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Institut Denis Poisson, CNRS UMR 7013, Université de Tours, Université d'Orléans

Parc de Grandmont, 37200 Tours cedex, France

Abstract

We propose a mathematical framework to the study of scalar conservation laws with moving
interfaces. This framework is developed on a LWR model with constraint on the �ux along these
moving interfaces. Existence is proved by means of a �nite volume scheme. The originality lies in
the local modi�cation of the mesh and in the treatment of the crossing points of the trajectories.
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1 INTRODUCTION

1 Introduction

Being given a regular concave �ux f ∈ C2([0, 1]) verifying

f(ρ) ≥ 0, f(0) = f(1) = 0; ∃! ρ ∈ (0, 1), for a.e. ρ ∈ (0, 1), f ′(ρ)(ρ− ρ) > 0, (1.1)

and a �nite family of trajectories (yi)i∈[[1;J ]] and constraints (qi)i∈[[1;J ]] de�ned on (si, Ti) (0 ≤ si < Ti),
we tackle the following problem:

∂tρ(x, t) + ∂x (f(ρ(x, t))) = 0 (x, t) ∈ R× (0,+∞) = Ω

ρ(x, 0) = ρ0(x) x ∈ R

∀i ∈ [[1; J ]], (f(ρ)− ẏi(t)ρ)|x=yi(t)
≤ qi(t) t ∈ (si, Ti).

(1.2)

Systems of the type (1.2) have naturally arisen in the recent years. Let us give a non-exhaustive
review on how our Problem (1.2) relates to the existing literature.

� The authors of [12, 15] considered a model very similar to (1.2). In their framework, (yi)i
represented the trajectories of autonomous vehicles, and the authors aimed at modeling the
regulation impact on a few autonomous vehicles on the tra�c �ow. In the same framework but
with di�erent applications in mind, the model of [20] accounts for the boundedness of tra�c
acceleration. Note that in each of these models, the trajectories of the moving interfaces (yi)i
were not given a priori, but rather obtained as solutions to an ODE involving the density of
tra�c, a mechanism reminiscent of [2, 9, 21] for instance. Let us also mention the work of [16]
where the authors studied a di�erent model for the situation of several moving bottlenecks.

� The numerical aspect of (1.2) was treated in [7] (for one trajectory) and [10] (for multiple
trajectories), where the authors modeled the moving bottlenecks created by buses on a road.

� In a class of problems close to (1.2), i.e. without constraint on the �ux, but still with coupling
interfaces/density, the authors of [14] described the interaction between a platoon of vehicles
and the surrounding tra�c �ow on a highway.

� Problem (1.2) can be seen as a conservation law with discontinuous �ux and special treatments
at the interfaces. In that directions, the authors of [18, 4, 1, 6, 23] studied such problems but
with the classical vanishing viscosity coupling at the interfaces.

In several of these works [15, 20], the existence issue is tackled using the wave-front tracking proce-
dure which is very sensible to the details of the model. On the other hand, when numerical schemes
are considered, see [10, 7], the numerical analysis is usually left out.

The contribution of this paper is to provide a robust mathematical setting both in the theoretical
and numerical aspects of (1.2). The proof of uniqueness is based upon a combination of Kruzhkov
classical method of doubling variables and the theory of dissipative germs in the framework of
discontinuous �ux [3] and it is analogous to the one of [4]. To prove existence, we build a �nite
volume scheme with a grid that adapts locally to the trajectories (yi)i and to their crossing points,
but remains a simple cartesian grid away from the interfaces. Our work can serve as a basis for
constructing solutions to more involved models, e.g. via the splitting approach. As an example of
application, we can point out the variant of our recent work [21] with multiple slow vehicles involved;
this is a mildly non-local analogue of the problem considered numerically in [10].
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1 INTRODUCTION

As the fundamental ingredient of the well-posedness proof and numerical approximation of (1.2),
we will �rst tackle the one trajectory/one constraint problem:


∂tρ+ ∂x (f(ρ)) = 0

ρ(·, 0) = ρ0

(f(ρ)− ẏ(t)ρ)|x=y(t) ≤ q(t) t > 0,

(1.3)

with y ∈ W1,∞
loc ((0,+∞)) and q ∈ L∞loc((0,+∞)). Models in the class of (1.3) have been greatly

investigated in the past few decades. Motivated by the modeling of tollgates and tra�c lights for
instance, the authors of [8] considered (1.3) with the trivial trajectory y ≡ 0 and proved a well-
posedness result in the BV framework (i.e. with both q and ρ0 with bounded variation, locally).
The authors of [2] then extended the well-posedness in the L∞ framework and also constructed a
convergent numerical scheme. More recently, in [9, 11, 21], the authors studied a variant of (1.3) in
which ρ and ẏ were coupled via an ODE. The coupling was thought to model the in�uence of a slow
vehicle, traveling at speed ẏ, on road tra�c.

The reduction of (1.2) to localized problem (1.3) requires the construction of a �nite volume scheme
in the original coordinates (x, t), while the treatment of (1.3) in the literature is most often based
upon the recti�cation of the interface via a variable change, see [9, 11, 21]. For (1.2), this approach
leads to a cumbersome and singular construction, see [4]. In our well-posedness analysis and ap-
proximation of (1.3), having in mind (1.2), we will not change the coordinate system.

Let us detail how the paper is organized. Sections 2-3 are devoted to Problem (1.3). We start
by giving two de�nitions of solutions. One, most frequently used in tra�c dynamics (see [8, 5]),
is composed of classical Kruzhkov entropy inequalities with reminder term taking into account the
constraint and of a weak formulation for the constraint, see De�nition 2.1. The second de�nition
emanates from the theory of conservation laws with dissipative interface coupling (see [3, 1]). It
consists of Kruzhkov entropy inequalities with test functions that vanish along the interface {x =
y(t)} and of an explicit treatment of the traces of the solution along the interface, see De�nition
2.4. Before tackling the well-posedness issue, we prove that these two de�nitions are equivalent, see
Propositions 2.6-2.6, similarly to what the authors of [2] did. Uniqueness follows from the stability
obtained in Section 2, see Theorem 2.13. In Section 3, we construct a �nite volume scheme for (1.3)
and prove of its convergence. In the construction, we do not rectify the trajectory but instead we
locally modify the mesh to mold the trajectory. Moreover, we fully make use of techniques and
results put forward by the author of [22] to derive localized BV estimates away from the interface,
essential to obtain strong compactness for the approximate solutions created by the scheme, see
Corollary 3.7. This is a way to highlight the generality of the compactness technique of [22].

In Section 4, we get back to the original problem (1.2). Our strategy is to assemble the study
of (1.2) from several local studies of (1.3) with the help of a partition of unity argument. This
concerns, in particular, the convergence of �nite volume approximation of (1.2) which is addressed
via a localization argument. However, the scheme needs to be de�ned globally, which makes it
impossible to use the recti�cation strategy as soon as the interfaces have crossing points, cf. [4] for
a singular recti�cation strategy.
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2 UNIQUENESS AND STABILITY FOR THE SINGLE TRAJECTORY PROBLEM

2 Uniqueness and stability for the single trajectory problem

The content of this section is not original in the sense that it is a rigorous adaptation and assembling
of existing techniques reminiscent of [24, 19, 8, 2, 3].

2.1 Equivalent de�nitions of solutions

Throughout the paper, for all s ∈ R, we denote by

∀ρ ∈ [0, 1], Fs(ρ) = f(ρ)− sρ and ∀a, b ∈ [0, 1], Φs(a, b) = sgn(a− b)(Fs(a)− Fs(b))

the normal �ux through {x = x0 + st} (x0 ∈ R) and its entropy �ux associated with the Kruzhkov
entropy ρ 7→ |ρ− κ|, for all κ ∈ [0, 1], see [19]. Let us also denote by Γ the trajectory:

Γ = {(x, t) ∈ Ω | x = y(t)}.

De�nition 2.1. A function ρ ∈ L∞(Ω; [0, 1]) is an admissible entropy solution to (1.3) with initial
data ρ0 ∈ L∞(R; [0, 1]) if
(i) for all test functions ϕ ∈ C∞c (Ω), ϕ ≥ 0 and κ ∈ [0, 1], the following entropy inequalities are
veri�ed: � +∞

0

�
R

(
|ρ− κ|∂tϕ+ Φ(ρ, κ)∂xϕ

)
dx dt+

�
R
|ρ0(x)− κ|ϕ(x, 0) dx

+

� +∞

0
Rẏ(t)(κ, q(t))ϕ(y(t), t) dt ≥ 0,

(2.1)

where
Rẏ(t)(κ, q(t)) = 2

(
Fẏ(t)(κ)−min

{
Fẏ(t)(κ), q(t)

})
;

(ii) for all test functions ϕ ∈ C∞c (Ω), ϕ ≥ 0 the following constraint inequalities are veri�ed:

−
�

Ω+

(
ρ∂tϕ+ f(ρ)∂xϕ

)
dx dt ≤

� +∞

0
q(t)ϕ(y(t), t) dt , (2.2)

where Ω+ = {(x, t) ∈ Ω | x > y(t)}.

Remark 2.1. Taking κ = 0, then κ = 1 in (2.1), from the condition ρ(x, t) ∈ [0, 1] a.e. we
deduce that any admissible weak solution to Problem (1.3) is also a distributional solution to the
conservation law ∂tρ + ∂xf(ρ) = 0. If ρ is a regular enough solution, then for all test functions
ϕ ∈ C∞c (Ω), ϕ ≥ 0, we have

0 =

�
Ω+

div(x,t)

(
f(ρ)
ρ

)
ϕ dx dt

=

�
∂Ω+

(
f(ρ)ϕ
ρϕ

)
·
(
−1
ẏ(t)

)
dt−

�
Ω+

(
f(ρ)
ρ

)
· ∇x,tϕ dx dt

= −
� +∞

0

(
(f(ρ)− ẏ(t)ρ)|x=y(t)

)
ϕ(y(t), t) dt−

�
Ω+

(
ρ∂tϕ+ f(ρ)∂xϕ

)
dx dt .

Moreover, if ρ satis�es the �ux inequality of (1.3) a.e. on (0,+∞), then the previous computations
lead to

−
�

Ω+

(
ρ∂tϕ+ f(ρ)∂xϕ

)
dx dt ≤

� +∞

0
q(t)ϕ(y(t), t) dt ;

this is where inequalities (2.2) come from. Note how they make sense irrespective of the regularity
of ρ. Integrating on Ω− = {(x, t) ∈ Ω | x < y(t)} would lead to similar and equivalent inequalities.

Page 3



2 UNIQUENESS AND STABILITY FOR THE SINGLE TRAJECTORY PROBLEM

De�nition 2.1 is well suited for passage to the limit of a.e. convergent sequences of exact or ap-
proximate solutions. However, we cannot derive uniqueness by the standard arguments like in the
classical case of Kruzhkov. Using an equivalent notion of solution, which we adapt from [3], based
on explicit treatment of traces of ρ on Γ, we rather combine the arguments of [19] and [24]. In
this de�nition a couple plays a major role, the one which realizes the equality in the �ux constraint
in (1.3). More precisely, �x �rst s ≥ 0. By (1.1) and concavity of f , for all q ∈ [0,maxFs), the
equation Fs(ρ) = q admits exactly two solutions in [0, 1], see Figure 1, left. The same way, if s ≤ 0,
then for all q ∈ [−ṡ,maxFs), the equation still admits two solutions in [0, 1]. The couple formed by
these two solutions, denoted by (ρ̂s(q), qρs(q)) in De�nition 2.2 below, will serve both in the prove of
uniqueness and existence.

Figure 1: Illustration of Assumption (2.3)

Following the previous discussion, in the sequel, we will assume that q veri�es the following assump-
tion:

for a.e. t > 0, q(t) ∈ [0,maxFẏ(t)) if ẏ(t) ≥ 0 and q(t) ∈ [−ẏ(t),maxFẏ(t)) if ẏ(t) < 0, (2.3)

In particular, remark that
for a.e. t > 0, ẏ(t) + q(t) ≥ 0. (2.4)

De�nition 2.2. Let s ∈ R+ and q ∈ [0,maxFs), or s ∈ R− and q ∈ [−s,maxFs). The admissibility
germ for the conservation law in (1.3) associated with the constraint Fs(ρ)|x=st ≤ q is the subset
Gs(q) ⊂ [0, 1]2 de�ned as the union:

Gs(q) = (ρ̂s(q), qρs(q))︸ ︷︷ ︸
G1
s (q)

⋃
{(κ, κ) | Fs(κ) ≤ q}︸ ︷︷ ︸

G2
s (q)

⋃
{(kl, kr) | kl < kr and Fs(kl) = Fs(kr) ≤ q}︸ ︷︷ ︸

G3
s (q)

,

where, due to the bell-shaped pro�le of Fs, the couple (ρ̂s(q), qρs(q)) is uniquely de�ned by the
conditions

Fs(ρ̂s(q)) = Fs(qρs(q)) = q and ρ̂s(q) > qρs(q).

Lemma 2.3. For all s ∈ R+ and q ∈ [0,maxFs), and for all s ∈ R− and q ∈ [−s,maxFs), the
admissibility germ Gs(q) is L1-dissipative in the sense that:

(i) for all (kl, kr) ∈ Gs(q), Fs(kl) = Fs(kr) (Rankine-Hugoniot condition);
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2 UNIQUENESS AND STABILITY FOR THE SINGLE TRAJECTORY PROBLEM

(ii) for all (kl, kr), (cl, cr) ∈ Gs(q),

Φs(kl, cl) ≥ Φs(kr, cr). (2.5)

Proof. The point (i) is obvious from the de�nition. Let us prove the dissipative feature (2.5). The
following table summarizes which values can take the di�erence ∆ = Φs(kl, cl)−Φs(kr, cr) according
with which parts of the germ the couples (kl, kr), (cl, cr) ∈ Gs(q) belong to.

