), t) dt + ¢ +∞ 0 ¢ R |ρ(x, t) -σ(x, t)|∂ T ϕ(x, t) dx dt . and ¨Φ(ρ(x, t), σ(χ, τ ))(∂ x φ n + ∂ χ φ n ) dx dt dχ dτ -→ n→+∞ ¢ +∞ 0 Φ(y(t)+, t), σ(y(t)+, t) -Φ(ρ(y(t)-, t), σ(y(t)-, t)) ϕ(y(t), t) dt + ¢ +∞ 0 ¢ R Φ(ρ(x, t), σ(x, t))∂ X ϕ(x, t) dx dt . Finally, since ¦ |ρ 0 (x) -σ(χ, τ )|φ n (x, 0, χ, τ ) dx dχ dτ and ¦ |ρ(x, t) -σ 0 (χ)|φ n (x, t, χ, 0) dx dχ dt both converge to 1 2 ¢ R |ρ 0 (x) -σ 0 (x)|ϕ(x, 0) dx ,
we get (2.11) by assembling the above ingredients together.

Theorem 2.8.

Fix ρ 0 , σ 0 ∈ L ∞ (R; [0, 1]), y ∈ W 1,∞
loc ((0, +∞)) and q, r ∈ L ∞ loc ((0, +∞)). We denote by ρ (respect. σ) a G ẏ(q)-entropy solution (respect. G ẏ(r)-entropy solution) to Problem (1.3) corresponding to initial data ρ 0 (respect. σ 0 ). We suppose that q, r satisfy (2.3). Then for all T > 0, we have

ρ(•, T ) -σ(•, T ) L 1 ≤ ρ 0 -σ 0 L 1 + 2 ¢ T 0 |q(t) -r(t)| dt .
(2.13)

In particular, Problem (1.3) admits at most one solution.

Proof. Fix T > 0, R ≥ y L ∞ ((0,T )) and set L = f L ∞ + ẏ L ∞ ((0,T ))
. Consider for all n ∈ N * the function:

ϕ n (x, t) = 1 4 (1 -ξ n (t -T )) (1 -ξ n (|x| -R + L(t -T ))) ,
where (ξ n ) n is a smooth approximation of the sign function. The sequence (ϕ n ) n is a smooth approximation of the characteristic function of the trapezoid

T = (x, t) ∈ Ω | t ∈ [0, T ] and |x| ≤ R -L(t -T ) ⊃ (x, t) ∈ Ω | t ∈ [0, T ] and x = y(t) .
Let us apply Kato inequality (2.11) with (ϕ n ) n . For all n ∈ N, we have

¢ +∞ 0 ¢ R |ρ -σ|∂ t ϕ n dx dt = - 1 4 ¢ +∞ 0 ¢ R |ρ -σ|ξ n (t -T ) (1 -ξ n (|x| -R + L(t -T ))) dx dt - L 4 ¢ +∞ 0 ¢ R |ρ -σ| (1 -ξ n (t -T )) ξ n (|x| -R + L(t -T )) dx dt -→ n→+∞ - ¢ |x|≤R |ρ(x, T ) -σ(x, T )| dx -L ¢ T 0 ¢ |x|=R-L(t-T ) |ρ -σ| dx dt . Then, ¢ +∞ 0 ¢ R Φ(ρ, σ)∂ x ϕ n dx dt = - 1 4 ¢ +∞ 0 ¢ R Φ(ρ, σ) (1 -ξ n (t -T )) sgn(x)ξ n (|x| -R + L(t -T )) dx dt -→ n→+∞ - ¢ T 0 ¢ |x|=R-L(t-T ) Φ(ρ, σ) sgn(x) dx dt . Finally, we have ¢ R |ρ 0 (x) -σ 0 (x)|ϕ n (x, 0) dx -→ n→+∞ ¢ |x|≤R+LT |ρ 0 (x) -σ 0 (x)| dx
Remark also that the choices of R and L imply that for all t > 0,

ϕ n (y(t), t) -→ n→+∞ 1.
Assembling the previous limits together, we get:

- ¢ |x|≤R |ρ(x, T ) -σ(x, T )| dx + ¢ |x|≤R+LT |ρ 0 (x) -σ 0 (x)| dx - ¢ T 0 ¢ |x|=R-L(t-T ) (L|ρ -σ| + Φ(ρ, σ) sgn(x)) dx dt + ¢ T 0 Φ ẏ(t) (ρ(y(t)+, t), σ(y(t)+, t)) -Φ ẏ(t) (ρ(y(t)-, t), σ(y(t)-, t)) dt ≥ 0.
Note that for all ρ, σ ∈ [0, 1] and for all x ∈ R,

L|ρ -σ| + Φ(ρ, σ) sgn(x) ≥ L|ρ -σ| -|f (ρ) -f (σ)| ≥ (L -f L ∞ )|ρ -σ| ≥ 0.
Consequently, we have shown that

¢ |x|≤R |ρ(x, T ) -σ(x, T )| dx ≤ ¢ |x|≤R+LT |ρ 0 (x) -σ 0 (x)| dx + ¢ T 0 Φ ẏ(t) (ρ(y(t)+, t), σ(y(t)+, t)) -Φ ẏ(t) (ρ(y(t)-, t), σ(y(t)-, t)) ∆(t)
dt .

What is left to do is to take the limit when R → +∞ and to estimate the last two terms of the right-hand side of the previous inequality. The following table, in which we dropped the t-indexing, summarizes which values can take the dierence ∆(t) according to which parts of their respective germs the couples (ρ(y(t)-, t), ρ(y(t)+, t)) and (σ(y(t)-, t), σ(y(t)+, t)), respectively denoted by (ρ l , ρ r ) and (σ l , σ r ) belong to.

(σ l , σ r ) (ρ l , ρ r ) ∈ G 1 ẏ (q) ∈ G 2 ẏ (q) ∈ G 3 ẏ (q) ∈ G 1 ẏ (r) 2(q -r) 0 or 2(F ẏ(ρ l ) -r) 2(F ẏ(ρ l ) -r) ∈ G 2 ẏ (r) 0 0 ≤ 0 ∈ G 3 ẏ (r) 2(F ẏ(σ l ) -q) ≤ 0 ≤ 0
We clearly see the bound ∆(t) ≤ 2|q(t) -r(t)|, which leads us to (2.13), which clearly implies uniqueness. This concludes the proof.

Existence for the single trajectory problem

We build a simple nite volume scheme and prove its convergence to an admissible entropy solution to (1.3). From now on, we denote by a ∨ b = max{a, b} and a ∧ b = min{a, b}.

Fix ρ 0 ∈ L ∞ (R; [0, 1]).

Adapted mesh and denition of the scheme

We start by dening the sequence of approximate slopes:

∀n ∈ N, s n = 1 ∆t ¢ t n+1 t n ẏ(t) dt ; ∀t ≥ 0, s ∆ (t) = n∈N s n 1 [t n ,t n+1 ) (t)
and the sequence of approximate trajectories:

∀t ≥ 0, y ∆ (t) = y 0 + ¢ t 0 s ∆ (τ ) dτ ; ∀n ∈ N, y n = y ∆ (t n ). Since (s ∆ ) ∆ converges ẏ in L 1 loc ((0, +∞)), (y ∆ ) ∆ converges to y in L ∞ loc ((0, +∞)).
The same way, we dene (q ∆ ) ∆ , the sequence of approximate constraints:

q ∆ (t) = n∈N q n 1 [t n ,t n+1 ) (t); q n = 1 ∆t ¢ t n+1 t n q(t) dt
which converges to q in L 1 loc ((0, +∞)).

Remark 3.1. Remark that with our choices, from (2.4), we deduce that

∀n ∈ N, s n + q n = 1 ∆t ¢ t n+1 t n ( ẏ(t) + q(t)) dt ≥ 0. (3.1)
This fact will come in handy in the proof of stability for the scheme.

Fix now T > 0 and a spatial mesh size ∆x > 0 with λ = ∆t/∆x xed, verifying the CFL condition

2    f L ∞ + ẏ L ∞ ((0,T )) L    λ ≤ 1. (3.2)
For all n ∈ N, there exists a unique index j n ∈ Z such that y n ∈ (x jn , x jn+1 ), see Figure 2. Introduce the sequence (χ n j ) j∈Z dened by

χ n j =      x j if j ≤ j n -1 y n if j = j n x j+1 if j ≥ j n + 1.
We dene the cell grids:

Ω = n∈N j∈Z P n j+1/2 ,
where for all n ∈ N and j ∈ Z, P n j+1/2 is the rectangle where for all j ∈ Z, ρ 0 j+1/2 is its mean value on the cell (χ 0 j , χ 0 j+1 ). Clearly, for this choice, we have:

(χ n j , χ n j+1 ) × [t n , t n+1 ) if j ≤ j n -2, one of the parallelograms represented in Figure 2 if j ∈ {j n -1, j n } and the rectangle (χ n j+1 , χ n j+2 ) × [t n , t n+1 ) if j ≥ j n + 1.
ρ 0 j+1/2 ∈ [0, 1] and ρ 0 ∆ = j∈Z ρ 0 j+1/2 1 (χ 0 j ,χ 0 j+1 ) -→ ∆x→0 ρ 0 in L 1 loc (R).
Let us denote by EO = EO(a, b) the Engquist-Osher numerical ux associated with f and for all s ∈ R, God s = God s (u, v) be the Godunov ux associated with ρ → f (ρ) -sρ.

