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I. INTRODUCTION

RTIFICIAL Light-at-Night (ALAN), emitted from streetlights, residential areas, places of entertainment, industrial zones, and captured by satellites' nighttime sensors, has been used in previous studies for remote identification of different Earth phenomena, such as stellar visibility [START_REF] Cinzano | The artificial night sky brightness mapped from DMSP satellite Operational Linescan System measurements[END_REF]- [START_REF] Falchi | Light pollution in USA and Europe: The good, the bad and the ugly[END_REF]; ecosystem events [START_REF] Bennie | Global Trends in Exposure to Light Pollution in Natural Terrestrial Ecosystems[END_REF], [START_REF] Hu | Association between nighttime artificial light pollution and sea turtle nest density along Florida coast: A geospatial study using VIIRS remote sensing data[END_REF]; monitoring urban development and population concentrations [START_REF] Elvidge | Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption[END_REF]- [START_REF] Hopkins | Artificial light at night as a driver of evolution across urbanrural landscapes[END_REF]; assessing the economic performance of countries and regions [START_REF] Doll | Night-time Imagery as a Tool for Global Mapping of Socioeconomic Parameters and Greenhouse Gas Emissions[END_REF]- [START_REF] Wu | Regional Inequality in China Based on NPP-VIIRS Night-Time Light Imagery[END_REF], and in health geography research [START_REF] Kloog | Global codistribution of light at night (LAN) and cancers of prostate, colon, and lung in men[END_REF]- [START_REF] Rybnikova | Does artificial light-at-night exposure contribute to the worldwide obesity pandemic?[END_REF].

Compared to traditional techniques, which national statistical offices use to monitor the concentrations of human activities (such as, e.g., monitoring the level of urbanization, production density, etc.), using ALAN as a remote sensing tool has several advantages (see [START_REF] Levin | Remote sensing of night lights: A review and an outlook for the future[END_REF] for a recent review). First and foremost, satellite-generated ALAN data are available seamlessly all over the world, providing researchers and decision-makers with an opportunity to generate data even for countries and regions with extremely poor reporting behavior. Second, ALAN data are mutually comparable for different geographic regions, which minimizes the problem of comparability between socioeconomic activity estimates, potentially originating from differences in national reporting procedures. Third, data on remotely sensed ALAN intensities are now available worldwide on a daily basis [START_REF] Román | NASA's Black Marble nighttime lights product suite[END_REF], which enables researchers and public decision-makers to obtain prompt estimates of ongoing changes in the geographic spread of different human activities and their temporal dynamics. The latter is especially important for socioeconomic activities, for which estimates based on traditional techniques, are unavailable with a desired frequency or time-consuming to generate.

Several sources of global nighttime imagery exist today. Between 1992 and 2013, nighttime satellite imagery was provided by the U.S. Defense Meteorological Satellite Program (DMSP/OLS) on an annual basis, with the spatial resolution of about 2.7 km per pixel [START_REF] Elvidge | Why VIIRS data are superior to DMSP for mapping nighttime lights[END_REF]. From April 2012 on, nighttime images, generated by the Day-Night Band of the Visible Infrared Imaging Radiometer Suite (VIIRS/DNB) instrument of the Suomi National Polar Partnership (SNPP) satellite, have become available. The satellite moves through a sunsynchronous polar orbit at the altitude of about 824 km, and captures ALAN emissions at about 1:30 am local time [START_REF] Elvidge | Why VIIRS data are superior to DMSP for mapping nighttime lights[END_REF]. The VIIRS/DNB program routinely provides panchromatic global imagery in the 500-900 ηm range at about 742 m per pixel spatial resolution, on annual and monthly bases. From the first quarter of 2019 on, ALAN data are available daily from the NASA Black Marble night-time lights product suite, or VNP46 [START_REF] Román | NASA's Black Marble nighttime lights product suite[END_REF], the Distributed Active Archive Center [START_REF]LP DAAC -Homepage[END_REF].

In comparison to DMSP/OLS images, VIIRS/DNB data have a better spatial resolution and lower light detection limits (2E-11 Watts/cm 2 /sr vs. 5E-10 Watts/cm 2 /sr in US-DMSP), which is especially important for analyzing dimly lit areas. VIIRS/DNB data also do not exhibit bright light saturation [START_REF] Elvidge | Why VIIRS data are superior to DMSP for mapping nighttime lights[END_REF], which is essential for the analysis of brightly lit areas, such as major cities and their environs.

However, despite the above-mentioned improvements in the ALAN image quality and resolution, the main drawback of global ALAN data, available today, is that they remain panchromatic, reporting the summarized intensity of light in the 500-900 ηm diapason [START_REF] Elvidge | Why VIIRS data are superior to DMSP for mapping nighttime lights[END_REF]. This limitation makes it difficult to use such data to differentiate between specific economic activities, which are characterized by varying spectral signatures [START_REF] Rybnikova | Remote identification of research and educational activities using spectral properties of nighttime light[END_REF], because they use light sources of different spectral properties, to fit their resources and needs [START_REF] Veitch | Lighting appraisal, well-being and performance in open-plan offices: A linked mechanisms approach[END_REF]. As a recent study [START_REF] Guk | Analyzing spatial variability in night-time lights using a high spatial resolution color Jilin-1 image -Jerusalem as a case study[END_REF] shows, night-time multispectral ALAN imagery also helps to study and understand better urban land use types.

Panchromatic ALAN data also do not make it possible to investigate health effects, associated with ALAN exposures to different sub-spectra, such as e.g., hormone-dependent cancers, known to be strongly related to ALAN exposure in the shortwavelength (blue) light spectra [START_REF] Cajochen | High Sensitivity of Human Melatonin, Alertness, Thermoregulation, and Heart Rate to Short Wavelength Light[END_REF], [START_REF] Czeisler | Perspective: Casting light on sleep deficiency[END_REF].

In addition, the 500-900ηm sensitivity diapason, reported by global VIIRS/DNB images, omits some important intervals of the visible light spectrum (see Fig. A1 in Appendix). In particular, it omits the emission peaks of the incandescent and quartz halogen lamps that are at about 1000 ηm, and a large share of ALAN emissions from the Light Emitting Diodes (LED), which occur in the 450-460 ηm range [START_REF] Elvidge | Spectral identification of lighting type and character[END_REF]. This means that the reported summarized ALAN intensities are essentially biased, and this bias, potentially introduced by local lighting standards and/or cultural preferences, is not random but may vary systematically across different geographical areas, depending e.g., on the level of propagation of specific light sources, such as LEDs, which light emission is outside the captured ALAN range. In this respect, the ongoing rapid propagation of LEDs is of particular concern, as it might gradually diminish the capability of presently available global ALAN images to serve as a reliable proxy for monitoring the human footprint, and may thus impede research progress on estimating various side effects of light pollution.