(cl, cr)

(kl, kr) ∈ G1
s (q) ∈ G2

s (q) ∈ G3
s (q)

∈ G1
s (q) 0 0 0 or 2(q − Fs(kl))

∈ G2
s (q) 0 0 0 or 2|Fs(c)− Fs(kl)|

∈ G3
s (q) 0 or 2(q − Fs(cl)) 0 or 2|Fs(cl)− Fs(k)| 0 or 2|Fs(cl)− Fs(kl)|

Having in mind the de�nition of G3
s (q), we can conclude that ∆ ≥ 0. �

De�nition 2.4. A function ρ ∈ L∞(Ω; [0, 1]) is a Gẏ(q)-entropy solution to (1.3) with initial data
ρ0 ∈ L∞(R; [0, 1]) if:
(i) for all test functions ϕ ∈ C∞c (Ω\Γ), ϕ ≥ 0 and κ ∈ [0, 1], the following entropy inequalities are
veri�ed: � +∞

0

�
R

(
|ρ− κ|∂tϕ+ Φ(ρ, κ)∂xϕ

)
dx dt+

�
R
|ρ0(x)− κ|ϕ(x, 0) dx ≥ 0; (2.6)

(ii) for a.e. t > 0,
(ρ(y(t)−, t), ρ(y(t)+, t)) ∈ Gẏ(t)(q(t)). (2.7)

Remark 2.2. Condition (2.7) is to be understood in the sense of strong traces along Γ. An important
fact we stress is that it is not restrictive to assume that entropy solutions, i.e. bounded functions
verifying (2.6), admit strong traces. Usually, it is ensured provided a nondegeneracy assumption on
the �ux function:

for any nonempty interval (a, b) ⊂ (0, 1), f|(a,b) is not constant, (2.8)

In the context of tra�c �ow, however, we sometimes consider �uxes which do not verify (2.8). Such
�uxes, which have linear parts, usually model constant tra�c velocity for small densities. In those
situations, and when y ≡ 0, one can prove that under a mild assumption on the constraint, if the
initial data has bounded variation, then solutions to (1.3) are in L∞((0, T );BV(R)), and traces
are then to be understood in the sense of BV(R) functions, see [21, Theorem 3.2]. Also note that
the germ formalism can be adapted to the situations where the �ux is degenerate and no variation
bound is assumed, see [3, Remarks 2.2, 2.3].

We now prove that De�nitions 2.1 and 2.4 are equivalent.

Proposition 2.5. Any admissible entropy solution to (1.3) is a Gẏ(q)-entropy solution.

Proof. Fix ρ ∈ L∞(Ω) an admissible entropy solution to (1.3), ϕ ∈ C∞c (Ω), ϕ ≥ 0 and κ ∈ [0, 1].
If ϕ vanishes along Γ, then (2.1) becomes (2.6). Moreover, it is known that the Rankine-Hugoniot
condition is contained in (2.1). Combining it with (2.2) gives us:

for a.e. t > 0, Fẏ(t)(ρ(y(t)−, t)) = Fẏ(t)(ρ(y(t)+, t)) ≤ q(t). (2.9)
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2 UNIQUENESS AND STABILITY FOR THE SINGLE TRAJECTORY PROBLEM

Let us show that for a.e. t > 0, (ρ(y(t)−, t), ρ(y(t)+, t)) ∈ Gẏ(t)(q(t)).

Case 1: ρ(y(t)−, t) ≤ ρ(y(t)+, t). Condition (2.9) implies that (ρ(y(t)−, t), ρ(y(t)+, t)) ∈ G2
ẏ(t)(q(t))∪

G3
ẏ(t)(q(t)).

Case 2: ρ(y(t)−, t) > ρ(y(t)+, t). Suppose now that ϕ ∈ C∞c (Ω) and �x n ∈ N∗. By a standard
approximation argument, we can apply (2.1) with the Lipschitz test function ξnϕ, where ξn is the
cut-o� function:

ξn(x, t) =


1 if |x− y(t)| < 1

n

2− n|x− y(t)| if
1

n
≤ |x− y(t)| ≤ 2

n

0 if |x− y(t)| > 2

n
.

This yields:

� +∞

0

�
R
|ρ− κ|

(
ξn∂tϕ+ nẏ(t) sgn(x− y(t))1{ 1

n
<|x−y(t)|< 2

n}ϕ
)

dx dt

+

� +∞

0

�
R

Φ(ρ, κ)
(
ξn∂xϕ− n sgn(x− y(t)1{ 1

n
<|x−y(t)|< 2

n}ϕ
)

dx dt

+

� +∞

0
Rẏ(t)(κ, q(t))ϕ(y(t), t) dt ≥ 0.

Taking the limit when n→ +∞, we obtain:

� +∞

0

(
Φẏ(t) (ρ(y(t)−, t), κ)− Φẏ(t) (ρ(y(t)+, t), κ) +Rẏ(t)(κ, q(t))

)
ϕ(y(t), t) dt ≥ 0

which implies that for a.e. t > 0 and for all κ ∈ [0, 1],

Φẏ(t) (ρ(y(t)−, t), κ)− Φẏ(t) (ρ(y(t)+, t), κ) +Rẏ(t)(κ, q(t)) ≥ 0.

Taking in particular κ = argmax(Fẏ(t)), we get:

Φẏ(t) (ρ(y(t)−, t), κ)− Φẏ(t) (ρ(y(t)+, t), κ) + 2(Fẏ(t)(κ)− q(t)) ≥ 0. (2.10)

Since ρ(y(t)−, t) > ρ(y(t)+, t), (2.10) leads to Fẏ(t)(ρ(y(t)−, t)) ≥ q(t), which combined with (2.9),
implies Fẏ(t)(ρ(y(t)−, t)) = Fẏ(t)(ρ(y(t)+, t)) = q(t). We deduce that (ρ(y(t)−, t), ρ(y(t)+, t)) ∈
G1
ẏ(t)(q(t)), which completes the proof. �

Proposition 2.6. Any Gẏ(q)-entropy solution to (1.3) is an admissible entropy solution.

Proof. Fix ρ ∈ L∞(Ω) a Gẏ(q)-entropy solution to (1.3), ϕ ∈ C∞c (Ω), ϕ ≥ 0, κ ∈ [0, 1] and n ∈ N∗.
We still denote by ξn the cut-o� function from the last proof. We write ϕ = (1− ξn)ϕ+ ξnϕ. Since
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2 UNIQUENESS AND STABILITY FOR THE SINGLE TRAJECTORY PROBLEM

φn = (1− ξn)ϕ vanishes along Γ, we have

I =

� +∞

0

�
R

(
|ρ− κ|∂tϕ+ Φ(ρ, κ)∂xϕ

)
dx dt+

�
R
|ρ0(x)− κ|ϕ(x, 0) dx

+

� +∞

0
Rẏ(t)(κ, q(t))ϕ(y(t), t) dt

=

� +∞

0

�
R

(
|ρ− κ|∂tφn + Φ(ρ, κ)∂xφn

)
dx dt+

�
R
|ρ0(x)− κ|φn(x, 0) dx︸ ︷︷ ︸

≥0

+

� +∞

0

�
R

(
|ρ− κ|∂t(ξnϕ) + Φ(ρ, κ)∂x(ξnϕ)

)
dx dt+

�
R
|ρ0(x)− κ|ξn(x, 0)ϕ(x, 0) dx

+

� +∞

0
Rẏ(t)(κ, q(t))ϕ(y(t), t) dt

≥
� +∞

0

�
R
|ρ− κ|

(
ξn∂tϕ+ nẏ(t) sgn(x− y(t))1{ 1

n
<|x−y(t)|< 2

n}ϕ
)

dx dt

+

� +∞

0

�
R

Φ(ρ, κ)
(
ξn∂xϕ− n sgn(x− y(t)1{ 1

n
<|x−y(t)|< 2

n}ϕ
)

dx dt

+

�
R
|ρ0(x)− κ|ξn(x, 0)ϕ(x, 0) dx+

� +∞

0
Rẏ(t)(κ, q(t))ϕ(y(t), t) dt .

Taking the limit when n→ +∞, we obtain:

I ≥
� +∞

0

(
Φẏ(t) (ρ(y(t)−, t), κ)− Φẏ(t) (ρ(y(t)+, t), κ) +Rẏ(t)(κ, q(t))︸ ︷︷ ︸

∆(t,κ)

)
ϕ(y(t), t) dt .

To conclude, we are going to prove that for a.e. t > 0 and for all κ ∈ [0, 1], ∆(t, κ) ≥ 0. Remember
that by assumption, for a.e. t > 0, (ρ(y(t)−, t), ρ(y(t)+, t)) ∈ Gẏ(t)(q(t)). The following table, in
which we dropped the ẏ(t)/q(t)-indexing, summarizes which values can take the di�erence ∆(t, κ)
according to the position of κ with respect to the couple (ρ(y(t)−, t), ρ(y(t)+, t)), which is simply
denoted by (ρl, ρr). Note that the case marked by × is impossible.

κ

(ρl, ρr) ∈ G1 ∈ G2 ∈ G3

κ < min{ρl, ρr} 0 R(κ, q(t)) 0

κ > max{ρl, ρr} 0 R(κ, q(t)) 0

κ between ρl and ρr 0 × 2(F (κ)− F (ρl)) +R(κ, q(t))

Clearly, ∆(t, κ) ≥ 0, which proves that I ≥ 0, hence ρ satis�es (2.1). Moreover, by assumption, for
a.e. t > 0, (ρ(y(t)−, t), ρ(y(t)+, t)) ∈ Gẏ(t)(q(t)). This implies, in particular, that ρ satis�es the �ux
constraint inequality (f(ρ)− ẏ(t)ρ)|x=y(t) ≤ q(t) in the a.e. sense. By Remark 2.1, ρ satis�es (2.2)
as well i.e. ρ is an admissible entropy solution to (1.3). �
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2 UNIQUENESS AND STABILITY FOR THE SINGLE TRAJECTORY PROBLEM

2.2 Uniqueness of G-entropy solutions

We now prove uniqueness using De�nition 2.4.

Lemma 2.7 (Kato inequality). Fix ρ0, σ0 ∈ L∞(R; [0, 1]), y ∈W1,∞
loc ((0,+∞)) and q, r ∈ L∞loc((0,+∞)).

We denote by ρ (respect. σ) a Gẏ(q)-entropy solution (respect. Gẏ(r)-entropy solution) to Problem

(1.3) corresponding to initial data ρ0 (respect. σ0). We suppose that q, r satisfy (2.3). Then for all

test functions ϕ ∈ C∞c (Ω), ϕ ≥ 0, we have

� +∞

0

�
R

(
|ρ− σ|∂tϕ+ Φ(ρ, σ)∂xϕ

)
dx dt+

�
R
|ρ0(x)− σ0(x)|ϕ(x, 0) dx

+

� +∞

0

(
Φẏ(t) (ρ(y(t)+, t), σ(y(t)+, t))− Φẏ(t) (ρ(y(t)−, t), σ(y(t)−, t))

)
ϕ(y(t), t) dt ≥ 0.

(2.11)

Proof. Take φ = φ(x, t, χ, τ) ∈ C∞c (Ω
2
), φ ≥ 0 with support contained in the set

(
Ω\Γ

)2
. The

classical method of doubling variables leads us to:

�
|ρ(x, t)− σ(χ, τ)|(∂tφ+ ∂τφ) + Φ(ρ(x, t), σ(χ, τ))(∂xφ+ ∂χφ) dx dt dχdτ

+

�
|ρ0(x)− σ(χ, τ)|φ(x, 0, χ, τ) dx dχdτ +

�
|ρ(x, t)− σ0(χ)|φ(x, t, χ, 0) dx dtdχ ≥ 0.

(2.12)

Again, a standard approximation argument allows us to apply (2.12) with the Lipschitz function

φn(x, t, χ, τ) = γn(x, t)ϕ

(
x+ χ

2
,
t+ τ

2

)
δn

(
x− χ

2

)
δn

(
t− τ

2

)
where ϕ = ϕ(X,T ) ∈ C∞c (Ω) is a nonnegative test function, (δn)n is a smooth approximation of the
Dirac mass at the origin, and

γn(x, t) =


0 if |x− y(t)| < 1

n

n

(
|x− y(t)| − 1

n

)
if

1

n
≤ |x− y(t)| ≤ 2

n

1 if |x− y(t)| > 2

n
.

Using the fact that for a.e. t > 0,

∂tφn + ∂τφn = −nẏ(t) sgn(x− y(t))1{ 1
n
<|x−y(t)|< 2

n}ϕ
(
x+ χ

2
,
t+ τ

2

)
δn

(
x− χ

2

)
δn

(
t− τ

2

)
+ γn(x, t)∂Tϕ

(
x+ χ

2
,
t+ τ

2

)
δn

(
x− χ

2

)
δn

(
t− τ

2

)
∂xφn + ∂χφn = n sgn(x− y(t))1{ 1

n
<|x−y(t)|< 2

n}ϕ
(
x+ χ

2
,
t+ τ

2

)
δn

(
x− χ

2

)
δn

(
t− τ

2

)
+ γn(x, t)∂Xϕ

(
x+ χ

2
,
t+ τ

2

)
δn

(
x− χ

2

)
δn

(
t− τ

2

)
,
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2 UNIQUENESS AND STABILITY FOR THE SINGLE TRAJECTORY PROBLEM

we obtain:�
|ρ(x, t)− σ(χ, τ)|(∂tφn + ∂τφn) dx dt dχdτ

−→
n→+∞

−
� +∞

0
ẏ(t)

(
|ρ(y(t)+, t)− σ(y(t)+, t)| − |ρ(y(t)−, t)− σ(y(t)−, t)|

)
ϕ(y(t), t) dt

+

� +∞

0

�
R
|ρ(x, t)− σ(x, t)|∂Tϕ(x, t) dx dt .

and �
Φ(ρ(x, t), σ(χ, τ))(∂xφn + ∂χφn) dx dt dχdτ

−→
n→+∞

� +∞

0

(
Φ(y(t)+, t), σ(y(t)+, t)− Φ(ρ(y(t)−, t), σ(y(t)−, t))

)
ϕ(y(t), t) dt

+

� +∞

0

�
R

Φ(ρ(x, t), σ(x, t))∂Xϕ(x, t) dx dt .

Finally, since�
|ρ0(x)− σ(χ, τ)|φn(x, 0, χ, τ) dx dχdτ and

�
|ρ(x, t)− σ0(χ)|φn(x, t, χ, 0) dx dχdt

both converge to
1

2

�
R
|ρ0(x)− σ0(x)|ϕ(x, 0) dx ,

we get (2.11) by assembling the above ingredients together. �

Theorem 2.8. Fix ρ0, σ0 ∈ L∞(R; [0, 1]), y ∈ W1,∞
loc ((0,+∞)) and q, r ∈ L∞loc((0,+∞)). We

denote by ρ (respect. σ) a Gẏ(q)-entropy solution (respect. Gẏ(r)-entropy solution) to Problem (1.3)
corresponding to initial data ρ0 (respect. σ0). We suppose that q, r satisfy (2.3). Then for all T > 0,
we have

‖ρ(·, T )− σ(·, T )‖L1 ≤ ‖ρ0 − σ0‖L1 + 2

� T

0
|q(t)− r(t)|dt . (2.13)

In particular, Problem (1.3) admits at most one solution.