Fix n ∈ N. To simplify the reading, we introduce the notations:

∀j ∈ Z, f n j = EO ρ n j-1/2 , ρ n j+1/2 and f n int = God s n ρ n jn-1/2 , ρ n jn+1/2 ∧ q n . (3.3)
We now proceed to the denition of the scheme. It comes from a discretization of the conservation law written in each volume control P n j+1/2 (n ∈ N, j ∈ Z). Away from the trajectory/constraint, it is the standard 3-point marching formula and when j ∈ {j n -1, j n }, we have to deal with both the constraint and the interface which is not vertical. Three cases have to be considered when describing the marching formula of the scheme, but we really give the details for only one of them.

Case 1: j n+1 = j n + 1. This means that the line joining (y n , t n ) and (y n+1 , t n+1 ) crosses the line x = x jn+1 , see Figure 2. If j / ∈ {j n -1, j n }, the conservation written in the rectangle P n j+1/2 is given by the standard equation:

ρ n+1 j+1/2 -ρ n j+1/2 ∆x + (f n j+1 -f n j )∆t = 0. (3.4)
From the conservation in the cell P n jn-1/2 , we set:

ρ n+1 j n+1 -1/2 y n+1 -χ n+1 j n+1 -2 -ρ n jn-1/2 y n -χ n jn-1 + (f n int -f n jn-1 )∆t = 0. (3.5)
This formula corresponds to the choice of putting the same value for ρ ∆ on (χ n+1 j n+1 -2 , χ n+1 j n+1 -1 ) and on (χ n+1 j n+1 -1 , y n+1 ) at time t = t n+1 , i.e. ρ n+1 j n+1 -3/2 = ρ n+1 j n+1 -1/2 . In the cell P n jn+1/2 , the conservation takes the form:

ρ n+1 j n+1 +1/2 χ n+1 j n+1 +1 -y n+1 -ρ n jn+1/2 χ n jn+1 -y n -ρ n jn+3/2 ∆x + (f n jn+2 -f n int )∆t = 0. (3.6)
Let us introduce the two functions

H n jn-1 (u, v, w) = v(y n -χ n jn-1 ) -God s n (v, w) ∧ q n -EO(u, v) ∆t y n+1 -χ n+1 j n+1 -2
and

H n jn (u, v, w, z) = v(χ n jn+1 -y n ) + w∆x -EO(w, z) -God s n (u, v) ∧ q n ∆t χ n+1 j n+1 +1 -y n+1 so that    ρ n+1 j n+1 -1/2 = H n jn-1 (ρ n jn-3/2 , ρ n jn-1/2 , ρ n jn+1/2 ) ρ n+1 j n+1 +1/2 = H n jn (ρ n jn-1/2 , ρ n jn+1/2 , ρ n jn+3/2 , ρ n jn+5/2 ). (3.7) 
The key point in the proofs of the next section (stability and discrete entropy inequalities) is that the functions H jn-1 and H jn are nondecreasing with respect to their arguments i.e. the modication in (3.3) did not aect the monotonicity of the resulting scheme (3.4) (3.6).

Finally, the approximate solution ρ ∆ is dened almost everywhere on Ω:

ρ ∆ = n∈N   j≤jn ρ n j+1/2 1 P n j+1/2 + j≥jn+1 ρ n j+3/2 1 P n j+1/2   .
The other cases (j n+1 = j n or j n+1 = j n -1) follow from similar geometric considerations. Note that in the context of trac dynamics, y would be the trajectory of a stationary or a forward moving obstacle and therefore, we should have ẏ ≥ 0. This implies that for all n ∈ N, either j n+1 = j n or j n+1 = j n + 1. This is why we will focus on the case presented in Figure 2. 

Stability and discrete entropy inequalities

∀n ∈ N, ∀j ∈ Z, ρ n j+1/2 ∈ [0, 1]. ( 3 
∂H n jn ∂u (u, v, w, z) = 1 2 ∆t χ n+1 j n+1 +1 -y n+1 ∂God s n ∂a (u, v)(1 -sgn(God s n (u, v) -q n )) ≥ 0, ∂H n jn ∂v (u, v, w, z) = χ n jn+1 -y n χ n+1 j n+1 +1 -y n+1 + ∆t χ n+1 j n+1 +1 -y n+1 ∂God s n ∂b (u, v) (1 -sgn(God s n (u, v) -q n )) 2 ≥ χ n jn+1 -(y n + L∆t) χ n+1 j n+1 +1 -y n+1 ≥ χ n jn+1 -y n + ∆x 2 χ n+1 j n+1 +1 -y n+1 ≥ 0, ∂H n jn ∂w (u, v, w, z) = ∆x χ n+1 j n+1 +1 -y n+1 - ∆t χ n+1 j n+1 +1 -y n+1 ∂EO ∂a (w, z) ≥ ∆x -L∆t χ n+1 j n+1 +1 -y n+1 ≥ ∆x -∆x/2 χ n+1 j n+1 +1 -y n+1 ≥ 0, ∂H n jn ∂z (u, v, w, z) = - ∆t χ n+1 j n+1 +1 -y n+1 ∂EO ∂b (w, z) ≥ 0,
proving the monotonicity of H n jn . Similar computations show that H n jn-1 is nondecreasing with respect to its arguments as well. Stability. We now turn to the proof of (3.8), which is done by induction on n. If n = 0, it is veried by denition of ρ 0 j+1/2 j

. Suppose now that (3.8) holds for some integer n ≥ 0 and let us show that it still holds for n + 1. Remark that 0 and 1 are stationary solutions to the scheme. It is obviously true in the case (3.4). The denitions of H n jn-1 and H n jn do not change this fact. For instance, H n jn-1 (0, 0, 0) = 0 since q n ≥ 0 and because of (3.1), we also have:

H n jn-1 (1, 1, 1) = (y n -χ n jn-1 ) -((-s n ) ∧ q n ) ∆t y n+1 -χ n+1 j n+1 -2 = (y n -χ n jn-1 ) + s n ∆t y n+1 -χ n+1 j n+1 -2 = 1.
Similar computations would ensure that it holds also for H n jn . Using now the monotonicity of H n jn-1

for instance, we deduce that

0 = H n jn-1 (0, 0, 0) ≤ H n jn-1 (ρ n jn-3/2 , ρ n jn-1/2 , ρ n jn+1/2 ) = ρ n+1 j n+1 -1/2 = H n jn-1 (ρ n jn-3/2 , ρ n jn-1/2 , ρ n jn+1/2 ) ≤ H n jn-1 (1, 1, 1) = 1,
which concludes the induction argument. The remaining cases follow from similar computations.

Corollary 3.2 (Discrete entropy inequalities). Fix n ∈ N, j ∈ Z\{j n+1 -2} and κ ∈ [0, 1]. Then the numerical scheme (3.4) (3.6) fullls the following discrete entropy inequalities:

|ρ n+1 j+1/2 -κ|(χ n+1 j+1 -χ n+1 j ) ≤                          |ρ n j+1/2 -κ|(χ n j+1 -χ n j ) -Φ n j+1 -Φ n j ∆t if j / ∈ {j n+1 -1, j n+1 } -|ρ n+1 j n+1 -1/2 -κ|∆x + |ρ n jn-1/2 -κ|(χ n jn -χ n jn-1 ) -Φ n int -Φ n jn-1 ∆t + 1 2 R s n (κ, q n )∆t if j = j n+1 -1 |ρ n jn+1/2 -κ|(χ n jn+1 -χ n jn ) + |ρ n jn+3/2 -κ|∆x -Φ n jn+2 -Φ n int ∆t + 1 2 R s n (κ, q n )∆t if j = j n+1 , (3.9) 
where Φ n j and Φ n int denote the numerical entropy uxes:

Φ n j = EO(ρ n j-1/2 ∨ κ, ρ n j+1/2 ∨ κ) -EO(ρ n j-1/2 ∧ κ, ρ n j+1/2 ∧ κ); Φ n int = min{God s n (ρ n jn-1/2 ∨ κ, ρ n jn+1/2 ∨ κ), q n } -min{God s n (ρ n jn-1/2 ∧ κ, ρ n jn+1/2 ∧ κ), q n }
Proof. This result is mostly a consequence of the scheme monotonicity. When the interface/constraint does not enter the calculations i.e. when j / ∈ {j n+1 -1, j n+1 }, the proof follows [START_REF] Eymard | Finite Volume Methods, volume VII of Handbook of Numerical Analysis[END_REF]Lemma 5.4]. The key point is not only the monotonicity, but also the fact that in the classical case, all the constants states κ ∈ [0, 1] are stationary solutions of the scheme. This observation does not hold when the constraint enters the calculations. Suppose for example that j = j n+1 (which corresponds to the function H n jn ). Here, we have

H n jn (κ, κ, κ, κ) = κ(χ n jn+1 -y n ) + κ∆x -(f (κ) -(f (κ) -s n κ) ∧ q n ) ∆t χ n+1 j n+1 +1 -y n+1 = (χ n jn+2 -y n -s n ∆t)κ χ n+1 j n+1 +1 -y n+1 - ∆t 2(χ n+1 j n+1 +1 -y n+1 ) R s n (κ, q n ) = κ - ∆t 2(χ n+1 j n+1 +1 -y n+1 ) R s n (κ, q n ),
and it implies:

H n jn (ρ n jn-1/2 ∧ κ, ρ n jn+1/2 ∧ κ, ρ n jn+3/2 ∧ κ, ρ n jn+5/2 ∧ κ) ≤ ρ n+1 j n+1 +1/2 ∧ κ, ρ n+1 j n+1 +1/2 ∨ κ ≤ H n jn (ρ n jn-1/2 ∨ κ, ρ n jn+1/2 ∨ κ, ρ n jn+3/2 ∨ κ, ρ n jn+5/2 ∨ κ) + ∆t 2(χ n+1 j n+1 +1 -y n+1 ) R s n (κ, q n ).
We deduce:

|ρ n+1 j n+1 +1/2 -κ| = ρ n+1 j n+1 +1/2 ∨ κ -ρ n+1 j n+1 +1/2 ∧ κ ≤ H n jn (ρ n jn-1/2 ∨ κ, ρ n jn+1/2 ∨ κ, ρ n jn+3/2 ∨ κ, ρ n jn+5/2 ∨ κ) -H n jn (ρ n jn-1/2 ∧ κ, ρ n jn+1/2 ∧ κ, ρ n jn+3/2 ∧ κ, ρ n jn+5/2 ∧ κ) + ∆t 2(χ n+1 j n+1 +1 -y n+1 ) R s n (κ, q n ) = χ n jn+1 -y n χ n+1 j n+1 +1 -y n+1 |ρ n jn+1/2 -κ| + ∆x χ n+1 j n+1 +1 -y n+1 |ρ n jn+3/2 -κ| - ∆t χ n+1 j n+1 +1 -y n+1 Φ n jn+2 -Φ n int + ∆t 2(χ n+1 j n+1 +1 -y n+1 ) R s n (κ, q n ),
which is exactly (3.9) in the case j = j n+1 . The obtaining of (3.9) in the case j = j n+1 -1 is similar so we omit the details of the proof for this case.

Continuous inequalities for the approximate solution

The next step of the reasoning is to derive continuous inequalities, analogous to (2.1)-(2.2), veried by the approximate solution ρ ∆ , starting from the discrete entropy inequalities (3.9) and the marching formula (3.4) (3.6).

In this section, we x a test function ϕ ∈ C ∞ c (Ω), ϕ ≥ 0 and dene:

∀n ∈ N, ∀j ∈ Z, ϕ n j+1/2 = 1 χ n j+1 -χ n j ¢ χ n j+1 χ n j ϕ(x, t n ) dx = 2 χ n j+1 χ n j ϕ(x, t n ) dx .
We start by deriving continuous entropy inequalities veried by ρ ∆ . Let us dene the approximate entropy ux:

Φ ∆ (ρ ∆ , κ) = n∈N   j≤jn Φ n j 1 P n j+1/2 + j≥jn+1 Φ n j+1 1 P n j+1/2   . Proposition 3.3 (Approximate entropy inequalities). Fix n ∈ N and κ ∈ [0, 1]. Then we have ¢ t n+1 t n ¢ R |ρ ∆ -κ|∂ t ϕ + Φ ∆ (ρ ∆ , κ) ∂ x ϕ dx dt + ¢ R |ρ ∆ (x, t n ) -κ|ϕ(x, t n ) dx - ¢ R |ρ ∆ (x, t n+1 ) -κ|ϕ(x, t n+1 ) dx + ¢ t n+1 t n R s ∆ (t) (κ, q ∆ (t))ϕ(y ∆ (t), t) dt ≥ O ∆x 2 + O(∆x∆t) + O ∆t 2 .
(3.10)

Proof. For all j ∈ Z\{j n+1 -2}, we multiply the discrete entropy inequalities (3.9) by ϕ n+1 j+1/2 and take the sum to obtain:

j =j n+1 -2 ρ n+1 j+1/2 -κ ϕ n+1 j+1/2 (χ n+1 j+1 -χ n+1 j ) ≤ j / ∈{j n+1 -2,j n+1 -1,j n+1 } ρ n j+1/2 -κ (χ n j+1 -χ n j ) -(Φ n j+1 -Φ n j )∆t ϕ n+1 j+1/2 + |ρ n jn-1/2 -κ|ϕ n+1 j n+1 -1/2 (χ n jn -χ n jn-1 ) -|ρ n+1 j n+1 -1/2 -κ|ϕ n+1 j n+1 -1/2 ∆x -Φ n int -Φ n jn-1 ϕ n+1 j n+1 -1/2 ∆t + |ρ n jn+1/2 -κ|ϕ n+1 j n+1 +1/2 (χ n jn+1 -χ n jn ) + |ρ n jn+3/2 -κ|ϕ n+1 j n+1 +1/2 ∆x -Φ n jn+2 -Φ n int ϕ n+1 j n+1 +1/2 ∆t + 1 2 R s n (κ, q n )(ϕ n+1 j n+1 -1/2 + ϕ n+1 j n+1 +1/2 )∆t.
This inequality can be rewritten as

j∈Z ρ n+1 j+1/2 -κ ϕ n+1 j+1/2 (χ n+1 j+1 -χ n+1 j ) - j∈Z ρ n j+1/2 -κ ϕ n+1 j+1/2 (χ n j+1 -χ n j ) ≤ -ρ n+1 j n+1 -1/2 -κ ϕ n+1 j n+1 -1/2 -ϕ n+1 j n+1 -3/2 ∆x ε 1 + ρ n jn-1/2 -κ ϕ n+1 j n+1 -1/2 -ϕ n+1 j n+1 -3/2 (χ n jn -χ n jn-1 ) ε 2 + ρ n jn+1/2 -κ ϕ n+1 j n+1 +1/2 -ϕ n+1 j n+1 -1/2 (χ n jn+1 -χ n jn ) ε 3 - j / ∈{j n+1 -2,j n+1 -1,j n+1 } (Φ n j+1 -Φ n j )ϕ n+1 j+1/2 ∆t -Φ n int -Φ n jn-1 ϕ n+1 j n+1 -1/2 ∆t -Φ n jn+2 -Φ n int ϕ n+1 j n+1 +1/2 ∆t + 1 2 R s n (κ, q n )(ϕ n+1 j n+1 -1/2 + ϕ n+1 j n+1 +1/2 )∆t, with ∀i ∈ {1, 2, 3}, |ε i | ≤ 8 ∂ x ϕ L ∞ ∆x 2 .
We now proceed to the Abel's transformation and reorganize the terms of the inequality. This leads us to:

j∈Z ρ n+1 j+1/2 -κ ϕ n+1 j+1/2 (χ n+1 j+1 -χ n+1 j ) - j∈Z ρ n j+1/2 -κ ϕ n j+1/2 (χ n j+1 -χ n j ) A - j∈Z ρ n j+1/2 -κ ϕ n+1 j+1/2 -ϕ n j+1/2 (χ n j+1 -χ n j ) B + j / ∈{j n+1 -2,j n+1 -1} Φ n j ϕ n+1 j+1/2 -ϕ n+1 j-1/2 ∆t C ≤ 1 2 R s n (κ, q n )(ϕ n+1 j n+1 -1/2 + ϕ n+1 j n+1 +1/2 )∆t D + 5 i=1 ε i , with ∀i ∈ {4, 5}, |ε i | ≤ 4 f L ∞ ∂ x ϕ L ∞ ∆x∆t.
We immediately see that

A = ¢ R ρ ∆ (x, t n+1 ) -κ ϕ(x, t n+1 ) dx - ¢ R |ρ ∆ (x, t n ) -κ| ϕ(x, t n ) dx .
We conclude this proof by estimating the remaining terms of the inequality.