RGB nighttime images of better spectral resolution, provided by the habitable International Space Station (ISS) [START_REF]Search Photos[END_REF], is also available. However, the use of ISS data for a global analysis is often problematic. The matter is that these night-time images are photographs, captured sporadically by varying cameras, which need to be geo-referenced and calibrated, to produce a continuous image from a mosaic of fragmented local pictures, taken by different cameras and different astronauts [START_REF]Cities at night -mapping the world at night[END_REF]. In addition, the ISS images in question are not available on a regular basis.

Considering these limitations of the globally available polychromatic ALAN data, the present study aims to demonstrate a possibility that the spectral resolution of global panchromatic VIIRS/DBN night-time imagery can be enhanced, by transforming such panchromatic data into RGB images. To achieve this goal, we use machine learning techniques to build and cross-validate the models associating light intensities of red, green, or blue sub-spectra with panchromatic ALAN data, pixel-wise neighborhood difference measures and several land-use proxies. As the study demonstrates, using regression tools and the elastic map approach, originating from the manifold learning field, helps to produce reasonably accurate RGB estimates from panchromatic data. The importance of this result is that it may help to generate more informative and freely available remote proxies for a human presence on Earth. The rest of the paper is organized as follows. We start by outlining our study design and describe the datasets used for model training and validation. Next, we itemize criteria used for model validation, report the obtained results, and discuss controversial issues raised by the analysis and limitations that should be addressed in future studies.

II. METHODS

A. Research hypothesis and study design

According to [START_REF] Hale | Mapping Lightscapes: Spatial Patterning of Artificial Lighting in an Urban Landscape[END_REF], each type of land use is characterized by a certain combination of different luminaires. As a result, different land uses differ in terms of both aggregated light flux, spectral power distribution (SPD), and the primary emission peak diapason [START_REF] Rybnikova | Remote identification of research and educational activities using spectral properties of nighttime light[END_REF]). In addition, some types of light emission are spatially localized (such as e.g., blue-light emissions from commercial and industrial hubs), while other light emissions are more geographically uniform, such as e.g., long-wavelength light emissions from homogeneous low-density residential areas. Therefore, we hypothesize that information on different ALAN sub-spectra (red, green, and blue) can be extracted from a combination of panchromatic ALAN data, pixel-wide neighborhood differences, and built-up area characteristics.

To test this hypothesis, we link the intensity of each ALAN sub-spectra (Red-Green-Blue) with the intensity of panchromatic ALAN, pixel-wise neighborhood ALAN difference measures and characteristics of built-up areas available for several major metropolitan areas worldwide (see section II-B).

The former group of neighborhood controls includes differences between the panchromatic ALAN intensity in a given pixel and either average or the most extreme ALAN intensity in its neighborhood. The potential importance of such differences is expected to be due to the fact that substantial differences in neighboring ALAN intensities may occur, if, for instance, a brightly lit commercial facility, often characterized by blue luminaries, stands out against nearby dimly lit areas or if such a facility is separated from its surrounding by a dimlylit buffer zone. In contrast, similar light emissions in the pixel's neighborhood may result from the pixel's location in a homogenously lit residential area, where long wavelength luminaries (such as incandescent or vapor lamps) are often used. Concurrently, the above-mentioned built-up area characteristics include the percent of built-up area and its spatial homogeneity, considering that each type of land use has its spatial configuration and land cover [START_REF] Herold | Spatial metrics and image texture for mapping urban land use[END_REF].

We examine four types of machine learning models. The first one is the elastic map approach [START_REF] Gorban | Elastic principal graphs and manifolds and their practical applications[END_REF], originating from the manifold learning field, and three standard methods, represented by multiple linear, non-linear kernel, and random forest regressions (see section II-D). Using these methods, the models are first estimated for training sets and then are validated against testing sets (see section II-D). In each case, the models' performance is assessed by mutually comparing the model-estimated and original RGB data. To perform assessments, different similarity measures are used -Pearson's correlation coefficients, weighted mean squared error (WMSE), and contrast similarity. In addition, we control for the consistency of these measures by comparing the results obtained for training and testing datasets (see section II-E).

B. Data Sources

For each metropolitan area under analysis, we built a dataset that includes three separate images of the RGB sub-spectra (red, green and blue), a panchromatic image of ALAN intensity, a layer of neighborhood differences, calculated for the panchromatic ALAN layer, and a land-use layer (see section II-A).

As RGB ALAN data source, we use local night-time images provided by the International Space Station (ISS) and available from the Astronaut Photography Search Photo service [START_REF]Search Photos[END_REF]. Concurrently, panchromatic ALAN images are obtained from the VIIRS/DNB image database, maintained by the Earth Observation Group site [START_REF]Earth Observation Group[END_REF], while land-use characteristics of built-up area are computed from the global raster layer of human built-up area and settlement extent (HBASE) database available at the NASA Socioeconomic Data and Application Centre site [START_REF]HBASE Dataset From Landsat[END_REF]. The HBASE dataset is a 30-meter resolution global map derived from the Global Land Survey Landsat dataset for the year-2010. In the present analysis, we use the HBASE layer that reports the pixel-wise probability of the built-up area in the range from 0 to 100%. The HBASE is a companion for the Global Manmade Impervious Surfaces (GMIS) dataset, which addresses GMIS's commission errors arising from over-prediction of impervious cover in areas which are full of dry soil, sands, rocks, etc. [START_REF] Wang | Global Human Built-up And Settlement Extent (HBASE) Dataset From Landsat[END_REF].

It should be noted that ISS images report ALAN levels in digital numbers, which are camera-specific [START_REF]How Digital Cameras Work[END_REF]. Therefore, to ensure the comparability of RGB levels, reported for different localities, we selected from the ISS database only images taken by the samea Nikon D4 Electronic Stillcamera. In addition, to enable the comparability of ISS images with panchromatic ALAN images, we selected the ISS images taken at the time close to the VIIRS/DNB image acquisition, that is, at about 01:30 a.m., local time.

The ISS images were matched with spatially referenced layers using the Geo-referencing tool of the ArcGISv10.x software by matching key points in the raster photos with corresponding points in the Streets Basemaps obtained from the ArcGIS online archive [START_REF]ArcGIS Online | Cloud-Based GIS Mapping Software[END_REF]. Next, the ISS images were paired with corresponding monthly VIIRS/DNB composites, and clipped to the extent of the corresponding RGB image. In particular, the following pairs of images were used: (i) For the Atlanta region, the USA, the ISS image [START_REF] Román | NASA's Black Marble nighttime lights product suite[END_REF]. However, in such images, poorquality pixels, caused either by outliers, cloud contamination, etc., might be present [START_REF] Román | Black Marble User Guide Version 1[END_REF]. For example, in the Khabarovsk region of Russia, used in the paper as one of the test sites, the daily image for the required date comprises about 20% of pixels, flagged as poor-quality ones. Therefore, in the present analysis, we opted to use cloud-free monthly composites, considering that future studies may consider using daily nighttime images for coloring, while employing the data modelling method we propose.