Proof. Fix T > 0, R ≥ ‖y‖L∞((0,T )) and set L = ‖f ′‖L∞ + ‖ẏ‖L∞((0,T )). Consider for all n ∈ N∗
the function:

ϕn(x, t) =
1

4
(1− ξn(t− T )) (1− ξn (|x| −R+ L(t− T ))) ,

where (ξn)n is a smooth approximation of the sign function. The sequence (ϕn)n is a smooth
approximation of the characteristic function of the trapezoid

T =
{

(x, t) ∈ Ω | t ∈ [0, T ] and |x| ≤ R− L(t− T )
}
⊃
{

(x, t) ∈ Ω | t ∈ [0, T ] and x = y(t)
}
.

Let us apply Kato inequality (2.11) with (ϕn)n. For all n ∈ N, we have� +∞

0

�
R
|ρ− σ|∂tϕn dx dt = −1

4

� +∞

0

�
R
|ρ− σ|ξ′n(t− T ) (1− ξn (|x| −R+ L(t− T ))) dx dt

− L

4

� +∞

0

�
R
|ρ− σ| (1− ξn(t− T )) ξ′n (|x| −R+ L(t− T )) dx dt

−→
n→+∞

−
�
|x|≤R

|ρ(x, T )− σ(x, T )| dx− L

� T

0

�
|x|=R−L(t−T )

|ρ− σ|dx dt .
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2 UNIQUENESS AND STABILITY FOR THE SINGLE TRAJECTORY PROBLEM

Then,� +∞

0

�
R

Φ(ρ, σ)∂xϕn dx dt = −1

4

� +∞

0

�
R

Φ(ρ, σ) (1− ξn(t− T )) sgn(x)ξ′n (|x| −R+ L(t− T )) dx dt

−→
n→+∞

−
� T

0

�
|x|=R−L(t−T )

Φ(ρ, σ) sgn(x) dx dt .

Finally, we have �
R
|ρ0(x)− σ0(x)|ϕn(x, 0) dx −→

n→+∞

�
|x|≤R+LT

|ρ0(x)− σ0(x)|dx

Remark also that the choices of R and L imply that for all t > 0,

ϕn(y(t), t) −→
n→+∞

1.

Assembling the previous limits together, we get:

−
�
|x|≤R

|ρ(x, T )− σ(x, T )|dx+

�
|x|≤R+LT

|ρ0(x)− σ0(x)|dx

−
� T

0

�
|x|=R−L(t−T )

(L|ρ− σ|+ Φ(ρ, σ) sgn(x)) dx dt

+

� T

0

(
Φẏ(t) (ρ(y(t)+, t), σ(y(t)+, t))− Φẏ(t) (ρ(y(t)−, t), σ(y(t)−, t))

)
dt ≥ 0.

Note that for all ρ, σ ∈ [0, 1] and for all x ∈ R,

L|ρ− σ|+ Φ(ρ, σ) sgn(x) ≥ L|ρ− σ| − |f(ρ)− f(σ)| ≥ (L − ‖f ′‖L∞)|ρ− σ| ≥ 0.

Consequently, we have shown that�
|x|≤R

|ρ(x, T )− σ(x, T )| dx ≤
�
|x|≤R+LT

|ρ0(x)− σ0(x)| dx

+

� T

0

(
Φẏ(t) (ρ(y(t)+, t), σ(y(t)+, t))− Φẏ(t) (ρ(y(t)−, t), σ(y(t)−, t))︸ ︷︷ ︸

∆(t)

)
dt .

What is left to do is to take the limit when R → +∞ and to estimate the last two terms of the
right-hand side of the previous inequality. The following table, in which we dropped the t-indexing,
summarizes which values can take the di�erence ∆(t) according to which parts of their respective
germs the couples (ρ(y(t)−, t), ρ(y(t)+, t)) and (σ(y(t)−, t), σ(y(t)+, t)), respectively denoted by
(ρl, ρr) and (σl, σr) belong to.

(σl, σr)

(ρl, ρr) ∈ G1
ẏ(q) ∈ G2

ẏ(q) ∈ G3
ẏ(q)

∈ G1
ẏ(r) 2(q − r) 0 or 2(Fẏ(ρl)− r) 2(Fẏ(ρl)− r)

∈ G2
ẏ(r) 0 0 ≤ 0

∈ G3
ẏ(r) 2(Fẏ(σl)− q) ≤ 0 ≤ 0
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3 EXISTENCE FOR THE SINGLE TRAJECTORY PROBLEM

We clearly see the bound ∆(t) ≤ 2|q(t)− r(t)|, which leads us to (2.13), which clearly implies unique-
ness. This concludes the proof. �

3 Existence for the single trajectory problem

We build a simple �nite volume scheme and prove its convergence to an admissible entropy solution
to (1.3). From now on, we denote by

a ∨ b = max{a, b} and a ∧ b = min{a, b}.

Fix ρ0 ∈ L∞(R; [0, 1]).

3.1 Adapted mesh and de�nition of the scheme

We start by de�ning the sequence of approximate slopes:

∀n ∈ N, sn =
1

∆t

� tn+1

tn
ẏ(t) dt ; ∀t ≥ 0, s∆(t) =

∑
n∈N

sn1[tn,tn+1)(t)

and the sequence of approximate trajectories:

∀t ≥ 0, y∆(t) = y0 +

� t

0
s∆(τ) dτ ; ∀n ∈ N, yn = y∆(tn).

Since (s∆)∆ converges ẏ in L1
loc((0,+∞)), (y∆)∆ converges to y in L∞loc((0,+∞)).

The same way, we de�ne (q∆)∆, the sequence of approximate constraints:

q∆(t) =
∑
n∈N

qn1[tn,tn+1)(t); qn =
1

∆t

� tn+1

tn
q(t) dt

which converges to q in L1
loc((0,+∞)).

Remark 3.1. Remark that with our choices, from (2.4), we deduce that

∀n ∈ N, sn + qn =
1

∆t

� tn+1

tn
(ẏ(t) + q(t)) dt ≥ 0. (3.1)

This fact will come in handy in the proof of stability for the scheme.

Fix now T > 0 and a spatial mesh size ∆x > 0 with λ = ∆t/∆x �xed, verifying the CFL condition

2

‖f ′‖L∞ + ‖ẏ‖L∞((0,T ))︸ ︷︷ ︸
L

λ ≤ 1. (3.2)

For all n ∈ N, there exists a unique index jn ∈ Z such that yn ∈ (xjn , xjn+1), see Figure 2. Introduce
the sequence (χnj )j∈Z de�ned by

χnj =


xj if j ≤ jn − 1

yn if j = jn

xj+1 if j ≥ jn + 1.
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3 EXISTENCE FOR THE SINGLE TRAJECTORY PROBLEM

We de�ne the cell grids:

Ω =
⋃
n∈N

⋃
j∈Z
Pnj+1/2,

where for all n ∈ N and j ∈ Z, Pnj+1/2 is the rectangle (χnj , χ
n
j+1)× [tn, tn+1) if j ≤ jn− 2, one of the

parallelograms represented in Figure 2 if j ∈ {jn − 1, jn} and the rectangle (χnj+1, χ
n
j+2)× [tn, tn+1)

if j ≥ jn + 1.

Figure 2: Illustration of the modi�cation to the mesh.

We start by discretizing the initial data ρ0 with
(
ρ0
j+1/2

)
j
where for all j ∈ Z, ρ0

j+1/2 is its mean

value on the cell (χ0
j , χ

0
j+1). Clearly, for this choice, we have:

ρ0
j+1/2 ∈ [0, 1] and ρ0

∆ =
∑
j∈Z

ρ0
j+1/21(χ0

j ,χ
0
j+1) −→

∆x→0
ρ0 in L1

loc(R).

Let us denote by EO = EO(a, b) the Engquist-Osher numerical �ux associated with f and for all
s ∈ R, Gods = Gods(u, v) be the Godunov �ux associated with ρ 7→ f(ρ)− sρ.

Fix n ∈ N. To simplify the reading, we introduce the notations:

∀j ∈ Z, fnj = EO
(
ρnj−1/2, ρ

n
j+1/2

)
and fnint = Gods

n
(
ρnjn−1/2, ρ

n
jn+1/2

)
∧ qn. (3.3)

We now proceed to the de�nition of the scheme. It comes from a discretization of the conservation
law written in each volume control Pnj+1/2 (n ∈ N, j ∈ Z). Away from the trajectory/constraint, it

is the standard 3-point marching formula and when j ∈ {jn − 1, jn}, we have to deal with both the
constraint and the interface which is not vertical. Three cases have to be considered when describing
the marching formula of the scheme, but we really give the details for only one of them.

Case 1: jn+1 = jn + 1. This means that the line joining (yn, tn) and (yn+1, tn+1) crosses the line
x = xjn+1, see Figure 2. If j /∈ {jn− 1, jn}, the conservation written in the rectangle Pnj+1/2 is given
by the standard equation: (

ρn+1
j+1/2 − ρ

n
j+1/2

)
∆x+ (fnj+1 − fnj )∆t = 0. (3.4)
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3 EXISTENCE FOR THE SINGLE TRAJECTORY PROBLEM

From the conservation in the cell Pnjn−1/2, we set:

ρn+1
jn+1−1/2

(
yn+1 − χn+1

jn+1−2

)
− ρnjn−1/2

(
yn − χnjn−1

)
+ (fnint − fnjn−1)∆t = 0. (3.5)

This formula corresponds to the choice of putting the same value for ρ∆ on (χn+1
jn+1−2, χ

n+1
jn+1−1) and

on (χn+1
jn+1−1, y

n+1) at time t = tn+1, i.e. ρn+1
jn+1−3/2 = ρn+1

jn+1−1/2. In the cell Pnjn+1/2, the conservation
takes the form:

ρn+1
jn+1+1/2

(
χn+1
jn+1+1 − y

n+1
)
− ρnjn+1/2

(
χnjn+1 − yn

)
− ρnjn+3/2∆x+ (fnjn+2 − fnint)∆t = 0. (3.6)

Let us introduce the two functions

Hn
jn−1(u, v, w) =

v(yn − χnjn−1)−
(
Gods

n
(v, w) ∧ qn −EO(u, v)

)
∆t

yn+1 − χn+1
jn+1−2

and

Hn
jn(u, v, w, z) =

v(χnjn+1 − yn) + w∆x−
(
EO(w, z)−Gods

n
(u, v) ∧ qn

)
∆t

χn+1
jn+1+1 − yn+1

so that ρ
n+1
jn+1−1/2 = Hn

jn−1(ρnjn−3/2, ρ
n
jn−1/2, ρ

n
jn+1/2)

ρn+1
jn+1+1/2 = Hn

jn(ρnjn−1/2, ρ
n
jn+1/2, ρ

n
jn+3/2, ρ

n
jn+5/2).

(3.7)

The key point in the proofs of the next section (stability and discrete entropy inequalities) is that
the functions Hjn−1 and Hjn are nondecreasing with respect to their arguments i.e. the modi�cation
in (3.3) did not a�ect the monotonicity of the resulting scheme (3.4) � (3.6).

Finally, the approximate solution ρ∆ is de�ned almost everywhere on Ω:

ρ∆ =
∑
n∈N

∑
j≤jn

ρnj+1/21Pnj+1/2
+

∑
j≥jn+1

ρnj+3/21Pnj+1/2

 .

The other cases (jn+1 = jn or jn+1 = jn−1) follow from similar geometric considerations. Note that
in the context of tra�c dynamics, y would be the trajectory of a stationary or a forward moving
obstacle and therefore, we should have ẏ ≥ 0. This implies that for all n ∈ N, either jn+1 = jn or
jn+1 = jn + 1. This is why we will focus on the case presented in Figure 2.

3.2 Stability and discrete entropy inequalities

Proposition 3.1 (L∞ stability). Under the CFL condition (3.2), the scheme (3.4) � (3.6) is stable:

∀n ∈ N, ∀j ∈ Z, ρnj+1/2 ∈ [0, 1]. (3.8)

Proof. Monotonicity. Fix n ∈ N. Clearly, the expression (3.4) allows to express ρn+1 as a function
of three values of ρn in an nondrecreasing way, see the [13, Chapter 5] for instance. We now verify
that the functions Hn

jn−1 and Hn
jn

are also nondecreasing. Let us detail the proof for Hn
jn
. Recall

that Hn
jn

is Lipschitz continuous by construction, therefore we can study its monotonicity in terms
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3 EXISTENCE FOR THE SINGLE TRAJECTORY PROBLEM

of its a.e. derivatives. Making use of both the CFL condition (3.2) and of the monotonicity of EO
and Gods

n
, for a.e. u, v, w, z ∈ [0, 1], we have

∂Hn
jn

∂u
(u, v, w, z) =

1

2

∆t

χn+1
jn+1+1 − yn+1

∂Gods
n

∂a
(u, v)(1− sgn(Gods

n
(u, v)− qn)) ≥ 0,

∂Hn
jn

∂v
(u, v, w, z) =

χnjn+1 − yn

χn+1
jn+1+1 − yn+1

+
∆t

χn+1
jn+1+1 − yn+1

∂Gods
n

∂b
(u, v)

(1− sgn(Gods
n
(u, v)− qn))

2

≥
χnjn+1 − (yn + L∆t)

χn+1
jn+1+1 − yn+1

≥
χnjn+1 −

(
yn + ∆x

2

)
χn+1
jn+1+1 − yn+1

≥ 0,

∂Hn
jn

∂w
(u, v, w, z) =

∆x

χn+1
jn+1+1 − yn+1

− ∆t

χn+1
jn+1+1 − yn+1

∂EO

∂a
(w, z)

≥ ∆x− L∆t

χn+1
jn+1+1 − yn+1

≥ ∆x−∆x/2

χn+1
jn+1+1 − yn+1

≥ 0,

∂Hn
jn

∂z
(u, v, w, z) = − ∆t

χn+1
jn+1+1 − yn+1

∂EO

∂b
(w, z) ≥ 0,

proving the monotonicity of Hn
jn
. Similar computations show that Hn

jn−1 is nondecreasing with
respect to its arguments as well.
Stability. We now turn to the proof of (3.8), which is done by induction on n. If n = 0, it is veri�ed

by de�nition of
(
ρ0
j+1/2

)
j
. Suppose now that (3.8) holds for some integer n ≥ 0 and let us show that

it still holds for n+ 1. Remark that 0 and 1 are stationary solutions to the scheme. It is obviously
true in the case (3.4). The de�nitions of Hn

jn−1 and Hn
jn

do not change this fact. For instance,
Hn
jn−1(0, 0, 0) = 0 since qn ≥ 0 and because of (3.1), we also have:

Hn
jn−1(1, 1, 1) =

(yn − χnjn−1)− ((−sn) ∧ qn) ∆t

yn+1 − χn+1
jn+1−2

=
(yn − χnjn−1) + sn∆t

yn+1 − χn+1
jn+1−2

= 1.