Estimating B. First, note that

B = j≤jn-2 ¤ P n j+1/2 |ρ ∆ -κ| ∂ t ϕ dx dt + j≥jn+1 ¤ P n j+1/2 |ρ ∆ -κ| ∂ t ϕ dx dt + ρ n jn-1/2 -κ 2 χ n+1 jn+1 χ n+1 jn-1 ϕ(x, t n+1 ) dx - 2 y n χ n jn-1 ϕ(x, t n ) dx (y n -χ n jn-1 ) B 1 + ρ n jn+1/2 -κ 2 y n+1 χ n+1 jn ϕ(x, t n+1 ) dx - 2 χ n jn+1 y n ϕ(x, t n ) dx (χ n jn+1 -y n ) B 2 + ρ n jn+3/2 -κ 2 χ n+1 jn+2 y n+1 ϕ(x, t n+1 ) dx - 2 χ n jn+2 χ n jn+1 ϕ(x, t n ) dx ∆x B 3 . Since ¤ P n jn-1/2 |ρ ∆ -κ| ∂ t ϕ dx dt = ρ n jn-1/2 -κ ¢ y n+1 χ n+1 jn-1 ϕ(x, t n+1 ) dx - ¢ y n χ n jn-1 ϕ(x, t n ) dx -s n ¢ t n+1 t n ϕ(y n + s n (t -t n ), t) dt = ρ n jn-1/2 -κ y n+1 -χ n+1 jn-1 y n -χ n jn-1 2 y n+1 χ n+1 jn-1 ϕ(x, t n+1 ) dx - 2 y n χ n jn-1 ϕ(x, t n ) dx + y n -y n+1 y n -χ n jn-1 2 t n+1 t n ϕ(y n + s n (t -t n ), t) dt (y n -χ n jn-1 ),
we deduce the bound:

B 1 - ¤ P n jn-1/2 |ρ ∆ -κ| ∂ t ϕ dx dt = ρ n jn-1/2 -κ (y n+1 -y n ) 2 y n+1 χ n+1 jn-1 ϕ(x, t n+1 ) dx - 2 t n+1 t n ϕ(y n + s n (t -t n ), t) dt ≤ ẏ L ∞ 3 ∂ x ϕ L ∞ ∆x + ∂ t ϕ L ∞ ∆t + 2 ẏ L ∞ ∂ x ϕ L ∞ ∆t ∆t.
The same way, we would derive the estimation:

B 2 + B 3 - ¤ P n jn+1/2 |ρ ∆ -κ| ∂ t ϕ dx dt ≤ 6 ∂ x ϕ L ∞ ∆x 2 + ẏ L ∞ 2 ∂ x ϕ L ∞ ∆x + ∂ t ϕ L ∞ ∆t + 2 ẏ L ∞ ∂ x ϕ L ∞ ∆t ∆t.
Estimating C. We write:

C = λ j / ∈{j n+1 -2,j n+1 -1,j n+1 } ¢ χ n j+1 χ n j ¢ x x-∆x Φ n j ∂ x ϕ(y, t n+1 ) dy dx + Φ n j n+1 ϕ n+1 j n+1 +1/2 -ϕ n+1 j n+1 -1/2 ∆t ε 6 = ¢ t n+1 t n ¢ R Φ ∆ (ρ ∆ , κ)∂ x ϕ dx dt + ε 6 - j n+1 -2≤j≤j n+1 -1 ¤ P n j+1/2 Φ ∆ (ρ ∆ , κ)∂ x ϕ dx dt ε 7 + j / ∈{j n+1 -2,j n+1 -1,j n+1 } λ ¢ χ n j+1 χ n j ¢ x x-∆x Φ n j ∂ x ϕ(y, t n+1 ) dy dx - ¢ t n+1 t n ¢ R Φ ∆ (ρ ∆ , κ)∂ x ϕ dx dt ε 8 , with |ε 6 | + |ε 7 | ≤ 8 f L ∞ ∂ x ϕ L ∞ ∆x∆t and |ε 8 | ≤ f L ∞ 4 sup t≥0 ∂ 2 xx ϕ(•, t) L 1 ∆x + sup t≥0 ∂ 2 tx ϕ(•, t) L 1 ∆t ∆t.
Estimating D. Finally, we have

D = R s n (κ, q n )ϕ(y n+1 , t n+1 )∆t + 1 y n+1 -χ j n+1 -1 ¢ y n+1 χ n+1 j n+1 -1 (ϕ(x, t n+1 ) -ϕ(y n+1 , t n+1 ))∆t ε 9 + 1 χ j n+1 +1 -y n+1 ¢ χ n+1 j n+1 +1 y n+1 (ϕ(x, t n+1 ) -ϕ(y n+1 , t n+1 ))∆t ε 10 = ¢ t n+1 t n R s ∆ (t) (κ, q ∆ (t))ϕ(y ∆ (t), t) dt + ε 9 + ε 10 + ¢ t n+1 t n R s ∆ (t) (κ, q ∆ (t))(ϕ(y n+1 , t n+1 ) -ϕ(y ∆ (t), t)) dt ε 11 , with |ε 9 | + |ε 10 | + |ε 11 | ≤ 2 f L ∞ 2 ∂ x ϕ L ∞ ∆x + ẏ L ∞ ∂ x ϕ L ∞ ∆t + ∂ t ϕ L ∞ ∆t ∆t Note that if ϕ is supported in time in [0, T ], with T ∈ [t N , t N +1
), then by summing (3.10) over n ∈ {0, . . . , N + 1}, we obtain (recall that λ is xed):

¢ T 0 ¢ R |ρ ∆ -κ|∂ t ϕ + Φ ∆ (ρ ∆ , κ) ∂ x ϕ dx dt + ¢ R |ρ 0 ∆ -κ|ϕ(x, 0) dx + ¢ T 0 R s ∆ (t) (κ, q ∆ (t))ϕ(y ∆ (t), t) dt ≥ O(∆x) + O(∆t) .
(3.11)

We now turn to the proof of an approximate version of (2.2). Let us dene the approximate ux function:

F ∆ (ρ ∆ ) = n∈N   j≤jn f n j 1 P n j+1/2 + j≥jn+1 f n j+1 1 P n j+1/2   . Proposition 3.4 (Approximate constraint inequalities). Fix n ∈ N and κ ∈ [0, 1]. Then we have ¢ +∞ y n ρ ∆ (x, t n )ϕ(x, t n ) dx - ¢ +∞ y n+1 ρ ∆ (x, t n+1 )ϕ(x, t n+1 ) dx - ¢ t n+1 t n ¢ R ρ ∆ ∂ t ϕ + F ∆ (ρ ∆ ) ∂ x ϕ dx dt ≤ ¢ t n+1 t n q ∆ (t)ϕ(y ∆ (t), t) dt + O ∆x 2 + O(∆x∆t) + O ∆t 2 .
(3.12)

Proof. Following the steps of the proof of Proposition 3.3, we rst multiply the scheme (3.4)-(3.6) by ϕ n+1 j+1/2 , sum over j ≥ j n+1 and then apply the summation by parts procedure. This time, we obtain:

j≥j n+1 ρ n+1 j+1/2 ϕ n+1 j+1/2 (χ n+1 j+1 -χ n+1 j ) - j≥jn ρ n j+1/2 ϕ n j+1/2 (χ n j+1 -χ n j ) A - j≥jn ρ n j+1/2 ϕ n+1 j+1/2 -ϕ n j+1/2 (χ n j+1 -χ n j ) B + j≥jn+2 f n j ϕ n+1 j+1/2 -ϕ n+1 j-1/2 ∆t C ≤ q n ϕ n+1 j n+1 +1/2 ∆t D +ε, with ε ≤ 8 ∂ x ϕ L ∞ ∆x 2 . Clearly, A = ¢ +∞ y n+1 ρ ∆ (x, t n+1 )ϕ(x, t n+1 ) dx - ¢ +∞ y n ρ ∆ (x, t n )ϕ(x, t n ) dx ,
and estimate (3.12) follows from the bounds:

B - ¢ t n+1 t n ¢ R ρ ∆ ∂ t ϕ dx dt ≤ (3 ∂ x ϕ L ∞ ∆x + ∂ t ϕ L ∞ ∆t)∆t + ẏ L ∞ 2 ∂ x ϕ L ∞ ∆x + 2 ẏ L ∞ ∂ x ϕ L ∞ ∆t + ∂ t ϕ L ∞ ∆t ∆t C - ¢ t n+1 t n ¢ R F ∆ (ρ ∆ ) ∂ x ϕ dx dt ≤ f L ∞ 6 ∂ x ϕ L ∞ + 4 sup t≥0 ∂ 2 xx ϕ(•, t) L 1 + sup t≥0 ∂ 2 tx ϕ(•, t) L 1 ∆x∆t D - ¢ t n+1 t n q ∆ (t)ϕ(y ∆ (t), t) dt ≤ q L ∞ 2 ∂ x ϕ L ∞ ∆x + ∂ t ϕ L ∞ ∆t + ẏ L ∞ ∂ x ϕ L ∞ ∆t ∆t.
If ϕ is supported in time in (0, T ), with T ∈ [t N , t N +1 ), then by summing (3.10) over n ∈ {0, . . . , N + 1}, we obtain:

- ¢ T 0 ¢ R ρ ∆ ∂ t ϕ + F ∆ (ρ ∆ ) ∂ x ϕ dx dt ≤ ¢ T 0 q ∆ (t)ϕ(y ∆ (t), t) dt + O(∆x) + O(∆t) .
(3.13)

Compactness and convergence

The remaining part of the reasoning consists in obtaining sucient compactness for the sequence (ρ ∆ ) ∆ in order to pass to the limit in (3.11)-(3.13). To doing so, we adapt techniques and results put forward by Towers in [START_REF] Towers | Convergence via OSLC of the Godunov scheme for a scalar conservation law with time and space ux discontinuities[END_REF]. With this in mind, we suppose in this section that the ux function, still bell-shaped, is also strictly concave. By continuity,

∃µ > 0, ∀ρ ∈ [0, 1], f (ρ) ≤ -µ. (3.14)
We denote for all n ∈ N and j ∈ Z,

D n j = max ρ n j-1/2 -ρ n j+1/2 , 0 .
We will also use the notation

∀n ∈ N, Z n+1 = Z\{j n+1 -2, j n+1 -1, j n+1 , j n+1 + 1}.
In [START_REF] Towers | Convergence via OSLC of the Godunov scheme for a scalar conservation law with time and space ux discontinuities[END_REF], the author dealt with a discontinuous in both time and space ux and the specic "vanishing viscosity" coupling at the interface. The discontinuity in space was localized along the curve {x = 0}.

Here, we deal with a smooth ux but we have a ux constraint along the curve {x = y(t)}. The applicability of the technique of [START_REF] Towers | Convergence via OSLC of the Godunov scheme for a scalar conservation law with time and space ux discontinuities[END_REF] for our case with moving interface and ux-constrained interface coupling relies on the fact that one can derive a bound on D n+1 j as long as the interface does not enter the calculations for D n+1 j i.e. as long as j ∈ Z n+1 in the case j n+1 = j n + 1.

Lemma 3.5. Let n ∈ N, j ∈ Z n+1 , a = µ ∆t 4∆x and ψ(x) = x -ax 2 . Then D n+1 j ≤ ψ max D n j-1 , D n j , D n j+1 . ( 3 

.15)

Proof. For the sake of completeness, the proof, largely inspired by [START_REF] Towers | Convergence via OSLC of the Godunov scheme for a scalar conservation law with time and space ux discontinuities[END_REF], can be found in Appendix A.

Remark 3.2. Fix n ∈ N and j ∈ Z n+1 . Remark that if D n j > 0, then we can write that for some ν(j) ∈ {j -1, j, j + 1}, we have

D n+1 j ≤ D n ν(j) -a D n ν(j) 2 = D n ν(j) 1 -aD n ν(j) = D n ν(j) 1 -a 2 D n ν(j) 2 1 + aD n ν(j) ≤ D n ν(j) 1 + aD n ν(j) = 1 1 D n ν(j) + a .
Corollary 3.6. Let n ∈ N. Then the scheme (3.4) (3.6) veries the following one-sided Lipschitz condition: 

D n+1 j ≤                          1 (n + 1)a if j ≤ j n+1 -3 -n 1 ((j n+1 -2) -j)a if j n+1 -3 -n ≤ j ≤ j n+1 -3 1 (j -(j n+1 + 1))a if j n+1 + 2 ≤ j ≤ j n+1 + 2 + n 1 (n + 1)a if j ≥ j n+1 + 2 + n.
∃ν j ∈ {j -1, j, j + 1}, D n+1 j ≤ D n ν j -a D n ν j 2 .
If D n ν j = 0, then D n+1 j = 0 ≤ 1/a. Otherwise, we can write:

D n+1 j ≤ 1 1 D n ν j + a ≤ 1 a = 1 ka .
Now, let us assume that (3.17) holds for some integer k ∈ N * and suppose that min{n+1, j -(j n+1 + 1)} ≥ k + 1. Again, by (3.15),

∃ν j ∈ {j -1, j, j + 1}, D n+1 j ≤ D n ν j -a D n ν j 2 . Since n ≥ k and ν j -(j n + 1) ≥ (j -1) -(j n+1 + 1) = j -(j n+1 + 1) -1 ≥ k,
we deduce that min{n, j -(j n + 1)} ≥ k, hence, using the induction property:

D n+1 j ≤ 1 1 D n ν j + a ≤ 1 (k + 1)a ,
which concludes the induction argument. Estimates (3.16) in the cases j ≥ j n+1 + 2 follow for suitable choices of k in (3.17).

Corollary 3.7 (Localized BV estimates). Fix 0 < ε < X and suppose that 3∆x ≤ ε and that

t n+1 ≥ ε 2L
. Then there exists a constant Λ = Λ 1 ε , X , nondecreasing with respect to its arguments

such that TV ρ ∆ (•, t n+1 ) |(y n+1 +ε,y n+1 +X) ≤ Λ (3.18)
and ¢ y n+1 +X

y n+1 +ε ρ ∆ (x, t n+2 ) -ρ ∆ (x, t n+1) ) dx ≤ 2∆x + L (2Λ + 1) ∆t. (3.19) 
Note that we have the same bounds for the quantities:

TV ρ ∆ (•, t n+1 ) |(y n+1 -X,y n+1 -ε) and ¢ y n+1 -ε y n+1 -X ρ ∆ (x, t n+2 ) -ρ ∆ (x, t n+1) ) dx . Proof. Let k n+1 , J n+1 ∈ Z such that y n+1 +ε ∈ (χ n+1 k n+1 , χ n+1 k n+1 +∆x) and y n+1 +X ∈ (χ n+1 J n+1 , χ n+1 J n+1 + ∆x).
We have:

TV(ρ ∆ (•, t n+1 ) |(y n+1 +ε,y n+1 +X) ) J n+1 j=k n+1 +1 |ρ n+1 j+1/2 -ρ n+1 j-1/2 | = 2 J n+1 j=k n+1 +1 D n+1 j - J n+1 j=k n+1 +1 (ρ n+1 j+1/2 -ρ n+1 j-1/2 ) = 2 J n+1 j=k n+1 +1 D n+1 j -(ρ n+1 J n+1 -1/2 -ρ n+1 k n+1 +1/2 ) ≤ 1 + 2 J n+1 j=k n+1 +1 D n+1 j .
Now, for all j ≥ k n+1 + 1, we have

j -(j n+1 + 1) ≥ (k n+1 + 1) -(j n+1 + 1))∆x ∆x = (χ n+1 k n+1 + ∆x) -χ n+1 j n+1 ∆ x ≥ (y n+1 + ε) -(y n+1 + 2∆x) ∆x = ε ∆x -2 ≥ 1.
Lemma 3.16 ensures that

TV(ρ ∆ (•, t n+1 ) |(y n+1 +ε,y n+1 +X) ) ≤ 1 + 2 a J n+1 j=k n+1 +1 1 min{n + 1, j -(j n+1 + 1)} .
However, we also have:

n + 1 = t n+1 ∆t ≥ ε 2L∆t ≥ ε ∆x = (y n+1 + ε) -y n+1 ∆x ≥ χ n+1 k n+1 -(χ n+1 j n+1 + ∆x) ∆x = k n+1 -(j n+1 + 1).
We deduce that for all j ∈ {k n+1 + 1, . . . , J n+1 }, min{n + 1, j -(j n+1 + 1)} ≥ k n+1 -(j n+1 + 1); hence:

J n+1 j=k n+1 +1 |ρ n+1 j+1/2 -ρ n+1 j-1/2 | ≤ 1 + 2 a × J n+1 -k n+1 k n+1 -(j n+1 + 1) ≤ 1 + 2 a × X -ε + ∆x ε -2∆x ≤ Λ, Λ := 1 + 6X aε ,
which is exactly (3.18). Then, ¢ y n+1 +X (3.14). Then as ∆ → 0 while satisfying the CFL condition (3.2), (ρ ∆ ) ∆ converges a.e. on Ω to the admissible entropy solution to (1.3).

y n+1 +ε ρ ∆ (x, t n+2 ) -ρ ∆ (x, t n+1) ) dx ≤ 2∆x + J n+1 j=k n+1 +1 |ρ n+2 j+1/2 -ρ n+1 j+1/2 |∆x ≤ 2∆x + f L ∞   J n+1 j=k n+1 +1 |ρ n+1 j+3/2 -ρ n+1 j+1/2 | + J n+1 j=k n+1 +1 |ρ n+1 j+1/2 -ρ n+1 j-1/2 |   ∆t ≤ 2∆x + L (2Λ + 1) ∆t, concluding the proof. Theorem 3.8. Fix ρ 0 ∈ L ∞ (R; [0, 1]), y ∈ W 1,∞ loc ((0, +∞)), ẏ ≥ 0 and q ∈ L ∞ loc ((0, +∞)), q ≥ 0. Suppose that f ∈ C 2 ([0, 1]) satises (1.1)-
Proof. Fix n ∈ N * . The uniform convergence of (y ∆ ) ∆ to y, coupled with the BV bounds (3.18)-(3.19) and the uniform L ∞ bound (3.8) provide (up to a subsequence) a.e. convergence for the sequence (ρ ∆ ) ∆ in any rectangular bounded domains of the open subset Equipped with the convergence of (ρ ∆ ) ∆ to ρ, we let ∆ → 0 in (3.11) and (3.13) to establish that ρ is an admissible entropy solution to (1.3). By uniqueness, the whole sequence converges to ρ, which proves the theorem. Corollary 3.9.