C. Image Processing

The data for the analysis were processed in several stages. First, we reduced the high-resolution of ISS RGB images (~10 meters per pixel), by averaging neighboring pixel values, to match the resolution of corresponding VIIRS/DNB images (~750 meters per pixel) and then converted the resized images into point layers, using the Raster-to-Point conversion tool in ArcGIS v.10.x software. Next, to each point in the layer (i.e., reference points), we assigned the corresponding values of the red, green, and blue light sub-spectra from the corresponding ISS RGB image. The task was performed using the Extract MultiValues to Points tool in ArcGIS v.10.x software. Next, after VIIRS/DNB images were converted into points, each point was assigned with the following information: 1) panchromatic ALAN flux; 2) average difference between ALAN intensity in the point and ALAN intensities in its eight neighboring points, and 3) maximum difference between the ALAN intensity in a given point and ALAN values in eight neighboring points in the point's immediate neighborhood. Lastly, after the HBASE image was converted into points, its pixel averages and standard deviations (SDs) were calculated and assigned to the reference points as well.

During data processing, all the points located outside the study area (for instance, points falling into water bodies) or classified as outliers in each dataset (see Outliers Analysis Box in Appendix) were excluded from the analysis. Table AI 

D. Data modelling

To estimate the models linking ALAN intensities of red, green and blue sub-spectra with the set of explanatory variables (see section II-A), we used, as previously mentioned, four alternative modeling approaches: the elastic map approach, originating from the manifold learning field [START_REF] Gorban | Principal manifolds and graphs in practice: From molecular biology to dynamical systems[END_REF], and three standard supervised multivariate modeling methods, that is, ordinary multiple linear regression, non-linear kernel regression (see inter alia [START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF]), and random forest approach [START_REF] Breiman | Random forests[END_REF].

All the approaches belong to the field of supervised machine learning, as they model the relations between variables based on some training data and use the revealed relationships to make predictions for othersthat is, testingdata. This generates a so-called bias-variance dilemma [START_REF] Luxburg | Statistical Learning Theory: Models, Concepts, and Results[END_REF]. The better a model fits the training data, the worse it is expected to fit the test data. As a result, while linear regression's performance may be relatively poor for the training dataset, it may generate reasonably good predictions for test datasets. By contrast, nonlinear kernel regression or random forest regression might fit training data perfectly but may fare poorly, when applied to new datasets. In this context, elastic maps with varying bending regimes can be viewed as an approach for optimizing such a bias-variance trade-off.

Each of the aforementioned models was first estimated separately for the red, green, blue light intensities for each of the eight cities covered by analysisi.e., Atlanta, Beijing, Haifa, Khabarovsk, London, Naples, Nashville, and Tianjing (see section II-B). During the model estimation, all pixels belonging to a city were included into the training set, while the testing sets were formed by seven other cities, which were not used for training. Each estimated model was next applied to the other metropolitan areas, to validate its performance. In the sections below, we describe, in brief, each modeling approach used in the analysis.

1) Elastic map approach

Elastic map approach implies constructing a non-linear principal manifold approximation, represented by nodes, edges (connecting pairs of nodes) and ribs (connecting triples of nodes), by minimizing the squared distances from the dataset points to the nodes, while penalizing for stretching of the edges and bending of the ribs [START_REF] Wang | Global Human Built-up And Settlement Extent (HBASE) Dataset From Landsat[END_REF]. Elastic map, eventually presented by multidimensional surface, built of piece-wise linear simplex fragments, might be considered as a non-linear 1D, 2D, or 3D screen, on which the multidimensional data point vectors are projected. It is built, on the one hand, to fit the data, and, on the other hand, not to be too stretched and too bent.

The general algorithm of the elastic map follows the standard splitting approach. Elastic map is initialized as a regular net, characterized by nodes, edges, connecting two closest nodes, and ribs, connecting two adjacent continuing edges. This net is embedded into a space of multidimensional data, and the node embedments are optimized to achieve the smooth and regular data approximation. The optimization is done in iterations, similarly to the k-means clustering algorithm. At the first step of each iteration, the data point cloud is partitioned accordingly to the closest elastic net's node embedment. At the second step, the total energy of the net (U) is minimized, and the node embedment is updated. After this, a new iteration starts, and this process continues till a maximum number of iterations is achieved or the changes in the node positions in the multidimensional data space become sufficiently small at each iteration. For detailed formal methodology description, see [START_REF] Román | Black Marble User Guide Version 1[END_REF] and [START_REF] Gorban | Principal manifolds and graphs in practice: From molecular biology to dynamical systems[END_REF]).

The energy of the elastic map is represented by the following three components: summarized energy of nodes (U(Y)), calculated as the averaged squared distance between the node and the corresponding subset of data points closest to it; summarized energy of edges (U(E)), which is the analog to the energy of elastic stretching and is proportional -via a certain penalty -to the sum of squared distances between edgeconnected nodes; and summarized energy of ribs (U(R)), which might be considered as the analog to the of elastic deformation of the net and is calculated as proportional -via a certain penalty -to the sum of squared distances between the utmost and center nodes of the ribs. Fig. 2 provides the reader with a simplified explanation for elastic maps approach, summarizing the above-mentioned components of elastic map and their energies: Each node is connected by elastic bonds to the closest data points and simultaneously to the adjacent nodes.

It is important to note that, unlike standard supervised methods, such as linear or kernel regression models, elastic map is, by its nature, a non-supervised manifold learning method which does not treat any variable as dependent one; it is designed to explainunder pre-defined penalties for stretching and bendingtotal variance of the data. However, similarly to Principal Component Analysis (see, for example, [START_REF] Grung | Missing values in principal component analysis[END_REF]), the elastic map data approximations can be used for predicting the values of some of the variables (e.g., those which are considered to be dependent) through imputing them. The imputing approach, in this case, consists in fitting the elastic map using the part of the dataset containing no missing values and then projecting the data vectors containing a missing value for the dependent variable. The imputed (or, predicted) value is the value of the variable in the point of its projection onto the elastic map.