Similar computations would ensure that it holds also for Hn
jn
. Using now the monotonicity of Hn

jn−1

for instance, we deduce that

0 = Hn
jn−1(0, 0, 0) ≤ Hn

jn−1(ρnjn−3/2, ρ
n
jn−1/2, ρ

n
jn+1/2)

= ρn+1
jn+1−1/2

= Hn
jn−1(ρnjn−3/2, ρ

n
jn−1/2, ρ

n
jn+1/2) ≤ Hn

jn−1(1, 1, 1) = 1,

which concludes the induction argument. The remaining cases follow from similar computations.
�

Corollary 3.2 (Discrete entropy inequalities). Fix n ∈ N, j ∈ Z\{jn+1 − 2} and κ ∈ [0, 1]. Then
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3 EXISTENCE FOR THE SINGLE TRAJECTORY PROBLEM

the numerical scheme (3.4) � (3.6) ful�lls the following discrete entropy inequalities:

|ρn+1
j+1/2 − κ|(χ

n+1
j+1 − χ

n+1
j ) ≤



|ρnj+1/2 − κ|(χ
n
j+1 − χnj )−

(
Φn
j+1 − Φn

j

)
∆t if j /∈ {jn+1 − 1, jn+1}

−|ρn+1
jn+1−1/2 − κ|∆x+ |ρnjn−1/2 − κ|(χ

n
jn
− χnjn−1)

−
(

Φn
int − Φn

jn−1

)
∆t+ 1

2Rsn(κ, qn)∆t if j = jn+1 − 1

|ρnjn+1/2 − κ|(χ
n
jn+1 − χnjn) + |ρnjn+3/2 − κ|∆x

−
(

Φn
jn+2 − Φn

int

)
∆t+ 1

2Rsn(κ, qn)∆t if j = jn+1,

(3.9)

where Φn
j and Φn

int denote the numerical entropy �uxes:

Φn
j = EO(ρnj−1/2 ∨ κ, ρ

n
j+1/2 ∨ κ)−EO(ρnj−1/2 ∧ κ, ρ

n
j+1/2 ∧ κ);

Φn
int = min{Gods

n
(ρnjn−1/2 ∨ κ, ρ

n
jn+1/2 ∨ κ), qn} −min{Gods

n
(ρnjn−1/2 ∧ κ, ρ

n
jn+1/2 ∧ κ), qn}

Proof. This result is mostly a consequence of the scheme monotonicity. When the interface/constraint
does not enter the calculations i.e. when j /∈ {jn+1−1, jn+1}, the proof follows [13, Lemma 5.4]. The
key point is not only the monotonicity, but also the fact that in the classical case, all the constants
states κ ∈ [0, 1] are stationary solutions of the scheme. This observation does not hold when the
constraint enters the calculations. Suppose for example that j = jn+1 (which corresponds to the
function Hn

jn
). Here, we have

Hn
jn(κ, κ, κ, κ) =

κ(χnjn+1 − yn) + κ∆x− (f(κ)− (f(κ)− snκ) ∧ qn) ∆t

χn+1
jn+1+1 − yn+1

=
(χnjn+2 − yn − sn∆t)κ

χn+1
jn+1+1 − yn+1

− ∆t

2(χn+1
jn+1+1 − yn+1)

Rsn(κ, qn)

= κ− ∆t

2(χn+1
jn+1+1 − yn+1)

Rsn(κ, qn),

and it implies:

Hn
jn(ρnjn−1/2 ∧ κ, ρ

n
jn+1/2 ∧ κ, ρ

n
jn+3/2 ∧ κ, ρ

n
jn+5/2 ∧ κ)

≤ ρn+1
jn+1+1/2 ∧ κ, ρ

n+1
jn+1+1/2 ∨ κ

≤ Hn
jn(ρnjn−1/2 ∨ κ, ρ

n
jn+1/2 ∨ κ, ρ

n
jn+3/2 ∨ κ, ρ

n
jn+5/2 ∨ κ) +

∆t

2(χn+1
jn+1+1 − yn+1)

Rsn(κ, qn).

Page 15



3 EXISTENCE FOR THE SINGLE TRAJECTORY PROBLEM

We deduce:

|ρn+1
jn+1+1/2 − κ| = ρn+1

jn+1+1/2 ∨ κ− ρ
n+1
jn+1+1/2 ∧ κ

≤ Hn
jn(ρnjn−1/2 ∨ κ, ρ

n
jn+1/2 ∨ κ, ρ

n
jn+3/2 ∨ κ, ρ

n
jn+5/2 ∨ κ)

−Hn
jn(ρnjn−1/2 ∧ κ, ρ

n
jn+1/2 ∧ κ, ρ

n
jn+3/2 ∧ κ, ρ

n
jn+5/2 ∧ κ) +

∆t

2(χn+1
jn+1+1 − yn+1)

Rsn(κ, qn)

=
χnjn+1 − yn

χn+1
jn+1+1 − yn+1

|ρnjn+1/2 − κ|+
∆x

χn+1
jn+1+1 − yn+1

|ρnjn+3/2 − κ|

− ∆t

χn+1
jn+1+1 − yn+1

(
Φn
jn+2 − Φn

int

)
+

∆t

2(χn+1
jn+1+1 − yn+1)

Rsn(κ, qn),

which is exactly (3.9) in the case j = jn+1. The obtaining of (3.9) in the case j = jn+1− 1 is similar
so we omit the details of the proof for this case. �

3.3 Continuous inequalities for the approximate solution

The next step of the reasoning is to derive continuous inequalities, analogous to (2.1)-(2.2), veri�ed
by the approximate solution ρ∆, starting from the discrete entropy inequalities (3.9) and the march-
ing formula (3.4) � (3.6).

In this section, we �x a test function ϕ ∈ C∞c (Ω), ϕ ≥ 0 and de�ne:

∀n ∈ N, ∀j ∈ Z, ϕnj+1/2 =
1

χnj+1 − χnj

� χnj+1

χnj

ϕ(x, tn) dx =

 χnj+1

χnj

ϕ(x, tn) dx .

We start by deriving continuous entropy inequalities veri�ed by ρ∆. Let us de�ne the approximate
entropy �ux:

Φ∆(ρ∆, κ) =
∑
n∈N

∑
j≤jn

Φn
j 1Pnj+1/2

+
∑

j≥jn+1

Φn
j+11Pnj+1/2

 .

Proposition 3.3 (Approximate entropy inequalities). Fix n ∈ N and κ ∈ [0, 1]. Then we have

� tn+1

tn

�
R

(
|ρ∆ − κ|∂tϕ+ Φ∆ (ρ∆, κ) ∂xϕ

)
dx dt

+

�
R
|ρ∆(x, tn)− κ|ϕ(x, tn) dx−

�
R
|ρ∆(x, tn+1)− κ|ϕ(x, tn+1) dx

+

� tn+1

tn
Rs∆(t)(κ, q∆(t))ϕ(y∆(t), t) dt ≥ O

(
∆x2

)
+O(∆x∆t) +O

(
∆t2

)
.

(3.10)

Proof. For all j ∈ Z\{jn+1 − 2}, we multiply the discrete entropy inequalities (3.9) by ϕn+1
j+1/2 and
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3 EXISTENCE FOR THE SINGLE TRAJECTORY PROBLEM

take the sum to obtain:∑
j 6=jn+1−2

∣∣∣ρn+1
j+1/2 − κ

∣∣∣ϕn+1
j+1/2(χn+1

j+1 − χ
n+1
j )

≤
∑

j /∈{jn+1−2,jn+1−1,jn+1}

(∣∣∣ρnj+1/2 − κ
∣∣∣ (χnj+1 − χnj )− (Φn

j+1 − Φn
j )∆t

)
ϕn+1
j+1/2

+ |ρnjn−1/2 − κ|ϕ
n+1
jn+1−1/2(χnjn − χ

n
jn−1)− |ρn+1

jn+1−1/2 − κ|ϕ
n+1
jn+1−1/2∆x−

(
Φn
int − Φn

jn−1

)
ϕn+1
jn+1−1/2∆t

+ |ρnjn+1/2 − κ|ϕ
n+1
jn+1+1/2(χnjn+1 − χnjn) + |ρnjn+3/2 − κ|ϕ

n+1
jn+1+1/2∆x−

(
Φn
jn+2 − Φn

int

)
ϕn+1
jn+1+1/2∆t

+
1

2
Rsn(κ, qn)(ϕn+1

jn+1−1/2 + ϕn+1
jn+1+1/2)∆t.

This inequality can be rewritten as∑
j∈Z

∣∣∣ρn+1
j+1/2 − κ

∣∣∣ϕn+1
j+1/2(χn+1

j+1 − χ
n+1
j )−

∑
j∈Z

∣∣∣ρnj+1/2 − κ
∣∣∣ϕn+1

j+1/2(χnj+1 − χnj )

≤ −
∣∣∣ρn+1
jn+1−1/2 − κ

∣∣∣ (ϕn+1
jn+1−1/2 − ϕ

n+1
jn+1−3/2

)
∆x︸ ︷︷ ︸

ε1

+
∣∣∣ρnjn−1/2 − κ

∣∣∣ (ϕn+1
jn+1−1/2 − ϕ

n+1
jn+1−3/2

)
(χnjn − χ

n
jn−1)︸ ︷︷ ︸

ε2

+
∣∣∣ρnjn+1/2 − κ

∣∣∣ (ϕn+1
jn+1+1/2 − ϕ

n+1
jn+1−1/2

)
(χnjn+1 − χnjn)︸ ︷︷ ︸

ε3

−
∑

j /∈{jn+1−2,jn+1−1,jn+1}

(Φn
j+1 − Φn

j )ϕn+1
j+1/2∆t−

(
Φn
int − Φn

jn−1

)
ϕn+1
jn+1−1/2∆t−

(
Φn
jn+2 − Φn

int

)
ϕn+1
jn+1+1/2∆t

+
1

2
Rsn(κ, qn)(ϕn+1

jn+1−1/2 + ϕn+1
jn+1+1/2)∆t,

with
∀i ∈ {1, 2, 3}, |εi| ≤ 8‖∂xϕ‖L∞∆x2.

We now proceed to the Abel's transformation and reorganize the terms of the inequality. This leads
us to:∑

j∈Z

∣∣∣ρn+1
j+1/2 − κ

∣∣∣ϕn+1
j+1/2(χn+1

j+1 − χ
n+1
j )−

∑
j∈Z

∣∣∣ρnj+1/2 − κ
∣∣∣ϕnj+1/2(χnj+1 − χnj )︸ ︷︷ ︸

A

−
∑
j∈Z

∣∣∣ρnj+1/2 − κ
∣∣∣ (ϕn+1

j+1/2 − ϕ
n
j+1/2

)
(χnj+1 − χnj )︸ ︷︷ ︸

B

+
∑

j /∈{jn+1−2,jn+1−1}

Φn
j

(
ϕn+1
j+1/2 − ϕ

n+1
j−1/2

)
∆t

︸ ︷︷ ︸
C

≤ 1

2
Rsn(κ, qn)(ϕn+1

jn+1−1/2 + ϕn+1
jn+1+1/2)∆t︸ ︷︷ ︸

D

+
5∑
i=1

εi,

with
∀i ∈ {4, 5}, |εi| ≤ 4‖f‖L∞‖∂xϕ‖L∞∆x∆t.
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3 EXISTENCE FOR THE SINGLE TRAJECTORY PROBLEM

We immediately see that

A =

�
R

∣∣ρ∆(x, tn+1)− κ
∣∣ϕ(x, tn+1) dx−

�
R
|ρ∆(x, tn)− κ|ϕ(x, tn) dx .

We conclude this proof by estimating the remaining terms of the inequality.

Estimating B. First, note that

B =
∑

j≤jn−2

�
Pn
j+1/2

|ρ∆ − κ| ∂tϕdx dt+
∑

j≥jn+1

�
Pn
j+1/2

|ρ∆ − κ| ∂tϕdx dt

+
∣∣∣ρnjn−1/2 − κ

∣∣∣ ( χn+1
jn+1

χn+1
jn−1

ϕ(x, tn+1) dx−
 yn

χnjn−1

ϕ(x, tn) dx

)
(yn − χnjn−1)︸ ︷︷ ︸

B1

+
∣∣∣ρnjn+1/2 − κ

∣∣∣ ( yn+1

χn+1
jn

ϕ(x, tn+1) dx−
 χnjn+1

yn
ϕ(x, tn) dx

)
(χnjn+1 − yn)︸ ︷︷ ︸

B2

+
∣∣∣ρnjn+3/2 − κ

∣∣∣ ( χn+1
jn+2

yn+1

ϕ(x, tn+1) dx−
 χnjn+2

χnjn+1

ϕ(x, tn) dx

)
∆x︸ ︷︷ ︸

B3

.