O n = {(x, t) ∈ Ω | |x -y(t)| > 1/n},
Fix ρ 0 ∈ L ∞ (R; [0, 1]), y ∈ W 1,∞ loc ((0, +∞)), ẏ ≥ 0 and q ∈ L ∞ loc ((0, +∞)), q ≥ 0. Suppose that f ∈ C 2 ([0, 1]) satises (1.1)-(3.14). Then Problem (1.
3) admits a unique admissible entropy solution.

Proof. Existence comes from Theorem 3.8 while uniqueness was established by Theorem 2.8.

4

Well-posedness for the multiple trajectory problem

We now get back to the original problem (1.2). Let us detail the organization of this section. First, we construct a partition of the unity to reduce the study of (1.2) to an assembling of several local studies of (1.3), see Section 4.1. Using the denition based on germs, analogous to Denition 2.4, we will prove a stability estimate, leading to uniqueness, see Theorem 4.3. Then in Section 4.3, we construct a nite volume scheme in which we fully use the precise study of Section 3. A special treatment of the crossing points is described, see Section 4.3.1.

Let us recall that we are given a nite (or more generally locally nite) family of trajectories and constraints (y i , q i ) i∈[[1;J]] dened on (s i , T i ) (0 ≤ s i < T i ). Introduce the notations:

∀i ∈ [[1; J]], Γ i = {(x, t) ∈ Ω | t ∈ [s i , T i ] and x = y i (t)}.
We suppose that for all i ∈ [[1; J]], y i ∈ W 1,∞ ((s i , T i )) and q i ∈ L ∞ ((s i , T i ); R + ). This notation means that what can be seen as crossing points between interfaces will be considered as endpoints of the interfaces; for instance, given two crossing lines, we split them into four interfaces having a common endpoint. We denote by (C m ) 1≤m≤M the set of all endpoints of the interfaces Step 1. For all i ∈ [[1; J]], K ∩ Γ i is a compact subset (maybe empty) of Ω, and the family

Γ i , i ∈ [[1; J]].
(K ∩ Γ i ) i is pairwise disjoint. By compactness, ∃δ > 0, ∀i, j ∈ [[1; J]], i = j =⇒ dist(K ∩ Γ i , K ∩ Γ j ) ≥ 2δ.
Step 2. For all i ∈ [[1; J]], set

Ω i = (x,t)∈K∩Γ i B((x, t), δ),
where B((x, t), δ) denotes the R 2 -euclidean open ball centered on (x, t) and of radius δ. Clearly,

Ω i is an open subset of Ω containing Γ i .
Moreover, the family (Ω i ) i is pairwise disjoint. Indeed, suppose instead that for some i, j ∈ [[1; J]] (i = j), we have

Ω i ∩ Ω j = ∅,
and x (x, t) ∈ Ω i ∩ Ω j . By denition, there exists (x i , t i ) ∈ K ∩ Γ i and (x j , t j ) ∈ K ∩ Γ j such that (x, t) ∈ B((x i , t i ), δ) ∩ B((x j , t j ), δ).

Using the triangle inequality, we deduce that dist(K ∩ Γ i , K ∩ Γ j ) ≤ dist((x i , t i ), (x j , t j )) ≤ dist((x i , t i ), (x, t)) + dist((x, t), (x j , t j )) < 2δ, yielding the contradiction.

Step 3. Dene the open subset (nite intersection of open subsets):

Ω 0 = (x, t) ∈ Ω ∀i ∈ [[1; J]], dist((x, t), K ∩ Γ i ) ≥ δ 2 .
The family

(Ω i ) i∈[[0;J]
] is an open cover of R × R + . Consequently, there exists a partition of the unity (θ i ) i∈[[0;J]] associated with this cover:

∀i ∈ [[0; J]], θ i ≥ 0; θ i ∈ C ∞ c (Ω i ); ∀(x, t) ∈ R × R + , J i=0 θ i (x, t) = 1.
Step 4. We write the function ϕ in the following manner:

ϕ = J i=0 (ϕθ i ) = ϕ 0 + J i=1 ϕ i . (4.1) 
Note that:

1. ϕ 0 vanishes along all the interfaces;

2. for all i ∈ [[1; J]], ϕ i vanishes along all the interfaces but Γ i .

Denition of solutions and uniqueness

Following Section 2 and Denition 2.4, we give the following denition of solution. 

ρ 0 ∈ L ∞ (R) if: (i) for all test functions ϕ ∈ C ∞ c (Ω\ ∪ J i=1 Γ i ), ϕ ≥ 0 and κ ∈ [0, 1]
, the following entropy inequalities are veried:

¢ +∞ 0 ¢ R |ρ -κ|∂ t ϕ + Φ(ρ, κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x) -κ|ϕ(x, 0) dx ≥ 0; (4.2) 
(ii) for all i ∈ [[1; J]] and for a.e. t ∈ (s i , T i ),

(ρ(y i (t)-, t), ρ(y i (t)+, t)) ∈ G ẏi (t) (q i (t)), (4.3) 
where the admissibility germ G ẏi (q i ) was dened in Denition 2.2.

Lemma 4.2 (Kato inequality)

. Fix ρ 0 , σ 0 ∈ L ∞ (R; [0, 1]). Let (q i ) i∈[[1;J]] and ( ∼ q i ) i∈[[1;J]] be two family of constraints, where for all i ∈ [[1; J]], q i , ∼ q i ∈ L ∞ ((s i , T i )).
We denote by ρ (resp. σ) a G-entropy solution to Problem (1.2) corresponding to initial data ρ 0 (resp. σ 0 ) and constraints

(q i ) i∈[[1;J]] (resp. ( ∼ q i ) i∈[[1;J]] ). Then for all test functions ϕ ∈ C ∞ c (Ω), ϕ ≥ 0, we have ¢ +∞ 0 ¢ R |ρ -σ|∂ t ϕ + Φ(ρ, σ)∂ x ϕ dx dt + ¢ R |ρ 0 (x) -σ 0 (x)|ϕ(x, 0) dx + J i=1 ¢ T i s i
Φ ẏi (t) (ρ(y i (t)+, t), σ(y i (t)+, t)) -Φ ẏi (t) (ρ(y i (t)-, t), σ(y i (t)-, t)) ϕ(y i (t), t) dt ≥ 0.

(4.4)

Proof. We split the reasoning in two steps.

Step 1. Suppose rst that ϕ ∈ C ∞ c (Ω\ ∪ M m=1 C m ). In this case, we write ϕ using the partition of unity (4.1). Fix i ∈ [[1; J]]. Following the computations of Lemma 2.7, we obtain:

¤ Ω i |ρ -σ|∂ t ϕ i + Φ(ρ, σ)∂ x ϕ i dx dt + ¢ {x∈R | (x,0)∈Ω i } |ρ 0 (x) -σ 0 (x)|ϕ i (x, 0) dx + ¢ T i s i
Φ ẏi (t) (ρ(y i (t)+, t), σ(y i (t)+, t)) -Φ ẏi (t) (ρ(y i (t)-, t), σ(y i (t)-, t)) ϕ i (y i (t), t) dt ≥ 0. 

¢ +∞ 0 ¢ R |ρ -κ|∂ t ϕ + Φ(ρ, κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x) -κ|ϕ(x, 0) dx + J i=1 ¢ T i s i R ẏi (t) (κ, q i (t))ϕ(y i (t), t) dt ≥ 0, (4.8)
where R ẏi (κ, q i ) was dened in Denition 2.1;

(ii) for all test functions ϕ ∈ C ∞ c (Ω\ ∪ M m=1 C m ), ϕ ≥ 0, written under the form (4.1), the following constraint inequalities are veried for all i ∈ [[1; J]]:

- ¤ Ω + i ρ∂ t ϕ + f (ρ)∂ x ϕ dx dt ≤ ¢ T i s i q i (t)ϕ i (y i (t), t) dt , (4.9) 
where 

Ω + i = {(x, t) ∈ Ω i | x > y i (t)}.
(i), it is equivalent that (4.8) holds with ϕ ∈ C ∞ c (Ω\ ∪ M m=1 C m ).
Proof. The proof of the equivalence of Denitions 4.1 and 4.4 is a straightforward adaptation of the proofs of Propositions 2.5-2.6. The last part of the statement follows using the same approximation argument described at the end of the proof of Lemma 4.2.