By construction, elastic map, represented by a sufficient number of nodes, and given the low penalties for stretching of edges and bending of ribs, would fit input data perfectly. Theoretically, when the number of elastic map nodes approaches the number of points in the input dataset, and under zero penalties, the fraction of the total unexplained variance of input point cloud by corresponding elastic map would equal to zero. At that, this elastic map's ability to generalize to another dataset or predict one of its variables levels is expected to be low. Increasing the elastic penalty is expected to increase the generalization power of the approach while respecting the nonlinearities in the variable dependences. In the limit of very stiff elastic penalty, the performance of elastic maps is expected to match those of linear methods. However, the optimal performance can be found in between these two extremes (absolute flexibility vs absolute rigidity).

The present elastic map analysis was conducted in MATLAB v.R2020x software [START_REF]GitHub -Elastic map[END_REF]. We utilized a two-dimensional net with a rectangular grid with nodes, which were brought into actual data subspace spanned by the first three principal components. Due to the outlier analysis performed, we settled the stretching penalty at a zero level. To prevent overfitting, the number of nodes was also fixed at a level of 144 (12x12), which is about 5-50 times smaller than the number of points of input datasets. We experimented with the bending coefficient only. In the attempt to optimize bias-variance trade-off, we tested elastic maps built under nine varying bending penalties. (Fig. A2 in Appendix, reporting corresponding models for blue light association with the set of predictors for Haifa dataset, gives an idea of how these maps look like. As one can see from the figure, representing the general tendency for either red, green or blue lights containing datasets, map smoothness gradually grows with an increasing penalty for bending, while the level of a fraction of total variance (that is, a fraction of variance by all six variables in the dataset) unexplained (FVU) by smoother map further decreases.)

2) Multiple linear regression

The general idea behind the multiple least-squares linear regression is fitting the observations (each represented by a point in N-dimensional space with (N-1) number of predictors and one dependent variable) by a linear relationship, represented by an (N-1)-dimensional linear surface, or hyperplane, by minimizing the sum of squared errors between the actual and estimated over this hyperplane levels of the dependent variable. In the current analysis, for each geographic site dataset, the following multiple ordinary least squares (OLS) regression model was estimated:

𝐶𝐿 𝑖𝑗 = 𝑏 0 + ∑ (𝑏 𝑘 × 𝑷 𝑘𝑖 ) 𝑘 + ε 𝑖 , (1) 
where CLi = observation i of ALAN intensity in color band j (either red, green or blue sub-spectra); b0 = model intercept; bk = regression coefficient for the k th predictor; P = vector of model predictors, represented by pixel-specific panchromatic ALAN intensity, reported by VIIRS/DNB (i); the difference between the pixel-specific panchromatic ALAN intensity and average panchromatic ALAN intensities of eight neighboring pixels (ii); the maximum difference between the panchromatic ALAN flux from a pixel and panchromatic ALAN fluxes from eight neighboring pixels (iii); average percent and standard deviation of land coverage, calculated from HBASE, and ε = random error term.

The multiple regression analysis of the factors associated with RGB ALAN intensities was performed in the IBM SPSS v.25 software [START_REF]SPSS Software | IBM[END_REF].

3) Non-linear kernel regression

Non-linear kernel regression is a non-parametric technique, fitting the observations into a hypersurface. The method uses a sliding window, with a dataset being divided into smaller subsets. Within each data subset, each data point is treated as a 'focal point', and its value along the dependent variable axis is re-estimated from a hyperplane (or hypersurface), built to minimize the errors, weighted for the distance to the focal point along independent variables axes and for the difference between estimated and actual levels of the dependent variable [START_REF] Wand | Kernel Smoothing[END_REF].

Under this estimation technique, many parameters are a matter of choice. First, the size of the sliding window may vary from several points to significant amounts of the whole dataset, providing correspondingly less or flatter hypersurface. Second, the modelled association between a dependent variable and its predictors might be either linear, parabolic, exponential, etc. Third, the errors between estimated and actual levels might be either minimized or not allowed to exceed a certain value. Fourth, the 'weights' function might vary, implying paying more or less attention for more distant data points. Finally, the number of iterations on re-estimating dependent variable actual levels might also be increased, so the resulting hypersurface would be flatter.

In the present analysis, we used a standard realization of the Gaussian kernel regression built-in MATLAB v.R2020x software under the chosen automatic option for the kernel regression parameters optimization [START_REF]Fit Gaussian kernel regression model using random feature expansion -MATLAB fitrkernel[END_REF]. The latter implies the optimization of the kernel regression parameters by using five-fold cross-validation based on mean squared errors.

4) Random forest regression

We also tested the random forest approach [START_REF] Breiman | Random forests[END_REF], which implies building an ensemble of decision trees, each 'voting' for a certain class or level of the dependent variable, with subsequent averaging of the estimates across all the decision trees. In the present analysis, we implemented a standard realization of the random forest regression (the TreeBagger module) in the MATLAB v.R2020x software [START_REF]Create bag of decision trees -MATLAB[END_REF]. During the estimation procedure, the following two parameters were a matter of choicethe number of independent variables used for the individual decision tree construction and the number of decision trees comprising the "forest." Following [START_REF] Seo | Learning-Based Colorization of Grayscale Aerial Images Using Random Forest Regression[END_REF], all the predictors available were used for the decision trees' construction and the total number of decision trees was set to 32.

E. Criteria for the models' comparison

To compare models estimated using the above-discussed statistical techniques, we used the following indicators: (i) Pearson correlation coefficients were calculated to determine the strength of association between the actual and predicted levels of RGB sub-spectra. This metric assesses the model's ability to produce RGB estimates, whichin their relative tendency,correspond well with the actually observed RGB levels; (ii) Weighted mean squared errors (WMSE) between the actual and predicted levels of ALAN emissions in the red, green, and blue sub-spectra. This metric is calculated as mean squared difference between the model-estimated and actually observed RGB levels, divided by the actually observed value; the metric helps to assess differences between the estimated and actual RGB levels on an absolute scale; (iii) Contrast similarity index between the original and modelpredicted RGB images. This measure generates a pairwise comparison of local standard deviations of the signals from the original and model-generated images [START_REF] Wang | Image quality assessment: From error visibility to structural similarity[END_REF]. In our analysis, this indicator was used to compare the spatial patterns of differences between light intensities of a variety of restored RGB images and corresponding RGB originals. The calculations of the index were performed in MATLAB v.R2020x software using its structural similarity computing module [START_REF]Structural similarity (SSIM) index for measuring image quality -MATLAB ssim[END_REF], while setting the exponents of two other terms, that is, luminance and structural terms, to zero. (iv) Consistency of the estimated obtained using the aforementioned metrics -Pearson correlation, WMSE, and the contrast similarity index,was estimated as the geometric mean of the ratio between the average value and standard deviations of a given measure, assessed for the training and testing sets, respectively. The consistency was considered a measure of universality of the modeling approach.