Since

�
Pn
jn−1/2

|ρ∆ − κ| ∂tϕdx dt

=
∣∣∣ρnjn−1/2 − κ

∣∣∣ (� yn+1

χn+1
jn−1

ϕ(x, tn+1) dx−
� yn

χnjn−1

ϕ(x, tn) dx− sn
� tn+1

tn
ϕ(yn + sn(t− tn), t) dt

)

=
∣∣∣ρnjn−1/2 − κ

∣∣∣ (yn+1 − χn+1
jn−1

yn − χnjn−1

 yn+1

χn+1
jn−1

ϕ(x, tn+1) dx−
 yn

χnjn−1

ϕ(x, tn) dx

+
yn − yn+1

yn − χnjn−1

 tn+1

tn
ϕ(yn + sn(t− tn), t) dt

)
(yn − χnjn−1),

we deduce the bound:∣∣∣∣∣B1 −
�
Pn
jn−1/2

|ρ∆ − κ| ∂tϕdx dt

∣∣∣∣∣
=
∣∣∣ρnjn−1/2 − κ

∣∣∣ (yn+1 − yn)

∣∣∣∣∣
 yn+1

χn+1
jn−1

ϕ(x, tn+1) dx−
 tn+1

tn
ϕ(yn + sn(t− tn), t) dt

∣∣∣∣∣
≤ ‖ẏ‖L∞

(
3‖∂xϕ‖L∞∆x+ ‖∂tϕ‖L∞∆t+ 2‖ẏ‖L∞‖∂xϕ‖L∞∆t

)
∆t.
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3 EXISTENCE FOR THE SINGLE TRAJECTORY PROBLEM

The same way, we would derive the estimation:∣∣∣∣∣B2 +B3 −
�
Pn
jn+1/2

|ρ∆ − κ| ∂tϕdx dt

∣∣∣∣∣
≤ 6‖∂xϕ‖L∞∆x2 + ‖ẏ‖L∞

(
2‖∂xϕ‖L∞∆x+ ‖∂tϕ‖L∞∆t+ 2‖ẏ‖L∞‖∂xϕ‖L∞∆t

)
∆t.

Estimating C. We write:

C = λ
∑

j /∈{jn+1−2,jn+1−1,jn+1}

� χnj+1

χnj

� x

x−∆x
Φn
j ∂xϕ(y, tn+1) dy dx+ Φn

jn+1

(
ϕn+1
jn+1+1/2 − ϕ

n+1
jn+1−1/2

)
∆t︸ ︷︷ ︸

ε6

=

� tn+1

tn

�
R

Φ∆(ρ∆, κ)∂xϕdx dt+ ε6 −
∑

jn+1−2≤j≤jn+1−1

�
Pn
j+1/2

Φ∆(ρ∆, κ)∂xϕdx dt

︸ ︷︷ ︸
ε7

+
∑

j /∈{jn+1−2,jn+1−1,jn+1}

(
λ

� χnj+1

χnj

� x

x−∆x
Φn
j ∂xϕ(y, tn+1) dy dx

)
−
� tn+1

tn

�
R

Φ∆(ρ∆, κ)∂xϕdx dt

︸ ︷︷ ︸
ε8

,

with

|ε6|+ |ε7| ≤ 8‖f‖L∞‖∂xϕ‖L∞∆x∆t

and

|ε8| ≤ ‖f‖L∞
(

4 sup
t≥0
‖∂2

xxϕ(·, t)‖L1∆x+ sup
t≥0
‖∂2

txϕ(·, t)‖L1∆t

)
∆t.

Estimating D. Finally, we have

D = Rsn(κ, qn)ϕ(yn+1, tn+1)∆t+
1

yn+1 − χjn+1−1

� yn+1

χn+1
jn+1−1

(ϕ(x, tn+1)− ϕ(yn+1, tn+1))∆t︸ ︷︷ ︸
ε9

+
1

χjn+1+1 − yn+1

� χn+1
jn+1+1

yn+1

(ϕ(x, tn+1)− ϕ(yn+1, tn+1))∆t︸ ︷︷ ︸
ε10

=

� tn+1

tn
Rs∆(t)(κ, q∆(t))ϕ(y∆(t), t) dt+ ε9 + ε10 +

� tn+1

tn
Rs∆(t)(κ, q∆(t))(ϕ(yn+1, tn+1)− ϕ(y∆(t), t)) dt︸ ︷︷ ︸

ε11

,

with

|ε9|+ |ε10|+ |ε11| ≤ 2‖f‖L∞
(

2‖∂xϕ‖L∞∆x+ ‖ẏ‖L∞‖∂xϕ‖L∞∆t+ ‖∂tϕ‖L∞∆t

)
∆t

�
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3 EXISTENCE FOR THE SINGLE TRAJECTORY PROBLEM

Note that if ϕ is supported in time in [0, T ], with T ∈ [tN , tN+1), then by summing (3.10) over
n ∈ {0, . . . , N + 1}, we obtain (recall that λ is �xed):

� T

0

�
R

(
|ρ∆ − κ|∂tϕ+ Φ∆ (ρ∆, κ) ∂xϕ

)
dx dt+

�
R
|ρ0

∆ − κ|ϕ(x, 0) dx

+

� T

0
Rs∆(t)(κ, q∆(t))ϕ(y∆(t), t) dt ≥ O(∆x) +O(∆t) .

(3.11)

We now turn to the proof of an approximate version of (2.2). Let us de�ne the approximate �ux
function:

F∆ (ρ∆) =
∑
n∈N

∑
j≤jn

fnj 1Pnj+1/2
+

∑
j≥jn+1

fnj+11Pnj+1/2

 .

Proposition 3.4 (Approximate constraint inequalities). Fix n ∈ N and κ ∈ [0, 1]. Then we have� +∞

yn
ρ∆(x, tn)ϕ(x, tn) dx−

� +∞

yn+1

ρ∆(x, tn+1)ϕ(x, tn+1) dx

−
� tn+1

tn

�
R

(
ρ∆∂tϕ+ F∆ (ρ∆) ∂xϕ

)
dx dt ≤

� tn+1

tn
q∆(t)ϕ(y∆(t), t) dt

+O
(
∆x2

)
+O(∆x∆t) +O

(
∆t2

)
.

(3.12)

Proof. Following the steps of the proof of Proposition 3.3, we �rst multiply the scheme (3.4)-(3.6)
by ϕn+1

j+1/2, sum over j ≥ jn+1 and then apply the summation by parts procedure. This time, we
obtain:∑
j≥jn+1

ρn+1
j+1/2ϕ

n+1
j+1/2(χn+1

j+1 − χ
n+1
j )−

∑
j≥jn

ρnj+1/2ϕ
n
j+1/2(χnj+1 − χnj )

︸ ︷︷ ︸
A

−
∑
j≥jn

ρnj+1/2

(
ϕn+1
j+1/2 − ϕ

n
j+1/2

)
(χnj+1 − χnj )︸ ︷︷ ︸

B

+
∑

j≥jn+2

fnj

(
ϕn+1
j+1/2 − ϕ

n+1
j−1/2

)
∆t︸ ︷︷ ︸

C

≤ qnϕn+1
jn+1+1/2∆t︸ ︷︷ ︸

D

+ε,

with ε ≤ 8‖∂xϕ‖L∞∆x2. Clearly,

A =

� +∞

yn+1

ρ∆(x, tn+1)ϕ(x, tn+1) dx−
� +∞

yn
ρ∆(x, tn)ϕ(x, tn) dx ,

and estimate (3.12) follows from the bounds:∣∣∣∣∣B −
� tn+1

tn

�
R
ρ∆∂tϕdx dt

∣∣∣∣∣
≤ (3‖∂xϕ‖L∞∆x+ ‖∂tϕ‖L∞∆t)∆t+ ‖ẏ‖L∞

(
2‖∂xϕ‖L∞∆x+ 2‖ẏ‖L∞‖∂xϕ‖L∞∆t+ ‖∂tϕ‖L∞∆t

)
∆t∣∣∣∣∣C −

� tn+1

tn

�
R
F∆ (ρ∆) ∂xϕdx dt

∣∣∣∣∣ ≤ ‖f‖L∞
(

6‖∂xϕ‖L∞ + 4 sup
t≥0
‖∂2

xxϕ(·, t)‖L1 + sup
t≥0
‖∂2

txϕ(·, t)‖L1

)
∆x∆t

∣∣∣∣∣D −
� tn+1

tn
q∆(t)ϕ(y∆(t), t) dt

∣∣∣∣∣ ≤ ‖q‖L∞
(

2‖∂xϕ‖L∞∆x+ ‖∂tϕ‖L∞∆t+ ‖ẏ‖L∞‖∂xϕ‖L∞∆t

)
∆t.
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3 EXISTENCE FOR THE SINGLE TRAJECTORY PROBLEM

�

If ϕ is supported in time in (0, T ), with T ∈ [tN , tN+1), then by summing (3.10) over n ∈ {0, . . . , N+
1}, we obtain:

−
� T

0

�
R

(
ρ∆∂tϕ+ F∆ (ρ∆) ∂xϕ

)
dx dt ≤

� T

0
q∆(t)ϕ(y∆(t), t) dt+O(∆x) +O(∆t) . (3.13)

3.4 Compactness and convergence

The remaining part of the reasoning consists in obtaining su�cient compactness for the sequence
(ρ∆)∆ in order to pass to the limit in (3.11)-(3.13). To doing so, we adapt techniques and results
put forward by Towers in [22]. With this in mind, we suppose in this section that the �ux function,
still bell-shaped, is also strictly concave. By continuity,

∃µ > 0, ∀ρ ∈ [0, 1], f ′′(ρ) ≤ −µ. (3.14)

We denote for all n ∈ N and j ∈ Z,

Dn
j = max

{
ρnj−1/2 − ρ

n
j+1/2, 0

}
.

We will also use the notation

∀n ∈ N, Ẑn+1 = Z\{jn+1 − 2, jn+1 − 1, jn+1, jn+1 + 1}.

In [22], the author dealt with a discontinuous in both time and space �ux and the speci�c "vanishing
viscosity" coupling at the interface. The discontinuity in space was localized along the curve {x = 0}.
Here, we deal with a smooth �ux but we have a �ux constraint along the curve {x = y(t)}. The
applicability of the technique of [22] for our case with moving interface and �ux-constrained interface
coupling relies on the fact that one can derive a bound on Dn+1

j as long as the interface does not

enter the calculations for Dn+1
j i.e. as long as j ∈ Ẑn+1 in the case jn+1 = jn + 1.

Lemma 3.5. Let n ∈ N, j ∈ Ẑn+1, a = µ
∆t

4∆x
and ψ(x) = x− ax2. Then

Dn+1
j ≤ ψ

(
max

{
Dn
j−1,D

n
j ,D

n
j+1

})
. (3.15)

Proof. For the sake of completeness, the proof, largely inspired by [22], can be found in Appendix
A. �

Remark 3.2. Fix n ∈ N and j ∈ Ẑn+1. Remark that if Dn
j > 0, then we can write that for some

ν(j) ∈ {j − 1, j, j + 1}, we have

Dn+1
j ≤ Dn

ν(j) − a
(
Dn
ν(j)

)2

= Dn
ν(j)

(
1− aDn

ν(j)

)
= Dn

ν(j)

1− a2
(
Dn
ν(j)

)2

1 + aDn
ν(j)

≤
Dn
ν(j)

1 + aDn
ν(j)

=
1

1
Dn
ν(j)

+ a
.
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3 EXISTENCE FOR THE SINGLE TRAJECTORY PROBLEM

Corollary 3.6. Let n ∈ N. Then the scheme (3.4) � (3.6) veri�es the following one-sided Lipschitz

condition:

Dn+1
j ≤



1

(n+ 1)a
if j ≤ jn+1 − 3− n

1

((jn+1 − 2)− j)a
if jn+1 − 3− n ≤ j ≤ jn+1 − 3

1

(j − (jn+1 + 1))a
if jn+1 + 2 ≤ j ≤ jn+1 + 2 + n

1

(n+ 1)a
if j ≥ jn+1 + 2 + n.

(3.16)

Figure 3: Illustration of the OSL bound (3.16).

Proof. Fix n ∈ N. We only prove (3.16) in the cases j ≥ jn+1 + 2. The reasoning for the cases
j ≤ j0 − 3 is very similar. Let us �rst prove by induction on k ∈ N∗ that

∀k ∈ N∗, ∀j ∈ Z, min{n+ 1, j − (jn+1 + 1)} ≥ k =⇒ Dn+1
j ≤ 1

ka
. (3.17)

Inequality (3.17) holds if k = 1. Indeed, if k = 1, then j ≥ jn+1 + 2 i.e. j ∈ Ẑn+1. By (3.15),

∃νj ∈ {j − 1, j, j + 1}, Dn+1
j ≤ Dn

νj − a
(
Dn
νj

)2
.

If Dn
νj = 0, then Dn+1

j = 0 ≤ 1/a. Otherwise, we can write:

Dn+1
j ≤ 1

1
Dn
νj

+ a
≤ 1

a
=

1

ka
.

Now, let us assume that (3.17) holds for some integer k ∈ N∗ and suppose that min{n+1, j−(jn+1 +
1)} ≥ k + 1. Again, by (3.15),

∃νj ∈ {j − 1, j, j + 1}, Dn+1
j ≤ Dn

νj − a
(
Dn
νj

)2
.

Since
n ≥ k and νj − (jn + 1) ≥ (j − 1)− (jn+1 + 1) = j − (jn+1 + 1)− 1 ≥ k,

we deduce that min{n, j − (jn + 1)} ≥ k, hence, using the induction property:

Dn+1
j ≤ 1

1
Dn
νj

+ a
≤ 1

(k + 1)a
,

which concludes the induction argument. Estimates (3.16) in the cases j ≥ jn+1 + 2 follow for
suitable choices of k in (3.17). �

Page 22
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Corollary 3.7 (Localized BV estimates). Fix 0 < ε < X and suppose that 3∆x ≤ ε and that

tn+1 ≥ ε

2L
. Then there exists a constant Λ = Λ

(
1

ε
,X

)
, nondecreasing with respect to its arguments

such that

TV
(
ρ∆(·, tn+1)|(yn+1+ε,yn+1+X)

)
≤ Λ (3.18)

and � yn+1+X

yn+1+ε

∣∣∣ρ∆(x, tn+2)− ρ∆(x, tn+1))
∣∣∣ dx ≤ 2∆x+ L (2Λ + 1) ∆t. (3.19)

Note that we have the same bounds for the quantities:

TV
(
ρ∆(·, tn+1)|(yn+1−X,yn+1−ε)

)
and

� yn+1−ε

yn+1−X

∣∣∣ρ∆(x, tn+2)− ρ∆(x, tn+1))
∣∣∣ dx .