We now turn to the proof of existence for admissible entropy solutions of (1.2). We make use of the precise study of Section 3 in the case of a single trajectory and build a nite volume scheme. We keep the notations of Section 3 when there is no ambiguity.

Construction of the mesh, denition of the scheme

For the sake of clarity, suppose that we only have two trajectories/constraints (y i , q i ) (1 ≤ i ≤ 2) dened on [0, τ ], which cross at time τ . We denote by C this crossing point. Suppose also that this crossing point results in two additional trajectories/constraints (y i , q i ) (3 ≤ i ≤ 4) dened on [τ, T ], and which do not cross, as represented in Figure 4.

Let us fully make explicit the steps of the reasoning leading to the construction of our scheme in that situation. Suppose that λ = ∆t/∆x is xed and veries the CFL condition

2     f L ∞ + max 1≤i≤4 ẏi L ∞ ((0,T )) L     λ ≤ 1. (4.10) Set N ∈ N such that τ ∈ [t N , t N +1
). We divide the discussion in four parts.

Part 1. Introduce the number The denition of N 1 ensures that for all n ∈ {0, . . . , N 1 -1}, we can independently modify the mesh near the two trajectories y 1 ∆ and y 2 ∆ , as presented in Figure 5. Consequently, we can simply dene the approximate solution ρ ∆ on R × [0, t N 1 -1 ] as the nite volume approximation of a conservation law, with initial data ρ 0 , with ux constraints on two non-interacting trajectories, using the recipe of Section 3 for each trajectory/constraint. Part 2. Fix now n ∈ {N 1 , . . . , N }. In these time intervals, since the two trajectories are too close to each other, one cannot modify the mesh in the neighbourhood of one of them without aecting the other. However, the scheme has to be dened globally so we proceed as described below.

N 1 = inf n ∈ N, |y 1 ∆ (t n ) -y 2 ∆ (t n )| ≤ 4∆x .
First, introduce the mean trajectory and the new constraint: ∀t ∈ [0, τ ], y 12 (t) = y 1 (t) + y 2 (t) 2 ; q 12 (t) = min{q 1 (t), q 2 (t)}, represented in purple in Figure 5, before the crossing point (in red). The choice of taking the minimal level of constraint in the denition of q 12 stems from the nature of the constrained problem; see however Remark 4.1 below.

Then, dene ρ ∆ on R × [t N 1 , t N ] as the nite volume approximation of the one trajectory/one constraint problem:

         ∂ t ρ + ∂ x (f (ρ)) = 0 ρ(•, t N 1 ) = ρ ∆ (•, t N 1 -1 ) (f (ρ) -ẏ12 (t)ρ)| x=y 12 (t) ≤ q 12 (t) t ∈ (t N 1 , t N ),
using exactly the recipe of Section 3.1.

Part 3. Introduce the number:

N 2 = inf n > N, |y 3 ∆ (t n ) -y 4 ∆ (t n )| ≥ 4∆x .
For n ∈ {N, . . . , N 2 }, we are in the same situation as Part 2. We proceed to the same construction, mutatis mutandis. ∀t ∈ [τ, T ], y 34 (t) = y 3 (t) + y 4 (t) 2 ; q 34 (t) = min{q 3 (t), q 4 (t)}, represented in purple in Figure 5, after the crossing point.

Dene ρ ∆ on R × [t N , t N 2 ] as the nite volume approximation of the one trajectory/one constraint problem:

         ∂ t ρ + ∂ x (f (ρ)) = 0 ρ(•, t N ) = ρ ∆ (•, t N ) (f (ρ) -ẏ34 (t)ρ)| x=y 34 (t) ≤ q 34 (t) t ∈ (t N , t N 2 ). Part 4. Finally, ρ ∆ is dened on R × [t N 2 , T ] like in Part 1 with y 3 , q 3 , ρ ∆ (•, t N 2 ) (respect. y 4 , q 4 )
playing the role of y 1 , q 1 , ρ 0 (respect. of y 2 , q 2 ).

Remark 4.1. Let us stress out that the details of the treatment done in Parts 2-3 do not play any signicant role in the convergence proof below thanks to the choice of test functions vanishing at neighbourhood of the crossing points, see Proposition 4.5. Consequently, taking the mean trajectory and the minimum of the constraint is merely an example aiming at preserving some consistency while keeping the scheme simple to understand and implement.

The general case of a nite number of interfaces (locally nite number can be easily included) is treated in the same way, leading to a pattern with the uniform rectangular mesh adapted to each of the interfaces Γ i , i ∈ [[1; J]] except for small (in terms of the number of impacted mesh cells) neighbourhoods of the crossing points

C m , m ∈ [[1; M ]]. 4.3.2 Proof of convergence Theorem 4.6. Fix T > 0, f ∈ C 2 ([0, 1]) satisfying (1.1)-(3.14) and ρ 0 ∈ L ∞ (R; [0, 1]). Let (y i , q i ) i∈[[1;J]
] be a nite family of trajectories and constraints dened on (s i , T i ) (0 ≤ s i < T i ). We suppose that for all i ∈ [[1; J]], y i ∈ W 1,∞ ((s i , T i )) and q i ∈ L ∞ ((s i , T i ); R + ). Suppose also that the interfaces (Γ i ) i dened by the trajectories (y i ) i have a nite number of crossing points. Then as ∆ → 0 while satisfying the CFL condition

2     f L ∞ + max 1≤i≤J ẏi L ∞ ((0,T )) L     λ ≤ 1,
the sequence (ρ ∆ ) ∆ constructed by the procedure of Section 4.3.1 converges a.e. on Ω to the admissible entropy solution to (1.2).

Proof. We make use of the fact that in Denition 4.4, we only need to consider test functions that vanish at a neighbourhood of the crossing points (this is the key observation leading to Remark 4.1 hereabove).

(i) Proof of the entropy inequalities. Fix ϕ ∈ C ∞ c (Ω\ ∪ M m=1 C m ), ϕ ≥ 0, written as ϕ = ϕ 0 + J i=1 ϕ i , using the appropriate partition of unity, see Section 4.1. Since ϕ 0 vanishes along all the interfaces, ρ ∆ veries inequality (3.11) with R ≡ 0 on the domain Ω 0 and with test function ϕ 0 . Indeed, for a suciently small ∆x > 0, the scheme we constructed in the previous section reduces to a standard nite volume in Ω 0 . Fix now i ∈ [[1; J]]. Since ϕ i vanishes along all the interfaces but Γ i , ρ ∆ veries inequality (3.11) with reminder term R s i ∆ (κ, q i ∆ ) along the trajectory y i ∆ on the domain Ω i and with test function ϕ i , due to the analysis of Section 3; indeed, in the support of the test function, our scheme for the multi-interface problem reduces to the scheme for the single-interface problem. By summing these previous inequalities, we obtain an approximate version of (4. (ii) Proof of the weak constraint inequalities. Let ϕ ∈ C ∞ c (Ω\ ∪ M m=1 C m ), ϕ ≥ 0, written under the form (4.1). Fix i ∈ [[1; J]]. Since ϕ i vanishes along all the interfaces but Γ i , for a suciently small ∆x, ρ ∆ veries inequality (3.13) with constraint q i ∆ along the trajectory y i ∆ on the domain Ω + i and with test function ϕ i . We obtain an approximate version of (4.12) veried by ρ ∆ : Indeed, these local bounds lead to compactness in the domain complementary to the interfaces, we only use the fact that the interfaces together with the crossing points form a closed subset of Ω with zero Lebesgue measure. Once the a.e. convergence (up to a subsequence) on Ω to some ρ ∈ L ∞ (Ω; [0, 1]) obtained, we simply pass to the limit in (4.11)-(4.12). This proves that ρ is an admissible solution to (1.2). By the uniqueness of Theorem 4.3, the whole sequence converges to ρ. This concludes the proof.