III. RESULTS

A. General comparison of the models' performance Fig. 3 & Figs. A3-A9 report results of the analysis, in which different models are estimated for one metropolitan area (Haifa) and then applied to either this area (Fig. 3) or to seven other metropolitan areas under analysis (Figs. A3-A9 in Appendix).

(For the reader's convenience, we also report day-time images of all study areas in Fig. 1 Fig. 4, which mutually compares the performance of linear regressions, kernel regressions, random forest regression, and elastic maps built under different bending penalties, for training and testing sets, also shows that models-generated RGB estimates demonstrate a high degree of correspondence with the original ISS RGB data. In particular, as Fig. 4 shows, Pearson correlation coefficients exceed in all cases, for both testing and training sets, 0.62, WMSE are smaller than 2.03, and contrast similarity is greater than 0.91 (91%), indicating a high level of correspondence with the original ISS data.

As Fig. 4 further shows, in terms of Pearson correlation coefficients and WMSE, random forest approach and kernel regressions perform somewhat better for training sets (with r=0.93-0.96 and WMSE=0.05-0.11 for random forest regressions and r=0.80-0.89 and WMSE=0.10-0.26 for kernel regressions vs. r=0.77-0.87 and WMSE=0.14-0.37 for linear regressions and r=0.69-0.85 and WMSE=0.12-0.59 for elastic map models). However, for testing sets, in terms of Pearson correlations, linear regression outperforms other modeling methods (r=0.75-0.85 vs. r=0.70-0.84 for random forest regressions, r=0.68-0.85 for kernel regressions, and r=0.62-0.82 for elastic map models). Concurrently, in terms of WMSE, linear regressions also perform better for the blue light band (WMSE=0.81 vs. WMSE =1.05 for random forest regression, WMSE =0.91 for kernel regression, and WMSE =0.97-1.17 for elastic map models), while random forest regressions perform better for the red and green light sub-spectra (WMSE=1.04-1.16, compared to WMSE=1.18-1.12 for kernel regressions, WMSE=1.44-1.70 for linear regressions, and WMSE=1.17-2.03 for elastic map models). In terms of contrast similarity (C_sim), random forest models demonstrate better performance, for both training and testing sets (C_sim=0.931-0.989 vs. C_sim=0.913-0.966 for linear regressions, C_sim=0.922-0.973 for kernel regressions, and C_sim=0.917-0.979 for elastic maps models).

Table I reports consistency assessment of the models' performance across training and testing sets. As the table shows, in most cases, elastic map models outperform both linear, kernel, and random forest regressions, except for Pearson's correlation coefficients' consistency, assessed for green light datasets, for which linear regression outperforms other methods (r=0.979 vs. r=0.976 for elastic map models, r=0.804 for kernel regressions, and r=0.500 for random forest regressions).

B. Factors affecting light flux in different RGB bands

As hypothesized in Section IIA, different types of land-use tend to emit nighttime lights, being different in terms of light intensity and spectra. This fact potentially enables a successful extraction of RGB information from panchromatic ALAN images. To verify this hypothesis, we ran multiple regression models, linking the set of predictors, described in Section IIA, with light intensities in different spectraeither red, green, or blue. We estimated the models for all eight study-datasets together, to identify a general trend.

Table II reports the results of this analysis and confirms the above hypothesis overall. In particular, as the models' pairwise comparison shows, differences between regression coefficients estimated for different RGB models are statistically significant for all the variables under analysis (P<0.01).

The table also indicates that, in line with our initial research hypothesis, different RGB intensities are associated with different strength with different features in the panchromatic image and different land-use attributes. First, panchromatic ALAN intensities contributes more to the Red and Green light emissions than to the Blue ones (M1: t=171.61; P<0.01 vs. M2: t=197.63; P<0.01 vs. M3: t=158.12; P<0.01). Second, Blue spectrum intensities appear to be strongly and negatively associated with the average percent of built-up area (M3: t=-4.90; P<0.01), while, in contrast, ALAN emissions in the Red and Green sub-spectra exhibit positive associations with built area percent (M1: t=32.77; P<0.01 and M2: t=16.68; P<0.01). Third, ALAN-Mean Diff. appears to be significantly and negatively associated with ALAN emissions in the Red and Green spectra, while its association with the Blue spectrum emissions is much weaker (M1: t=-20.99; P<0.01 vs. M2: t=-16.80; P<0.01 vs. M3: t=-3.80; P<0.01). Lastly, the ALAN-Max Diff. variable is positively and highly significantly associated with the Red and Green sub-spectra, while this variable is insignificant in the model, estimated for the Blue sub-spectrum (M1: t=26.78; P<0.01 vs. M2: t=20.32; P<0.01 vs. M3: t=1.41; P>0.1).

C. Factor contribution test

Since none of the kernel, random forest regression, and elastic map models provide explicit estimates of the explanatory variables' coefficients, which multiple regression analysis enables (see Table II), we implemented a different strategy for a cross-model comparison. In particular, we explored the relative roles of different predictors by excluding them from the models one by one, and assessing the change in the models' performance attributed to such exclusions. As Fig. 5 shows, the factor ranking appears to be similar in all types of the models, with ALAN contributing most to the r-change (Δr=0.197-0.251 for linear regressions, Δr=0.131-0.159 for kernel regressions, Δr=0.180-0.203 for elastic map models, Δr=0.043-0.048 for random forest regressions). In compare to this major contribution, the relative contribution of the HBASEbased predictors, such as HBASE mean and standard deviation, is smaller (reaching Δr=0.13, depending on the model). Yet, this contribution is not negligible, and varies by the ALAN band, which may be crucial for some applications (see an example reported in Fig. A11). The inter-pixel ALAN differences emerge third (Δr<0.010 for all model types).

IV. DISCUSSION

One of the most important findings of the study is that different predictors have different loadings on the explained variance of the Red, Green, and Blue ALAN emissions. In particular, as the multiple regression analysis shows, the association between panchromatic ALAN intensities appears to be stronger for the Red and Green sub-spectra, in compare to the Blue sub-spectrum. This difference may be explained by a smaller overlapping diapason of relative spectral sensitivities of the Blue channel (in comparison to the Red and Green diapasons) provided by the DSLR cameras, used by ISS astronauts, and that of the VIIRS/DNB sensor (see Fig. A1 in Appendix).