Proof. Let kn+1, Jn+1 ∈ Z such that yn+1 +ε ∈ (χn+1
kn+1

, χn+1
kn+1

+∆x) and yn+1 +X ∈ (χn+1
Jn+1

, χn+1
Jn+1

+

∆x). We have:

TV(ρ∆(·, tn+1)|(yn+1+ε,yn+1+X))

Jn+1∑
j=kn+1+1

|ρn+1
j+1/2 − ρ

n+1
j−1/2|

= 2

Jn+1∑
j=kn+1+1

Dn+1
j −

Jn+1∑
j=kn+1+1

(ρn+1
j+1/2 − ρ

n+1
j−1/2)

= 2

Jn+1∑
j=kn+1+1

Dn+1
j − (ρn+1

Jn+1−1/2 − ρ
n+1
kn+1+1/2) ≤ 1 + 2

Jn+1∑
j=kn+1+1

Dn+1
j .

Now, for all j ≥ kn+1 + 1, we have

j − (jn+1 + 1) ≥ (kn+1 + 1)− (jn+1 + 1))∆x

∆x
=

(χn+1
kn+1

+ ∆x)− χn+1
jn+1

∆x

≥ (yn+1 + ε)− (yn+1 + 2∆x)

∆x
=

ε

∆x
− 2 ≥ 1.

Lemma 3.16 ensures that

TV(ρ∆(·, tn+1)|(yn+1+ε,yn+1+X)) ≤ 1 +
2

a

Jn+1∑
j=kn+1+1

1

min{n+ 1, j − (jn+1 + 1)}
.

However, we also have:

n+ 1 =
tn+1

∆t
≥ ε

2L∆t
≥ ε

∆x
=

(yn+1 + ε)− yn+1

∆x
≥
χn+1
kn+1
− (χn+1

jn+1
+ ∆x)

∆x
= kn+1 − (jn+1 + 1).

We deduce that for all j ∈ {kn+1 + 1, . . . , Jn+1}, min{n + 1, j − (jn+1 + 1)} ≥ kn+1 − (jn+1 + 1);
hence:

Jn+1∑
j=kn+1+1

|ρn+1
j+1/2 − ρ

n+1
j−1/2| ≤ 1 +

2

a
×
(

Jn+1 − kn+1

kn+1 − (jn+1 + 1)

)

≤ 1 +
2

a
×
(
X − ε+ ∆x

ε− 2∆x

)
≤ Λ, Λ := 1 +

6X

aε
,
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4 WELL-POSEDNESS FOR THE MULTIPLE TRAJECTORY PROBLEM

which is exactly (3.18). Then,

� yn+1+X

yn+1+ε

∣∣∣ρ∆(x, tn+2)− ρ∆(x, tn+1))
∣∣∣ dx

≤ 2∆x+

Jn+1∑
j=kn+1+1

|ρn+2
j+1/2 − ρ

n+1
j+1/2|∆x

≤ 2∆x+ ‖f ′‖L∞

 Jn+1∑
j=kn+1+1

|ρn+1
j+3/2 − ρ

n+1
j+1/2|+

Jn+1∑
j=kn+1+1

|ρn+1
j+1/2 − ρ

n+1
j−1/2|

∆t

≤ 2∆x+ L (2Λ + 1) ∆t,

concluding the proof. �

Theorem 3.8. Fix ρ0 ∈ L∞(R; [0, 1]), y ∈ W1,∞
loc ((0,+∞)), ẏ ≥ 0 and q ∈ L∞loc((0,+∞)), q ≥ 0.

Suppose that f ∈ C2([0, 1]) satis�es (1.1)-(3.14). Then as ∆→ 0 while satisfying the CFL condition

(3.2), (ρ∆)∆ converges a.e. on Ω to the admissible entropy solution to (1.3).

Proof. Fix n ∈ N∗. The uniform convergence of (y∆)∆ to y, coupled with the BV bounds (3.18)-
(3.19) and the uniform L∞ bound (3.8) provide (up to a subsequence) a.e. convergence for the
sequence (ρ∆)∆ in any rectangular bounded domains of the open subset

On = {(x, t) ∈ Ω | |x− y(t)| > 1/n},

see [17, Appendix A]. The a.e. convergence on any compact subsets of Ωn follows by a classical
covering argument. Then a diagonal procedure provides the a.e. convergence on any compact
subsets of O = {(x, t) ∈ Ω | x 6= y(t)}. A further extraction yields the a.e. convergence on Ω.
Equipped with the convergence of (ρ∆)∆ to ρ, we let ∆→ 0 in (3.11) and (3.13) to establish that ρ
is an admissible entropy solution to (1.3). By uniqueness, the whole sequence converges to ρ, which
proves the theorem. �

Corollary 3.9. Fix ρ0 ∈ L∞(R; [0, 1]), y ∈ W1,∞
loc ((0,+∞)), ẏ ≥ 0 and q ∈ L∞loc((0,+∞)), q ≥ 0.

Suppose that f ∈ C2([0, 1]) satis�es (1.1)-(3.14). Then Problem (1.3) admits a unique admissible

entropy solution.

Proof. Existence comes from Theorem 3.8 while uniqueness was established by Theorem 2.8. �

4 Well-posedness for the multiple trajectory problem

We now get back to the original problem (1.2). Let us detail the organization of this section. First,
we construct a partition of the unity to reduce the study of (1.2) to an assembling of several local
studies of (1.3), see Section 4.1. Using the de�nition based on germs, analogous to De�nition 2.4,
we will prove a stability estimate, leading to uniqueness, see Theorem 4.3. Then in Section 4.3, we
construct a �nite volume scheme in which we fully use the precise study of Section 3. A special
treatment of the crossing points is described, see Section 4.3.1.
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4 WELL-POSEDNESS FOR THE MULTIPLE TRAJECTORY PROBLEM

Let us recall that we are given a �nite (or more generally locally �nite) family of trajectories and
constraints (yi, qi)i∈[[1;J ]] de�ned on (si, Ti) (0 ≤ si < Ti). Introduce the notations:

∀i ∈ [[1; J ]], Γi = {(x, t) ∈ Ω | t ∈ [si, Ti] and x = yi(t)}.

We suppose that for all i ∈ [[1; J ]], yi ∈ W1,∞((si, Ti)) and qi ∈ L∞((si, Ti);R+). This notation
means that what can be seen as crossing points between interfaces will be considered as endpoints
of the interfaces; for instance, given two crossing lines, we split them into four interfaces having a
common endpoint. We denote by (Cm)1≤m≤M the set of all endpoints of the interfaces Γi, i ∈ [[1; J ]].

4.1 Reduction to a single interface

Fix ϕ ∈ C∞c (Ω\ ∪Mm=1 Cm). Let us denote by K the compact support of ϕ.

Step 1. For all i ∈ [[1; J ]], K ∩Γi is a compact subset (maybe empty) of Ω, and the family (K ∩Γi)i
is pairwise disjoint. By compactness,

∃δ > 0, ∀i, j ∈ [[1; J ]], i 6= j =⇒ dist(K ∩ Γi,K ∩ Γj) ≥ 2δ.

Step 2. For all i ∈ [[1; J ]], set

Ωi =
⋃

(x,t)∈K∩Γi

B((x, t), δ),

where B((x, t), δ) denotes the R2-euclidean open ball centered on (x, t) and of radius δ. Clearly,
Ωi is an open subset of Ω containing Γi. Moreover, the family (Ωi)i is pairwise disjoint. Indeed,
suppose instead that for some i, j ∈ [[1; J ]] (i 6= j), we have

Ωi ∩ Ωj 6= ∅,

and �x (x, t) ∈ Ωi ∩ Ωj . By de�nition, there exists (xi, ti) ∈ K ∩ Γi and (xj , tj) ∈ K ∩ Γj such that

(x, t) ∈ B((xi, ti), δ) ∩B((xj , tj), δ).

Using the triangle inequality, we deduce that

dist(K ∩ Γi,K ∩ Γj) ≤ dist((xi, ti), (xj , tj)) ≤ dist((xi, ti), (x, t)) + dist((x, t), (xj , tj)) < 2δ,

yielding the contradiction.

Step 3. De�ne the open subset (�nite intersection of open subsets):

Ω0 =

{
(x, t) ∈ Ω

∣∣∣∣ ∀i ∈ [[1; J ]], dist((x, t),K ∩ Γi) ≥
δ

2

}
.

The family (Ωi)i∈[[0;J ]] is an open cover of R×R+. Consequently, there exists a partition of the unity
(θi)i∈[[0;J ]] associated with this cover:

∀i ∈ [[0; J ]], θi ≥ 0; θi ∈ C∞c (Ωi); ∀(x, t) ∈ R× R+,
J∑
i=0

θi(x, t) = 1.

Step 4. We write the function ϕ in the following manner:

ϕ =

J∑
i=0

(ϕθi) = ϕ0 +

J∑
i=1

ϕi. (4.1)

Note that:
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4 WELL-POSEDNESS FOR THE MULTIPLE TRAJECTORY PROBLEM

1. ϕ0 vanishes along all the interfaces;

2. for all i ∈ [[1; J ]], ϕi vanishes along all the interfaces but Γi.

4.2 De�nition of solutions and uniqueness

Following Section 2 and De�nition 2.4, we give the following de�nition of solution.

De�nition 4.1. A function ρ ∈ L∞(Ω; [0, 1]) is a G-entropy solution to (1.2) with initial data
ρ0 ∈ L∞(R) if:
(i) for all test functions ϕ ∈ C∞c (Ω\ ∪Ji=1 Γi), ϕ ≥ 0 and κ ∈ [0, 1], the following entropy inequalities
are veri�ed:

� +∞

0

�
R

(
|ρ− κ|∂tϕ+ Φ(ρ, κ)∂xϕ

)
dx dt+

�
R
|ρ0(x)− κ|ϕ(x, 0) dx ≥ 0; (4.2)

(ii) for all i ∈ [[1; J ]] and for a.e. t ∈ (si, Ti),

(ρ(yi(t)−, t), ρ(yi(t)+, t)) ∈ Gẏi(t)(qi(t)), (4.3)

where the admissibility germ Gẏi(qi) was de�ned in De�nition 2.2.

Lemma 4.2 (Kato inequality). Fix ρ0, σ0 ∈ L∞(R; [0, 1]). Let (qi)i∈[[1;J ]] and (
∼
q i)i∈[[1;J ]] be two

family of constraints, where for all i ∈ [[1; J ]], qi,
∼
q i ∈ L∞((si, Ti)). We denote by ρ (resp. σ)

a G-entropy solution to Problem (1.2) corresponding to initial data ρ0 (resp. σ0) and constraints

(qi)i∈[[1;J ]] (resp. (
∼
q i)i∈[[1;J ]]). Then for all test functions ϕ ∈ C∞c (Ω), ϕ ≥ 0, we have

� +∞

0

�
R

(
|ρ− σ|∂tϕ+ Φ(ρ, σ)∂xϕ

)
dx dt+

�
R
|ρ0(x)− σ0(x)|ϕ(x, 0) dx

+

J∑
i=1

� Ti

si

(
Φẏi(t) (ρ(yi(t)+, t), σ(yi(t)+, t))− Φẏi(t) (ρ(yi(t)−, t), σ(yi(t)−, t))

)
ϕ(yi(t), t) dt ≥ 0.

(4.4)

Proof. We split the reasoning in two steps.
Step 1. Suppose �rst that ϕ ∈ C∞c (Ω\ ∪Mm=1 Cm). In this case, we write ϕ using the partition of
unity (4.1). Fix i ∈ [[1; J ]]. Following the computations of Lemma 2.7, we obtain:

�
Ωi

(
|ρ− σ|∂tϕi + Φ(ρ, σ)∂xϕi

)
dx dt+

�
{x∈R | (x,0)∈Ωi}

|ρ0(x)− σ0(x)|ϕi(x, 0) dx

+

� Ti

si

(
Φẏi(t) (ρ(yi(t)+, t), σ(yi(t)+, t))− Φẏi(t) (ρ(yi(t)−, t), σ(yi(t)−, t))

)
ϕi(yi(t), t) dt ≥ 0.

(4.5)
Now, since ϕ0 vanishes along all the interfaces, standard computations lead to

�
Ω0

(
|ρ− σ|∂tϕ0 + Φ(ρ, σ)∂xϕ0

)
dx dt+

�
{x∈R | (x,0)∈Ω0}

|ρ0(x)− σ0(x)|ϕ0(x, 0) dx ≥ 0. (4.6)

We now sum (4.5) (i ∈ [[1; J ]]) and (4.6) to obtain (4.4). This inequality is the analogous of (2.11).

Page 26
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Step 2. Consider now ϕ ∈ C∞c (Ω). Fix n ∈ N∗. From the �rst step, a classical approximation
argument allows us to apply (4.4) with the Lipschitz test function

ψn(x, t) =

(
M∑
m=1

δm,n(x, t)

)
ϕ(x, t),

where for all m ∈ [[1;M ]],

δm,n(x, t) =


0 if dist1((x, t), Cm) <

1

n

n

(
dist1((x, t), Cm)− 1

n

)
if

1

n
≤ dist1((x, t), Cm) ≤ 2

n

1 if dist1((x, t), Cm) >
2

n
,

where, by analogy with the proof of Lemma 2.7, dist1 denotes the R2 distance associated with the
norm ‖ · ‖1. We let n→ +∞, keeping in mind that:∥∥∥∥∥

(
M∑
m=1

δm,n

)
ϕ− ϕ

∥∥∥∥∥
L1(Ω)

−→
n→+∞

0; ∀m ∈ [[1;M ]], ‖∇δm,n‖L1(Ω) = O

(
1

n

)
.

Straightforward computations lead to (4.4) with ϕ ∈ C∞c (Ω), concluding the proof. �

Theorem 4.3. Fix ρ0, σ0 ∈ L∞(R; [0, 1]). Let (qi)i∈[[1;J ]] and (
∼
q i)i∈[[1;J ]] be two family of constraints,

where for all i ∈ [[1; J ]], qi,
∼
q i ∈ L∞((si, Ti)). We denote by ρ (resp. σ) a G-entropy solution to

Problem (1.2) corresponding to initial data ρ0 (resp. σ0) and constraints (qi)i∈[[1;J ]] (resp. (
∼
q i)i∈[[1;J ]]).

Then for all T > 0, we have

‖ρ(·, T )− σ(·, T )‖L1 ≤ ‖ρ0 − σ0‖L1 +
J∑
i=1

2

� Ti

si

∣∣∣qi(t)− ∼q i(t)∣∣∣ dt . (4.7)

In particular, Problem (1.2) admits at most one G-entropy solution.