- ¤ Ω + i ρ ∆ ∂ t ϕ + F ∆ (ρ ∆ )∂ x ϕ dx dt ≤ ¢ T i s i q i ∆ (t)ϕ i
Corollary 4.7. Fix T > 0, f ∈ C 2 ([0, 1]) satisfying (1.1)-(3.14) and ρ 0 ∈ L ∞ (R; [0, 1]). Let (y i , q i ) i∈[[1;J]] be a nite family of trajectories and constraints dened on (s i , T i ) (0 ≤ s i < T i ). We suppose that for all i ∈ [[1; J]], y i ∈ W 1,∞ ((s i , T i )) and q i ∈ L ∞ ((s i , T i ); R + ). Finally, suppose that the interfaces (Γ i ) i dened by the trajectories (y i ) i have a nite number of crossing points. Then Problem (1.2) admits a unique admissible entropy solution.

Proof. Existence comes from Theorem 4.6 while uniqueness was established by Theorem 4.3.

Numerical experiment with crossing trajectories

In this section, we perform a numerical test to illustrate the scheme analyzed in Section 3 and Section 4.3. We take the GNL ux f (ρ) = ρ(1 -ρ).

We model the following situation. A vehicle breaks down on a road and reduces by half the surrounding trac ow, which initial state is given by ρ 0 = 0.8 × 1 [START_REF] Andreianov | New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous ux[END_REF][START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous ux[END_REF] . At some point, a tow truck comes to move the immobile vehicle. We summarized this situation in Figure 6. Notice the time interval in which q 3 ≡ 0.1. This corresponds to the time needed for the tow truck to move the vehicle. Remark also that the value of the constraint on this time interval is smaller than the one when only the broken down vehicle was reducing the trac ow. At rst (0 ≤ t ≤ 5.80), the solution is composed of traveling waves separated by a stationary nonclassical shock located at the immobile vehicle position.

When the tow truck catches up with the vehicle (6.30 ≤ t ≤ 8.0), the prole of the numerical solution is the same, but the greater value of the constraint in this time interval changes the magnitude of the nonclassical shock; at this point the combined presence of both the tow truck and the immobile vehicle clogs the trac ow even more.

Finally, once the tow truck starts again (t > 8.0), the trac congestion is reduced.

Notice at time t = 7.44 the small artefact (circled in red in Figure 7) created by Parts 2-3 in the construction of the approximate solution and reproduced by the scheme. This highlights the fact that even if the treatment of the crossing points brings inconsistencies or artefacts to the numerical solution, these undesired eects are not amplied by the scheme, and become negligible when one renes the mesh. 
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 1 Reduction to a single interface Fix ϕ ∈ C ∞ c (Ω\ ∪ M m=1 C m ).Let us denote by K the compact support of ϕ.
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 45 Now, since ϕ 0 vanishes along all the interfaces, standard computations lead to¤ Ω 0 |ρ -σ|∂ t ϕ 0 + Φ(ρ, σ)∂ x ϕ 0 dx dt + ¢ {x∈R | (x,0)∈Ω 0 } |ρ 0 (x) -σ 0 (x)|ϕ 0 (x, 0) dx ≥ 0. (4.6)We now sum (4.5) (i ∈ [[1; J]]) and (4.6) to obtain(4.4). This inequality is the analogous of (2.11).
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 44 A function ρ ∈ L ∞ (Ω; [0, 1]) is an admissible entropy solution to (1.2) with initial data ρ 0 ∈ L ∞ (R) if (i) for all test functions ϕ ∈ C ∞ c (Ω), ϕ ≥ 0 and κ ∈ [0, 1], the following entropy inequalities are veried:
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 45 Denition 4.1 and Denition 4.4 are equivalent. Moreover, in Denition 4.4
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 5 Figure 5: Illustration of the local modications of the mesh.

  8) veried by ρ∆ : ¢ +∞ 0 ¢ R |ρ ∆ -κ|∂ t ϕ + Φ ∆ (ρ ∆ , κ)∂ x ϕ dx dt + ¢ R |ρ 0 ∆ (x) -κ|ϕ(x, ∆ (t) (κ, q i ∆ (t))ϕ(y i ∆ (t), t) dt ≥ O(∆x) + O(∆t) .

  (y i ∆ (t), t) dt + O(∆x) + O(∆t) .

(4. 12 )

 12 (iii) Compactness and convergence. Compactness of the sequence (ρ ∆ ) ∆ follows directly from the study of Section 3.4 where we derived local BV bounds for (ρ ∆ ) ∆ under the assumption(3.14).

Figure 6 :

 6 Figure 6: A tow truck comes moving an immobile vehicle.
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 7 Figure 7: The numerical solution at dierent xed times; for an animated evolution of the solution, follow: https://utbox.univ-tours.fr/s/YLpAgfHJHzNWYBB

  .e. derivatives. Making use of both the CFL condition (3.2) and of the monotonicity of EO and God s n , for a.e. u, v, w, z ∈ [0, 1], we have

.8) 

Proof. Monotonicity. Fix n ∈ N. Clearly, the expression (3.4) allows to express ρ n+1 as a function of three values of ρ n in an nondrecreasing way, see the

[START_REF] Eymard | Finite Volume Methods, volume VII of Handbook of Numerical Analysis[END_REF] Chapter 5] 

for instance. We now verify that the functions H n jn-1 and H n jn are also nondecreasing. Let us detail the proof for H n jn . Recall that H n jn is Lipschitz continuous by construction, therefore we can study its monotonicity in terms of its a

Step 2. Consider now ϕ ∈ C ∞ c (Ω). Fix n ∈ N * . From the rst step, a classical approximation argument allows us to apply (4.4) with the Lipschitz test function

where for all m ∈ [[1; M ]],

where, by analogy with the proof of Lemma 2.7, dist 1 denotes the R 2 distance associated with the norm • 1 . We let n → +∞, keeping in mind that:

Straightforward computations lead to (4.4) with ϕ ∈ C ∞ c (Ω), concluding the proof.

where for all i ∈ [[1; J]], q i , ∼ q i ∈ L ∞ ((s i , T i )). We denote by ρ (resp. σ) a G-entropy solution to Problem (1.2) corresponding to initial data ρ 0 (resp. σ 0 ) and constraints

Then for all T > 0, we have

In particular, Problem (1.2) admits at most one G-entropy solution.

Proof. Estimate (4.7) follows from Kato inequality (4.4) with a suitable choice of test function and in light of the inequality:

Proof of existence

Following the reasoning of Sections 2-3, we introduce a second denition of solutions, more suitable to prove existence.

A Proof of the OSL bound

We prove in this appendix Lemma 3.5. All the notations are taken from Sections 3.1 and 3.4. The proof is a simple rewriting of the proof of [START_REF] Towers | Convergence via OSLC of the Godunov scheme for a scalar conservation law with time and space ux discontinuities[END_REF]Lemma 4.2].

It will be convenient to write the Engquist-Osher ux under the form:

, so that for all n ∈ N, when j ∈ Z n+1 , the scheme (3.4) can be rewritten as:

Lemma A.1. For all n ∈ N and j ∈ Z, we have

Proof. Indeed, using rst the uniform convexity of f and then the CFL condition (3.2), we can write:

Proof. We divide the proof in three steps.

Step 1: The function ψ is nonnegative on [0, 1/a] and nondecreasing on [0, 1/(2a)]. Note that by

, which will allow us to use the monotonicity of ψ.

Step 2. We assume that

and we are going to prove that (A.3) holds. Using the uniform convexity assumption of f , we can write that

A similar inequality holds for q -as well. Using (A.1), we obtain:

where the last inequality comes from using (A.5). The proof now reduces to four cases, depending on the ordering of ρ, ρ n j-1/2 and ρ n j-1/2 .

Case 1: ρ ≥ ρ n j-1/2 , ρ n j+1/2 . Under assumption (A.4), we have ρ ≥ ρ n j+3/2 as well. Inequality (A.6) becomes:

where the last inequality comes from the bound: a 2 + b 2 ≥ max{a, b} 2 . The CFL condition (3.2) ensures that the two rst terms of the right-hand side of the last inequality are a convex combination of ρ n j-1/2 -ρ n j+1/2 and ρ n j-3/2 ∧ ρ -ρ n j-1/2 . Consequently, inequality (A.7) then becomes

, the monotonicity of ψ ensures that

Since the right-hand side of this inequality is nonnegative, we can replace its left-hand side by D n+1 j , which concludes the proof in this case.

Case 2: ρ ≤ ρ n j-1/2 , ρ n j+1/2 . The proof of in this case similar to the last one so we omit the details.

Case 3: ρ n j+1/2 ≤ ρ ≤ ρ n j-1/2 . Under Assumption (A.4), we have the following ordering:

where we used the inequality 2(a 2 + b 2 ) ≥ (a + b) 2 . From here, we can conclude as in Case 1.

Case 4:

. Using the decomposition

(A.8)

The CFL condition (3.2) and the ordering ρ n j+1/2 ≤ ρ ≤ ρ n j-1/2 result in

so we can replace (A.8) by

and we exploit the monotonicity of ψ to conclude.

Step 3: We no longer assume (A.4) and we get back to the general case. Let us introduce