The regression coefficients for the mean and max ALANdiff. indices also emerged with different strengths in different RGB models, being stronger in the Red and Green band models than in the Blue band models. To understand these differences, we should keep in mind that ALAN-diff. can be negative for mean-difference, and positive for ALAN-max differences only if the following conditions are met: (i) a pixel is, on the average, dimmer than the adjacent pixels, but is (ii) brighter than, at least, one of the neighboring pixels. Such a situation might happen if a pixel in question is located at the edge of a lit area. As a result, it may not stand out against its surroundings. Since Red and Green lights are more associated with moderately lit residential areas (unlike industrial and commercial facilities often lit by Blue lights), we assume the aforementioned effect is more pronounced in the Red and Green light models.

In addition, percent of the built-up areas emerged positive in the Red and Green lights models, and negative in the Blue light model. Built-up area SD also emerged negative, being weaker in the Blue-light model than in the Red and Green light models. This phenomenon may be attributed to the fact that Red and Green lights are associated with densely and homogenously lit residential areas, while Blue lights may be more common in industrial and commercial areas, which are characterized by more sparse and heterogeneous illumination patterns. Kernelbased, random forest, and elastic maps models generally confirm these associations.

Another important finding of the study is that different models differ in performance, when used to convert panchromatic ALAN images into RGB. In particular, as the study reveals, random forest and non-linear kernel regression models generally perform well in terms of Pearson correlation, WMSE, and contrast similarity index for training sets, while multiple linear regressions outperform, in most cases, other methods for testing sets. As we suggest, this difference is due to the flexibility of random forest and kernel regressions, which helps to fit the training data more precisely, while linear regressions fare better in capturing trends. Concurrently, in terms of consistency of the models' performance estimated for training and testing sets, elastic map models, built under predominantly medium bending penalty, fared better than other model types. Given medium bending penalties, elastic map models also show better performance, compared to less and more bent counterparts, thus indicating diminishing benefits of under-and over-smoothing.

To the best of our knowledge, this study is the first that attempts to extract RGB information from panchromatic nighttime imagery, which determines its novelty. We should emphasize that this task is different from the gray-scale image or movie colorization task, which is based on the analysis of semantically similar images with matching the luminance and texture information and selecting the best color among a set of color candidates (see for example [START_REF] Welsh | Transferring color to greyscale images[END_REF]- [START_REF] Larsson | Learning representations for automatic colorization[END_REF]). The present task, though, might be considered as similar to the day-time satellite or aerial image colorization task, which is used to enrich past images, to make them comparable with the present-day images or to obtain color images at the spatial resolution of their panchromatic counterparts (see [START_REF] Seo | Learning-Based Colorization of Grayscale Aerial Images Using Random Forest Regression[END_REF], [START_REF] Liu | Single satellite imagery simultaneous super-resolution and colorization using multi-task deep neural networks[END_REF], [START_REF] Gravey | Analogue-based colorization of remote sensing images using textural information[END_REF]). Night-time satellite imagery, though, is way worse in terms of spatial resolution; thus, use the features' peculiarities, such as texture, is not beneficial. To overcome this difficulty, we use auxiliary HBASE data, to compensate this drawback.

The importance of the proposed approach is due to a possibility of obtaining seamless RGB data coverage from panchromatic ALAN images, which are widely available today globally with various temporal frequencies. In its turn, generating RGB information from freely available or easy-tocompute information from panchromatic nighttime imagery and built-up area data might contribute to research advances in different fields, by enabling more accurate analysis of various human economic activities and by opening more opportunities for ecological research. In particular, the panchromatic-to-RGB image conversion may enable studies of different health effects, associated with ALAN exposures to different subspectra, such e.g., breast and prostate cancers. The conversion in question may also help to correct a bias in the light pollution estimates, obtained from panchromatic VIIRS/DNB ALAN imagery by widening their spectrum sensitivity diapason.

One important question needs to be answered: Would colorized VIIRS images actually help empirical studies to obtain more robust effect estimates? To address the issue, we used breast cancer (BC) data, reported in [START_REF] Rybnikova | Outdoor light and breast cancer incidence: a comparative analysis of DMSP and VIIRS-DNB satellite data[END_REF], and compared the strength of association between BC rates and uncolored VIIRS image, and, then, between BC rates and the Blue, Green, and Red bands of the colored image generated for the Haifa metropolitan area using the random forest modelling approach. We run both the models incorporating the full set of predictors and also a truncated set, from which the HBASE-based predictors were excluded. Figure A11 reports the results of such comparison. As figure A11 (a) shows, for most BC rate cut-off thresholds, the association between the observed BC rates is consistently higher for blue lights than either for panchromatic or green-and red-band lights. This result is fully consistent with existing empirical evidence about most efficient melatonin suppression by short wavelength (blue) illumination ( [START_REF] Cajochen | High Sensitivity of Human Melatonin, Alertness, Thermoregulation, and Heart Rate to Short Wavelength Light[END_REF], [START_REF] Brainard | Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor[END_REF], [START_REF] Wright | Differential effects of light wavelength in phase advancing the melatonin rhythm[END_REF]), potentially associated with elevated risk of hormonedependent cancers [START_REF] Haim | Light pollution as a new risk factor for human breast and prostate cancers[END_REF]. Importantly, the RGB estimates, obtained from the models without HBASE-based predictors (Fig. A11 (b)) show weaker and more similar one to another correlations with BC DKD rates, which evidences that retaining the HBASE predictors in the models is beneficial.

Another concern might arise about spatial autocorrelation between observations used in the modelling. If testing and training sets are geographically close, then this problem is crucially important and would require special methods [START_REF] Wurm | Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks[END_REF]. In our analysis, however, we used observations from different cities to form the training and testing sets. In particular, if a city was used for training, it was excluded from testing and vice versa. Then, another city was used for training but was included from the testing set, and so on. By way of this, training and testing sets always referred to different geographical regions, without any spatial overlap between them. Therefore, no spatial autocorrelation between training and testing sets was present.

Several limitations of the study are yet to be mentioned. First and foremost, VIIRS/DNB reports panchromatic ALAN intensities in physical units (nW/cm 2 /sr), while ISS-provided imagery reports raw data in digital numbers (DN), and, therefore, a direct comparison between the two might be problematic. However, since we do not mutually compare red, green, and blue light levels, but only compare each of them separately with panchromatic ALAN intensities, this consideration is less critical, and should not affect the results of our analysis substantially. Furthermore, as conversion of digital numbers into physical quantities should conform linear (or near-linear) transformation, our results are unlikely to be distorted by such a conversion. Second, it should be acknowledged that a time lag between the year-2010 HBASEbased predictors and years-2015/17 nighttime VIIRS data exists. However, this lag is not expected to influence the study's results crucially, since the built-up coverage of major metropolitan areas tends to stabilize in recent years [START_REF] Kasanko | Are European cities becoming dispersed?. A comparative analysis of 15 European urban areas[END_REF]. Considering its 30-m resolution, the HBASE database is sufficient for the study, in which the observations are aggregated into the 750x750 m grids. However, to address the time gap between ALAN and HBASE datasets, future studies may consider other data sources for urban grey estimation, based on either Sentinel-2, Landsat 8, or Tan-DEM-X imagery [START_REF]Global and Continental Urban Extent / Settlement Layers: Summary Characteristics | POPGRID[END_REF].