Proof. Estimate (4.7) follows from Kato inequality (4.4) with a suitable choice of test function and
in light of the inequality:

∀i ∈ [[1; J ]], for a.e. t ∈ (si, Ti),

Φẏi(t) (ρ(yi(t)+, t), σ(yi(t)+, t))− Φẏi(t) (ρ(yi(t)−, t), σ(yi(t)−, t)) ≤ 2|qi(t)−
∼
q i(t)|,

see Theorem 2.8. �

4.3 Proof of existence

Following the reasoning of Sections 2-3, we introduce a second de�nition of solutions, more suitable
to prove existence.
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De�nition 4.4. A function ρ ∈ L∞(Ω; [0, 1]) is an admissible entropy solution to (1.2) with initial
data ρ0 ∈ L∞(R) if
(i) for all test functions ϕ ∈ C∞c (Ω), ϕ ≥ 0 and κ ∈ [0, 1], the following entropy inequalities are
veri�ed: � +∞

0

�
R

(
|ρ− κ|∂tϕ+ Φ(ρ, κ)∂xϕ

)
dx dt+

�
R
|ρ0(x)− κ|ϕ(x, 0) dx

+

J∑
i=1

� Ti

si

Rẏi(t)(κ, qi(t))ϕ(yi(t), t) dt ≥ 0,

(4.8)

where Rẏi(κ, qi) was de�ned in De�nition 2.1;

(ii) for all test functions ϕ ∈ C∞c (Ω\ ∪Mm=1 Cm), ϕ ≥ 0, written under the form (4.1), the following
constraint inequalities are veri�ed for all i ∈ [[1; J ]]:

−
�

Ω+
i

(
ρ∂tϕ+ f(ρ)∂xϕ

)
dx dt ≤

� Ti

si

qi(t)ϕi(yi(t), t) dt , (4.9)

where Ω+
i = {(x, t) ∈ Ωi | x > yi(t)}.

Proposition 4.5. De�nition 4.1 and De�nition 4.4 are equivalent. Moreover, in De�nition 4.4 (i),

it is equivalent that (4.8) holds with ϕ ∈ C∞c (Ω\ ∪Mm=1 Cm).

Proof. The proof of the equivalence of De�nitions 4.1 and 4.4 is a straightforward adaptation of the
proofs of Propositions 2.5-2.6. The last part of the statement follows using the same approximation
argument described at the end of the proof of Lemma 4.2. �

We now turn to the proof of existence for admissible entropy solutions of (1.2). We make use of the
precise study of Section 3 in the case of a single trajectory and build a �nite volume scheme. We
keep the notations of Section 3 when there is no ambiguity.

4.3.1 Construction of the mesh, de�nition of the scheme

For the sake of clarity, suppose that we only have two trajectories/constraints (yi, qi) (1 ≤ i ≤ 2)
de�ned on [0, τ ], which cross at time τ . We denote by C this crossing point. Suppose also that this
crossing point results in two additional trajectories/constraints (yi, qi) (3 ≤ i ≤ 4) de�ned on [τ, T ],
and which do not cross, as represented in Figure 4.

Let us fully make explicit the steps of the reasoning leading to the construction of our scheme in
that situation. Suppose that λ = ∆t/∆x is �xed and veri�es the CFL condition

2

‖f ′‖L∞ + max
1≤i≤4

‖ẏi‖L∞((0,T ))︸ ︷︷ ︸
L

λ ≤ 1. (4.10)

Set N ∈ N such that τ ∈ [tN , tN+1). We divide the discussion in four parts.

Part 1. Introduce the number

N1 = inf
{
n ∈ N, |y1

∆(tn)− y2
∆(tn)| ≤ 4∆x

}
.
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4 WELL-POSEDNESS FOR THE MULTIPLE TRAJECTORY PROBLEM

Figure 4: Illustration of the con�guration.

The de�nition of N1 ensures that for all n ∈ {0, . . . , N1−1}, we can independently modify the mesh
near the two trajectories y1

∆ and y2
∆, as presented in Figure 5. Consequently, we can simply de�ne

the approximate solution ρ∆ on R× [0, tN1−1] as the �nite volume approximation of a conservation
law, with initial data ρ0, with �ux constraints on two non-interacting trajectories, using the recipe
of Section 3 for each trajectory/constraint.

Part 2. Fix now n ∈ {N1, . . . , N}. In these time intervals, since the two trajectories are too close
to each other, one cannot modify the mesh in the neighbourhood of one of them without a�ecting
the other. However, the scheme has to be de�ned globally so we proceed as described below.

� First, introduce the mean trajectory and the new constraint:

∀t ∈ [0, τ ], y12(t) =
y1(t) + y2(t)

2
; q12(t) = min{q1(t), q2(t)},

represented in purple in Figure 5, before the crossing point (in red). The choice of taking the
minimal level of constraint in the de�nition of q12 stems from the nature of the constrained
problem; see however Remark 4.1 below.

� Then, de�ne ρ∆ on R× [tN1 , tN ] as the �nite volume approximation of the one trajectory/one
constraint problem:

∂tρ+ ∂x (f(ρ)) = 0

ρ(·, tN1) = ρ∆(·, tN1−1)

(f(ρ)− ẏ12(t)ρ)|x=y12(t) ≤ q12(t) t ∈ (tN1 , tN ),

using exactly the recipe of Section 3.1.

Part 3. Introduce the number:

N2 = inf
{
n > N, |y3

∆(tn)− y4
∆(tn)| ≥ 4∆x

}
.

For n ∈ {N, . . . , N2}, we are in the same situation as Part 2. We proceed to the same construction,
mutatis mutandis.

Page 29



4 WELL-POSEDNESS FOR THE MULTIPLE TRAJECTORY PROBLEM

Figure 5: Illustration of the local modi�cations of the mesh.

� As in Part 2, de�ne the mean trajectory and the new constraint:

∀t ∈ [τ, T ], y34(t) =
y3(t) + y4(t)

2
; q34(t) = min{q3(t), q4(t)},

represented in purple in Figure 5, after the crossing point.

� De�ne ρ∆ on R× [tN , tN2 ] as the �nite volume approximation of the one trajectory/one con-
straint problem: 

∂tρ+ ∂x (f(ρ)) = 0

ρ(·, tN ) = ρ∆(·, tN )

(f(ρ)− ẏ34(t)ρ)|x=y34(t) ≤ q34(t) t ∈ (tN , tN2).

Part 4. Finally, ρ∆ is de�ned on R × [tN2 , T ] like in Part 1 with y3, q3, ρ∆(·, tN2) (respect. y4, q4)
playing the role of y1, q1, ρ0 (respect. of y2, q2).

Remark 4.1. Let us stress out that the details of the treatment done in Parts 2-3 do not play any
signi�cant role in the convergence proof below thanks to the choice of test functions vanishing at
neighbourhood of the crossing points, see Proposition 4.5. Consequently, taking the mean trajectory
and the minimum of the constraint is merely an example aiming at preserving some consistency while
keeping the scheme simple to understand and implement.

The general case of a �nite number of interfaces (locally �nite number can be easily included) is
treated in the same way, leading to a pattern with the uniform rectangular mesh adapted to each
of the interfaces Γi, i ∈ [[1; J ]] except for small (in terms of the number of impacted mesh cells)
neighbourhoods of the crossing points Cm, m ∈ [[1;M ]].
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4.3.2 Proof of convergence

Theorem 4.6. Fix T > 0, f ∈ C2([0, 1]) satisfying (1.1)-(3.14) and ρ0 ∈ L∞(R; [0, 1]). Let

(yi, qi)i∈[[1;J ]] be a �nite family of trajectories and constraints de�ned on (si, Ti) (0 ≤ si < Ti).
We suppose that for all i ∈ [[1; J ]], yi ∈W1,∞((si, Ti)) and qi ∈ L∞((si, Ti);R+). Suppose also that

the interfaces (Γi)i de�ned by the trajectories (yi)i have a �nite number of crossing points. Then as

∆→ 0 while satisfying the CFL condition

2

‖f ′‖L∞ + max
1≤i≤J

‖ẏi‖L∞((0,T ))︸ ︷︷ ︸
L

λ ≤ 1,

the sequence (ρ∆)∆ constructed by the procedure of Section 4.3.1 converges a.e. on Ω to the admissible

entropy solution to (1.2).

Proof. We make use of the fact that in De�nition 4.4, we only need to consider test functions that
vanish at a neighbourhood of the crossing points (this is the key observation leading to Remark 4.1
hereabove).

(i) Proof of the entropy inequalities. Fix ϕ ∈ C∞c (Ω\ ∪Mm=1 Cm), ϕ ≥ 0, written as ϕ = ϕ0 +
J∑
i=1

ϕi,

using the appropriate partition of unity, see Section 4.1. Since ϕ0 vanishes along all the interfaces,
ρ∆ veri�es inequality (3.11) with R ≡ 0 on the domain Ω0 and with test function ϕ0. Indeed, for a
su�ciently small ∆x > 0, the scheme we constructed in the previous section reduces to a standard
�nite volume in Ω0. Fix now i ∈ [[1; J ]]. Since ϕi vanishes along all the interfaces but Γi, ρ∆ veri�es
inequality (3.11) with reminder term Rsi∆(κ, qi∆) along the trajectory yi∆ on the domain Ωi and with
test function ϕi, due to the analysis of Section 3; indeed, in the support of the test function, our
scheme for the multi-interface problem reduces to the scheme for the single-interface problem. By
summing these previous inequalities, we obtain an approximate version of (4.8) veri�ed by ρ∆:

� +∞

0

�
R

(
|ρ∆ − κ|∂tϕ+ Φ∆(ρ∆, κ)∂xϕ

)
dx dt+

�
R
|ρ0

∆(x)− κ|ϕ(x, 0) dx

+

J∑
i=1

� Ti

si

Rsi∆(t)(κ, q
i
∆(t))ϕ(yi∆(t), t) dt ≥ O(∆x) +O(∆t) .

(4.11)

(ii) Proof of the weak constraint inequalities. Let ϕ ∈ C∞c (Ω\ ∪Mm=1 Cm), ϕ ≥ 0, written under the
form (4.1). Fix i ∈ [[1; J ]]. Since ϕi vanishes along all the interfaces but Γi, for a su�ciently small
∆x, ρ∆ veri�es inequality (3.13) with constraint qi∆ along the trajectory yi∆ on the domain Ω+

i and
with test function ϕi. We obtain an approximate version of (4.12) veri�ed by ρ∆:

−
�

Ω+
i

(
ρ∆∂tϕ+ F∆(ρ∆)∂xϕ

)
dx dt ≤

� Ti

si

qi∆(t)ϕi(y
i
∆(t), t) dt+O(∆x) +O(∆t) . (4.12)

(iii) Compactness and convergence. Compactness of the sequence (ρ∆)∆ follows directly from the
study of Section 3.4 where we derived local BV bounds for (ρ∆)∆ under the assumption (3.14).
Indeed, these local bounds lead to compactness in the domain complementary to the interfaces,
we only use the fact that the interfaces together with the crossing points form a closed subset of
Ω with zero Lebesgue measure. Once the a.e. convergence (up to a subsequence) on Ω to some
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ρ ∈ L∞(Ω; [0, 1]) obtained, we simply pass to the limit in (4.11)-(4.12). This proves that ρ is an
admissible solution to (1.2). By the uniqueness of Theorem 4.3, the whole sequence converges to ρ.
This concludes the proof. �

Corollary 4.7. Fix T > 0, f ∈ C2([0, 1]) satisfying (1.1)-(3.14) and ρ0 ∈ L∞(R; [0, 1]). Let

(yi, qi)i∈[[1;J ]] be a �nite family of trajectories and constraints de�ned on (si, Ti) (0 ≤ si < Ti). We

suppose that for all i ∈ [[1; J ]], yi ∈W1,∞((si, Ti)) and qi ∈ L∞((si, Ti);R+). Finally, suppose that

the interfaces (Γi)i de�ned by the trajectories (yi)i have a �nite number of crossing points. Then

Problem (1.2) admits a unique admissible entropy solution.

Proof. Existence comes from Theorem 4.6 while uniqueness was established by Theorem 4.3. �

5 Numerical experiment with crossing trajectories

In this section, we perform a numerical test to illustrate the scheme analyzed in Section 3 and Sec-
tion 4.3. We take the GNL �ux f(ρ) = ρ(1− ρ).

We model the following situation. A vehicle breaks down on a road and reduces by half the sur-
rounding tra�c �ow, which initial state is given by ρ0 = 0.8× 1[1,3]. At some point, a tow truck
comes to move the immobile vehicle. We summarized this situation in Figure 6. Notice the time
interval in which q3 ≡ 0.1. This corresponds to the time needed for the tow truck to move the
vehicle. Remark also that the value of the constraint on this time interval is smaller than the one
when only the broken down vehicle was reducing the tra�c �ow.

Figure 6: A tow truck comes moving an immobile vehicle.

The evolution of the numerical solution is represented in Figure 7. Let us comment on the pro�le
of the numerical solution.

� At �rst (0 ≤ t ≤ 5.80), the solution is composed of traveling waves separated by a stationary
nonclassical shock located at the immobile vehicle position.
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� When the tow truck catches up with the vehicle (6.30 ≤ t ≤ 8.0), the pro�le of the numerical
solution is the same, but the greater value of the constraint in this time interval changes the
magnitude of the nonclassical shock; at this point the combined presence of both the tow truck
and the immobile vehicle clogs the tra�c �ow even more.

� Finally, once the tow truck starts again (t > 8.0), the tra�c congestion is reduced.

Notice at time t = 7.44 the small artefact (circled in red in Figure 7) created by Parts 2-3 in the
construction of the approximate solution and reproduced by the scheme. This highlights the fact
that even if the treatment of the crossing points brings inconsistencies or artefacts to the numerical
solution, these undesired e�ects are not ampli�ed by the scheme, and become negligible when one
re�nes the mesh.

Figure 7: The numerical solution at di�erent �xed times; for an animated evolution of the solution,
follow: https://utbox.univ-tours.fr/s/YLpAgfHJHzNWYBB
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A Proof of the OSL bound

We prove in this appendix Lemma 3.5. All the notations are taken from Sections 3.1 and 3.4. The
proof is a simple rewriting of the proof of [22, Lemma 4.2].

It will be convenient to write the Engquist-Osher �ux under the form:

∀a, b ∈ [0, 1], EO(a, b) =

(
f(a ∧ ρ)− f(ρ)

2

)
︸ ︷︷ ︸

q+(a)

+

(
f(b ∨ ρ)− f(ρ)

2

)
︸ ︷︷ ︸

q−(b)

,

so that for all n ∈ N, when j ∈ Ẑn+1, the scheme (3.4) can be rewritten as:

ρn+1
j+1/2 = ρnj+1/2 − λ

(
q+

(
ρnj+1/2

)
+ q−

(
ρnj+3/2

)
− q+

(
ρnj−1/2

)
− q−

(
ρnj+1/2

))
. (A.1)

Lemma A.1. For all n ∈ N and j ∈ Z, we have

ρnj−1/2 − ρ
n
j+1/2 ≤

1

λµ
and Dn

j ≤
1

λµ
. (A.2)

Proof. Indeed, using �rst the uniform convexity of f and then the CFL condition (3.2), we can
write: (

ρnj−1/2 − ρ
n
j+1/2

)
µ ≤ −

� ρn
j−1/2

ρn
j+1/2

f ′′(u) du ≤ 2‖f ′‖L∞ ≤
∆x

∆t
,

from which we deduce (A.2). �

Lemma A.2. Let n ∈ N, j ∈ Ẑn+1, a =
λµ

4
and ψ(x) = x− ax2. Then

Dn+1
j ≤ ψ

(
max

{
Dn
j−1,D

n
j ,D

n
j+1

})
. (A.3)

Proof. We divide the proof in three steps.

Step 1: The function ψ is nonnegative on [0, 1/a] and nondecreasing on [0, 1/(2a)]. Note that by
(A.2), max

{
Dn
j−1,D

n
j ,D

n
j+1

}
≤ 1/(4a), which will allow us to use the monotonicity of ψ.

Step 2. We assume that

ρnj+1/2 − ρ
n
j+3/2 ≥ 0 and ρnj−3/2 − ρ

n
j−1/2 ≥ 0 (A.4)

and we are going to prove that (A.3) holds. Using the uniform convexity assumption of f , we can
write that

∀a, b ∈ [0, 1], q+(b)− q+(a) ≤ (b ∧ ρ− a ∧ ρ)f ′(a ∧ ρ)− µ

2
(b ∧ ρ− a ∧ ρ)2. (A.5)
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A similar inequality holds for q− as well. Using (A.1), we obtain:

ρn+1
j−1/2 − ρ

n+1
j+1/2 = ρnj−1/2 − ρ

n
j+1/2

− λ
(
q+

(
ρnj−1/2

)
− q+

(
ρnj−3/2

)
− q+

(
ρnj+1/2

)
+ q+

(
ρnj−1/2

))
− λ

(
q−

(
ρnj+1/2

)
− q−

(
ρnj−1/2

)
− q−

(
ρnj+3/2

)
+ q−

(
ρnj+1/2

))
= ρnj−1/2 − ρ

n
j+1/2

+ λ
{(
q+

(
ρnj+1/2

)
− q+

(
ρnj−1/2

))
+
(
q+

(
ρnj−3/2

)
− q+

(
ρnj−1/2

))
+
(
q−

(
ρnj+3/2

)
− q−

(
ρnj+1/2

))
+
(
q−

(
ρnj−1/2

)
− q−

(
ρnj+1/2

))}
≤ ρnj−1/2 − ρ

n
j+1/2

+ λ
(
ρnj+1/2 ∧ ρ− ρ

n
j−1/2 ∧ ρ

)
f ′(ρnj−1/2 ∧ ρ)− λµ

2

(
ρnj+1/2 ∧ ρ− ρ

n
j−1/2 ∧ ρ

)2

+ λ
(
ρnj−3/2 ∧ ρ− ρ

n
j−1/2 ∧ ρ

)
f ′(ρnj−1/2 ∧ ρ)− λµ

2

(
ρnj−3/2 ∧ ρ− ρ

n
j−1/2 ∧ ρ

)2

+ λ
(
ρnj+3/2 ∨ ρ− ρ

n
j+1/2 ∨ ρ

)
f ′(ρnj+1/2 ∨ ρ)− λµ

2

(
ρnj+3/2 ∨ ρ− ρ

n
j+1/2 ∨ ρ

)2

+ λ
(
ρnj−1/2 ∨ ρ− ρ

n
j+1/2 ∨ ρ

)
f ′(ρnj+1/2 ∨ ρ)− λµ

2

(
ρnj−1/2 ∨ ρ− ρ

n
j+1/2 ∨ ρ

)2
,

(A.6)

where the last inequality comes from using (A.5). The proof now reduces to four cases, depending
on the ordering of ρ, ρnj−1/2 and ρnj−1/2.

Case 1: ρ ≥ ρnj−1/2, ρ
n
j+1/2. Under assumption (A.4), we have ρ ≥ ρnj+3/2 as well. Inequality (A.6)

becomes:

ρn+1
j−1/2 − ρ

n+1
j+1/2 ≤

(
1− λf ′(ρnj−1/2)

)(
ρnj−1/2 − ρ

n
j+1/2

)
+ λf ′(ρnj−1/2)

(
ρnj−3/2 ∧ ρ− ρ

n
j−1/2

)
− λµ

2

((
ρnj−1/2 − ρ

n
j+1/2

)2
+
(
ρnj−3/2 ∧ ρ− ρ

n
j−1/2

)2
)

≤
(

1− λf ′(ρnj−1/2)
)(

ρnj−1/2 − ρ
n
j+1/2

)
+ λf ′(ρnj−1/2)

(
ρnj−3/2 ∧ ρ− ρ

n
j−1/2

)
− λµ

4

((
ρnj−1/2 − ρ

n
j+1/2

)2
+
(
ρnj−3/2 ∧ ρ− ρ

n
j−1/2

)2
)

≤
(

1− λf ′(ρnj−1/2)
)(

ρnj−1/2 − ρ
n
j+1/2

)
+ λf ′(ρnj−1/2

(
ρnj−3/2 ∧ ρ− ρ

n
j−1/2

)
− λµ

4
max

{
ρnj−1/2 − ρ

n
j+1/2, ρ

n
j−3/2 ∧ ρ− ρ

n
j−1/2

}2
,

(A.7)

where the last inequality comes from the bound: a2 + b2 ≥ max{a, b}2. The CFL condition (3.2)
ensures that the two �rst terms of the right-hand side of the last inequality are a convex combination
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of
(
ρnj−1/2 − ρ

n
j+1/2

)
and

(
ρnj−3/2 ∧ ρ− ρ

n
j−1/2

)
. Consequently, inequality (A.7) then becomes

ρn+1
j−1/2 − ρ

n+1
j+1/2 ≤ ψ

(
max

{
ρnj−1/2 − ρ

n
j+1/2, ρ

n
j−3/2 ∧ ρ− ρ

n
j−1/2

})
.

Since ρnj−3/2 ∧ ρ− ρ
n
j−1/2 ≤ ρ

n
j−3/2 − ρ

n
j−1/2, the monotonicity of ψ ensures that

ρn+1
j−1/2 − ρ

n+1
j+1/2 ≤ ψ

(
max

{
ρnj−1/2 − ρ

n
j+1/2, ρ

n
j−3/2 − ρ

n
j−1/2

})
≤ ψ

(
max

{
Dn
j−1,D

n
j

})
≤ ψ

(
max

{
Dn
j−1,D

n
j ,D

n
j+1

})
.

Since the right-hand side of this inequality is nonnegative, we can replace its left-hand side by Dn+1
j ,

which concludes the proof in this case.

Case 2: ρ ≤ ρnj−1/2, ρ
n
j+1/2. The proof of in this case similar to the last one so we omit the details.

Case 3: ρnj+1/2 ≤ ρ ≤ ρ
n
j−1/2. Under Assumption (A.4), we have the following ordering:

ρnj+3/2 ≤ ρ
n
j+1/2 ≤ ρ ≤ ρ

n
j−1/2 ≤ ρ

n
j−3/2.

Inequality (A.6) becomes

ρn+1
j−1/2 − ρ

n+1
j+1/2 ≤ ρ

n
j−1/2 − ρ

n
j+1/2 −

λµ

2

(
(ρnj−1/2 − ρ)2 + (ρ− ρnj+1/2)2

)
≤ ρnj−1/2 − ρ

n
j+1/2 −

λµ

4
(ρnj−1/2 − ρ

n
j+1/2)2,

where we used the inequality 2(a2 + b2) ≥ (a+ b)2. From here, we can conclude as in Case 1.

Case 4: ρnj−1/2 ≤ ρ ≤ ρ
n
j+1/2. Using the decomposition

ρnj−1/2 − ρ
n
j+1/2 = (ρnj−1/2 ∧ ρ− ρ

n
j+1/2 ∧ ρ) + (ρnj−1/2 ∨ ρ− ρ

n
j+1/2 ∨ ρ),

inequality (A.6) becomes

ρn+1
j−1/2 − ρ

n+1
j+1/2 ≤

(
1− λf ′(ρnj−1/2)

)(
ρnj−1/2 ∧ ρ− ρ

n
j+1/2 ∧ ρ

)
+ λf ′(ρnj−1/2)

(
ρnj−3/2 ∧ ρ− ρ

n
j−1/2 ∧ ρ

)
+
(

1 + λf ′(ρnj+1/2)
)(

ρnj−1/2 ∨ ρ− ρ
n
j+1/2 ∨ ρ

)
− λf ′(ρnj+1/2)

(
ρnj+1/2 ∨ ρ− ρ

n
j+3/2 ∨ ρ

)
− λµ

2

{(
ρnj−1/2 ∧ ρ− ρ

n
j+1/2 ∧ ρ

)2
+
(
ρnj−3/2 ∧ ρ− ρ

n
j−1/2 ∧ ρ

)2

+
(
ρnj−1/2 ∨ ρ− ρ

n
j+1/2 ∨ ρ

)2
+
(
ρnj+1/2 ∨ ρ− ρ

n
j+3/2 ∨ ρ

)2
}

≤
(

1− λf ′(ρnj−1/2)
)(

ρnj−1/2 ∧ ρ− ρ
n
j+1/2 ∧ ρ

)
+ λf ′(ρnj−1/2)

(
ρnj−3/2 ∧ ρ− ρ

n
j−1/2 ∧ ρ

)
+
(

1 + λf ′(ρnj+1/2)
)(

ρnj−1/2 ∨ ρ− ρ
n
j+1/2 ∨ ρ

)
− λf ′(ρnj+1/2)

(
ρnj+1/2 ∨ ρ− ρ

n
j+3/2 ∨ ρ

)
− λµ

2

{(
ρnj−1/2 ∧ ρ− ρ

n
j+1/2 ∧ ρ

)2
+
(
ρnj−1/2 ∨ ρ− ρ

n
j+1/2 ∨ ρ

)2
}
.

(A.8)
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The CFL condition (3.2) and the ordering ρnj+1/2 ≤ ρ ≤ ρ
n
j−1/2 result in(

1− λf ′(ρnj−1/2)
)(

ρnj−1/2 ∧ ρ− ρ
n
j+1/2 ∧ ρ

)
≤ 0 and

(
1 + λf ′(ρnj+1/2)

)(
ρnj−1/2 ∨ ρ− ρ

n
j+1/2 ∨ ρ

)
≤ 0

so we can replace (A.8) by

ρn+1
j−1/2 − ρ

n+1
j+1/2 ≤ λf

′(ρnj−1/2)
(
ρnj−3/2 ∧ ρ− ρ

n
j−1/2 ∧ ρ

)
− λf ′(ρnj+1/2)

(
ρnj+1/2 ∨ ρ− ρ

n
j+3/2 ∨ ρ

)
− λµ

2

{(
ρnj−1/2 ∧ ρ− ρ

n
j+1/2 ∧ ρ

)2
+
(
ρnj−1/2 ∨ ρ− ρ

n
j+1/2 ∨ ρ

)2
}

≤ 1

2

((
ρnj−3/2 ∧ ρ− ρ

n
j−1/2 ∧ ρ

)
+
(
ρnj+1/2 ∨ ρ− ρ

n
j+3/2 ∨ ρ

))
− λµ

4

{(
ρnj−1/2 ∧ ρ− ρ

n
j+1/2 ∧ ρ

)2
+
(
ρnj−1/2 ∨ ρ− ρ

n
j+1/2 ∨ ρ

)2
}

≤ ψ
(

max
{(
ρnj−3/2 ∧ ρ− ρ

n
j−1/2 ∧ ρ

)
,
(
ρnj−1/2 ∨ ρ− ρ

n
j+1/2 ∨ ρ

)})
,

and we exploit the monotonicity of ψ to conclude.

Step 3: We no longer assume (A.4) and we get back to the general case. Let us introduce

unj−3/2 = ρnj−3/2 ∨ ρ
n
j−1/2, u

n
j−1/2 = ρnj−1/2, u

n
j+1/2 = ρnj+1/2, u

n
j+3/2 = ρnj+3/2 ∧ ρ

n
j−1/2

and
un+1
j−1/2 = H(unj−3/2, u

n
j−1/2, u

n
j+1/2); un+1

j+1/2 = H(unj−1/2, u
n
j+1/2, u

n
j+3/2).

Using the monotonicity of H, we get:

ρn+1
j−1/2 − ρ

n+1
j+1/2 = H(ρnj−3/2, ρ

n
j−1/2, ρ

n
j+1/2)−H(ρnj−1/2, ρ

n
j+1/2, ρ

n
j+3/2)

≤ H(unj−3/2, u
n
j−1/2, u

n
j+1/2)−H(unj−1/2, u

n
j+1/2, u

n
j+3/2) = un+1

j−1/2 − u
n+1
j+1/2.

Since unj+1/2 − u
n
j+3/2 ≥ 0 and unj−3/2 − u

n
j−1/2 ≥ 0, Step 2 ensures that

∼
D
n+1

j ≤ ψ
(

max

{
∼
D
n

j−1,
∼
D
n

j ,
∼
D
n

j+1

})
,

∼
D
n

j = max
{
unj−1/2 − u

n
j+1/2, 0

}
.

Clearly,
∼
D
n

j−1 ≤ Dn
j−1,

∼
D
n

j = Dn
j ,

∼
D
n

j+1 ≤ Dn
j+1.

Using the monotonicity of ψ, we get:

ρn+1
j−1/2 − ρ

n+1
j+1/2 ≤ u

n+1
j−1/2 − u

n+1
j+1/2 ≤ ψ

(
max

{
Dn
j−1,D

n
j ,D

n
j+1

})
,

concluding the proof. �
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