Third, our analysis revealed some peculiar cases which demonstrate relatively poor low applicability of our models to some test datasets. One example is the application of the models estimated for Haifa and Naples to Atlanta, for which high WMSE levels of red and green light levels for testing sets were reported (see e.g., Tables AV and AVIII in Appendix). This suggests that the proposed approach should be further refined. It would be tenable to expect that mixing the observations from training and testing sets would result in a better performance of the models. We checked this assumption pooling the observations of all the eight cities together. This pooled dataset was 10 times randomly split into training and testing sets at the 90/10 ratio, and multiple linear regressions were used to estimate Pearson correlations between the estimated and actual RGB levels. The analysis, however, indicated no substantial improvement compared to models' performance in our main experiment (r=0.756-0.839 in the new experiment vs. r=0.745-0.871 in the previously reported experiment). Additionally, we suggest, to improve the performance of the models, in future studies, other combinations of predictors can be tested, and outlier analysis can be improved, by using alternative procedures for data normalization, and experimenting with elastic maps' pre-defined parameters. As we expect, these procedures will make it possible to obtain more robust results and thus to improve generic and area-specific algorithms used for predicting polychromatic ALAN intensities.

V. CONCLUSIONS

The present analysis tests the possibility of generating RGB information from panchromatic ALAN images, combined with freely available, or, easy-to-compute, land-use proxies. As we hypothesized from the outset of the analysis, since different land-use types emit night-time light of different intensity and spectrum, it might be possible to extract RGB information from panchromatic ALAN-images, coupled with built-up-area-based predictors. To verify this possibility, we use ISS nighttime RGB images available for eight major metropolitan areas worldwide -Atlanta, Beijing, Haifa, Khabarovsk, London, Naples, Nashville, and Tianjing. In the analysis, four different data modeling approaches are used and their performance mutually comparedmultiple linear regressions, non-linear kernel regressions, random forest regressions, and elastic map models. During the analysis, the dataset for each geographical site is used, once at a time, as a training set, while other datasetsas testing sets. To assess the models' performance, we use different measures of correspondence between the observed and model-estimated RGB data: Pearson correlation, WMSE, contrast similarity, and consistency of the models' performance for training and testing sets. The analysis supports our research hypothesis about the feasibility of extracting RGB information from panchromatic ALAN images coupled with built-up-areabased predictors, pointing, however, that linear, kernel, and random forest regressions produce better estimates in terms of Pearson's correlation, WMSE, and contrast similarity, while elastic maps models perform better in terms of consistency of these indicators upon training and testing sets. The proposed approach confirms that panchromatic ALAN data, which are currently freely available globally on a daily basis, might be colorized into RGB images, to serve as a better proxy for the human presence on Earth. Fig. 2. Energies of elastic map (principal manifold approximation). The principal manifold is represented by a regular grid of nodes (large black circles) connected by attractive springs (shown by thick zigzag lines and representing the stretching energy). In addition, the triples of nodes in the grid are assigned the bending energy (not represented here). The data points shown by small circles are assigned to the closest node of the grid similarly to the kmeans clustering. Then the data approximation term (Mean Squared Error) can be represented as the total elastic energy of springs connecting the data points and the grid nodes (thin zigzag lines here). (Source: [START_REF] Gorban | Visualization of Data by Method of Elastic Maps and Its Applications in Genomics[END_REF]) Fig. 3. Haifa metropolitan area (Israel): Red (the first column), Green (the second column), Blue (the third column)) bands, and RGB images (the fourth column); ISS-provided, resampled to the spatial resolution of VIIRS imagery (the first row), and outputs of four models trained on Haifa datasets: linear multiple regressions (the second row), non-linear kernel regressions (the third row), random forest regressions (the fourth row), and elastic map models (the fifth row).

Notes: Output generated by elastic maps, built under the 0.05 bending penalty, is reported. R and WMSE denote correspondingly for Pearson's correlation and weighted mean squared error of the red, green, and blue lights' estimates, C_simfor contrast similarity between restored and original RGB images. White points in the city area correspond to outliers. 
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APPENDIXES

Box 1: Outliers Analysis Procedure Outliers analysis was performed separately for each geographic site dataset. Proceeding from each variable distribution, we defined a cut-off separating 1% of points as variable outlier. An observation was considered to be an outlier if either:

(i) It was beyond the cut-off point at the scale of at least one of the 'predictors' while being within the 'usual' interval at the scale of each of dependent variables (We should emphasize that here and hereinafter the notes 'dependent variable', as well as 'independent variable', or 'predictor', when applied to elastic map approach, are used figuratively. Elastic map is set of points, connected via edges and ribs, aimed at approximating points dataset in N-dimensional coordinate system, where N is number of input variables, no matter which of them is implied to be dependent variable.); (ii) It was beyond the cut-off point at the scale of at least one of the dependent variables while being 'normal' at the scale of each independent variable; (iii) It was beyond opposite cut-off points (that is, upper/lower or lower/upper) at the scale of predictor and dependent variable under their positive bivariate association; (iv) It was beyond same-range cut-off points (that is, upper/upper or lower/lower) at the scale of predictor and dependent variable under their negative bivariate association. Thus, the percentage of excluded outlying observations varied from 2.92% for the Atlanta dataset to 3.90% for the Beijing dataset (see Table A1). 

Fig. 1 .

 1 FIGURES AND TABLES

Fig. 4 .Fig. 5 .

 45 Fig. 4. Mutual comparison of linear, kernel, random forest, and elastic map models for the training (top row) and testing (bottom row) datasets, in terms of averaged Pearson correlation coefficients ((a) & (d)), WMSE ((b) & (e)), and contrast similarity ((c) & (f)) Notes: In case of Pearson's correlation ((a) & (d)) and contrast similarity ((c) & (f)), greater means better; In case of WMSE ((b) & (e)), lower means better.

Fig. A1 .FVU 23 R 14 R 29 R

 A1231429 Fig. A1. Relative response of VIIRS/DNB sensor and Nikon D3 DSLR camera from the ISS (Source: Built from data obtained upon request from A. Sánchez de Miguel.)

62 (

 62 Fig. A10. Day-time satellite images for the cities under analysis (Source: Imagery basemaps provided by ArcGIS v.10.x software)

Fig

  Fig. A12. Changes in the models' performance (Δr), attributed to the exclusion of different groups of variables from the set of predictors, estimated separately for different model types (Study dataset: all metropolitan areas under analysis; N. of pixels/obs. = 33,846); the models are estimated separately for the Red (a), Green (b), and Blue (c) spectra)

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  reports the number of observations for each geographic site, and other relevant information, while descriptive statistics for research variables are reported in Table AII in Appendix.

  (a) and Fig.A10in Appendix.) In particular, each of the Figs. 3&A3-A9 report the original ISS RGB image, resized to the spatial resolution of the corresponding panchromatic VIIRS/DNB image, and, next to it, RGB images generated from panchromatic ALAN VIIRS/DNB images and HBASE maps. The figures also report several assessment criteria -Person correlation, WMSE, and contrast similarity. Although we performed similar assessments for all other metropolitan areas, by applying the models estimated for one of them to all the "counterpart" geographical areas, in the following discussion, we report only general statistics of such assessments (see Fig.4and TableI), while the RGB images generated thereby are not reported in the following discussion, for brevity's sake, and can be obtained from the authors upon request.As Figs.3&A3-A9show, the model-generated RGB maps are, in all cases, visually similar to the original ISS RGB data. In addition, the models' performance measures show a close correspondence between original and model-generated RGB images, with Pearson correlation coefficients, both for training and testing sets, ranging between 0.719 and 0.963, WMSE varying from 0.029 to 4.223 and contrast similarity ranging from 0.931 to 0.993 (see TableAV; For corresponding statistics for other case studies covered by the analysis, see Tables AIII-AX in Appendix).

TABLE I

 I Mutual comparison of linear, kernel, random forest, and elastic map models in terms of estimate consistency for training and testing datasets The results of the best-performing model are reported with: 1a α=0.0001; 1b α=0.05; 1c α=0.00001; 1d α=0.001. The grey cell backgrounds mark the best-performed model for specific measures.

				Model performance measure		
	Model type	Pearson correlation coefficient		WMSE		Contrast similarity
		R	G	B	R	G	B	RGB
	Linear regression	0.938	0.979	0.880	0.124	0.147	0.096	0.541
	Kernel regression	0.680	0.804	0.572	0.135	0.148	0.059	0.514
	Random Forest regression	0.472	0.500	0.400	0.061	0.074	0.028	0.357
	Elastic map model 1	0.970 1a 0.976 0.975 1b 0.371 1c 0.257 1c 0.108 1c	0.598 1d

TABLE II The

 II association between ALAN intensities in different RGB bands and predictors from the VIIRS and HBASE datasets (Study areaall geographical sites together (N. of pixels/obs. = 33,846); method ordinary least square regression (OLS); dependent variables -ALAN intensities in different parts of the RGB spectra) and significance of differences in the regression coefficients

					Models								Models' comparison	
		M1: Dependent variable	M2: Dependent variable	M3: Dependent variable								
	Predictors	-ALAN intensity in the Red spectrum -dn	-ALAN intensity in the Green spectrum -dn	-ALAN intensity in the Blue spectrum -dn	VIF		M1 vs. M2		M1 vs. M3		M2 vs. M3
		B	t	B	t	B	t		ΔB	SE	Sig.	ΔB	SE	Sig.	ΔB	SE	Sig.
	(Constant)	3.34	(8.93)***	2.09	(7.77)***	5.49	(27.35)***	-	-	-	-	-	-		-	-
	ALAN	0.98	(171.61)***	0.81	(197.63)***	0.49	(158.12)***	1.90 0.17	0.003	0.00E0	0.50 0.005	0.00E0	0.33 0.003	0.00E0
	ALAN -Mean Diff.	-0.67	(-20.99)***	-0.39	(-16.80)***	-0.07	(-3.80)***	4.02 -0.28 0.015	4.98E-75	-0.61 0.030	6.27E-92	-0.32 0.016	2.64E-93
	ALAN -Max Diff.	0.24	(26.78)***	0.13	(20.32)***	0.01	(1.41)	3.31 0.11	0.004	7.06E-138	0.23 0.008	8.79E-171	0.12 0.004	3.39E-175
	HBASE -mean 0.15	(32.77)***	0.05	(16.68)***	-0.01	(-4.90)***	1.49 0.09	0.002	0.00E0	0.16 0.004	0.00E0	0.07 0.002	3.313E-194
	HBASE -SD	-0.32	(-24.24)***	-0.13	(-13.71)***	-0.01	(-1.06)	1.15 -0.19 0.006	1.67E-191 -0.31 0.012	6.55E-142 -0.12 0.006	3.64E-80
	R 2		0.67		0.70		0.57			F = (3487.79)***		F = (5540.62)***		F = (7074.78)***
	B = unstandardized regression coefficients; t = t-statistics; VIF = variance of inflation; *, ** and *** indicate correspondingly 0.1, 0.05 and 0.01 significance levels	

Panel (a): ISS-provided and resampled to the spatial resolution of VIIRS imagery (see explanation at p.12)

R = 0.79; WMSE = 3.31

Panel (a): ISS-provided and resampled to the spatial resolution of VIIRS imagery (see explanation at p.17)

Panel (c): Outputs of non-linear kernel regressions (see explanation at p.17)

Panel (a): ISS-provided and resampled to the spatial resolution of VIIRS imagery (see explanation at p.[START_REF] Román | NASA's Black Marble nighttime lights product suite[END_REF] 

Panel (c): Outputs of non-linear kernel regressions (see explanation at p.[START_REF] Román | NASA's Black Marble nighttime lights product suite[END_REF] 

Panel (a): ISS-provided and resampled to the spatial resolution of VIIRS imagery (see explanation at p.[START_REF] Guk | Analyzing spatial variability in night-time lights using a high spatial resolution color Jilin-1 image -Jerusalem as a case study[END_REF] 

Panel (c): Outputs of non-linear kernel regressions (see explanation at p.[START_REF] Guk | Analyzing spatial variability in night-time lights using a high spatial resolution color Jilin-1 image -Jerusalem as a case study[END_REF] 

Panel (a): ISS-provided and resampled to the spatial resolution of VIIRS imagery (see explanation at p.[START_REF]Cities at night -mapping the world at night[END_REF] 

Panel (a): ISS-provided and resampled to the spatial resolution of VIIRS imagery (see explanation at p.[START_REF]HBASE Dataset From Landsat[END_REF] 
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The following notes are applicable to TABLES AIII-AX: 1 For elastic map approach, the results of the best-performing model are reported;

2 Averagedacross seven testing setslevels are reported.