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Abstract 34 

Ethnopharmacological relevance: Green tea, traditionally used as antidiabetic medicine, affects 35 

positively the diabetic nephropathy and it was assumed that these beneficial effects were due to the 36 

tea’s hypoglycemiant capacity, reducing the glycemic overload and, consequently, the advanced 37 

glycation end products rate and oxidative damage. However, these results are still controversial 38 

because tea is not always able to exert a hypoglycemic action, as shown by previous studies.  39 

Aim: Investigate if green tea infusion can generate positive outcomes for the kidney independently 40 

of glycemic control, using a model of severe type 1 diabetes.  41 

Material and methods: We treated streptozotocin type 1 diabetic young rats with 100 mg/Kg of 42 

green tea, daily, for 42 days, and evaluated the serum and tissue markers for stress and function, 43 

also, we analyzed the ion dynamics in the organ and the morphological alterations promoted by 44 

diabetes and green tea treatment. Besides, we analyzed, by an in silico approach, the interactions of 45 

the green tea main catechins with the proteins expressed in the kidney.  46 

Results: Our findings reveals that the components of green tea can interact with proteins 47 

participating in cell signaling pathways that regulate energy metabolism, including glucose and 48 

glycogen synthesis, glucose reabsorption, hypoxia management, and cell death by apoptosis. Such 49 

interaction leads to reduced accumulation of glycogen in the organ, as well as protects DNA. These 50 

results also reflect in a preserved glomerulus morphology, with improvement in pathological 51 

features, and suggesting a prevention of kidney function impairment.  52 

Conclusion: Our results show that such benefits are achieved regardless of the blood glucose status, 53 

and are not dependent on the reduction of hyperglycemia. 54 

 55 

Keywords:  56 

Diabetic nephropathy; type 1 diabetes; recent-onset diabetes; diabetic kidney disease; green tea. 57 
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1. Introduction 58 

Diabetic nephropathy (DN) affects 25% - 35% of type 1 and 2 diabetic patients (Herman-59 

Edelstein and Doi, 2016), and account for about 45% of the patients with end-stage renal disease 60 

(Su et al., 2020). It progresses from the increase in the glomerular filtration rate to the total failure 61 

of the kidneys, passing through alterations that indicate damage to the renal glomeruli and tubules, 62 

albuminuria, mesangial expansion, fibrosis, and vascular damage (Gilbert, 2017; Herman-Edelstein 63 

and Doi, 2016). In addition, glycogenic accumulation in the proximal tubules is a common feature 64 

in DN, and one of the earliest signals of metabolic impairment in the organ (Gilbert, 2017; 65 

Haraguchi et al., 2020). Such damage can progress in renal cells to pre-neoplastic lesions which, if 66 

left untreated, may progress to renal cancer (Ribback et al., 2015). 67 

Green tea (Camellia sinensis (L.) Kuntze (Theaceae)), popularly used as a traditional 68 

medicine, in the form of infusion, for many porpoises including hyperglycaemia (Barkaoui et al., 69 

2017; Chopade et al., 2008; Fallah Huseini et al., 2006; Rachid et al., 2012), is known to exert 70 

positive effects in diabetes management (Meng et al., 2019; Mohabbulla Mohib et al., 2016). 71 

Recent studies have shed light on the mechanisms that tea catechins affect positively the DN, with 72 

special focus on the podocyte (Hayashi et al., 2020), through the activation of the 67kDa laminin 73 

receptor (67LR) by the epigallocatechin gallate (EGCG), the main polyphenol in green tea. Such 74 

interaction results in the preservation of podocyte morphology and the glomerular filtration 75 

function, suggesting an improvement in DN. However, tubular alterations, with glycogen 76 

accumulation, and aberrant activation of the advanced glycated end-products and its receptor 77 

(AGE/RAGE system), affecting the cellular renovation and survival, are seem to be the primary 78 

cause of proximal tubular function disruptment (Haraguchi et al., 2020). This, in turn, can affect 79 

glomerular function by the proximal tubule/glomerulus feedback system, leading to glomerular 80 

damage and contributing to the progression of DN.  81 
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It was assumed that the beneficial effects of the green tea on proximal tubules were due to 82 

the tea’s hypoglycemiant capacity (Renno et al., 2008; Yokozawa et al., 2012), reducing the 83 

glycemic overload and consequently AGE rate and oxidative damage. However, tea effects in 84 

diabetic human subjects are still controversial. The first double-blind controlled trial treating 85 

diabetic patients (being 100% type 2 diabetic) with green tea polyphenols describes a reduction in 86 

podocyte apoptosis and an improvement of kidney function by reducing microalbuminuria (Borges 87 

et al., 2016). Another double-blind controlled trial conducted with diabetic adult patients (being 88 

70.3% type 1 diabetic) fail to achieve glycemic control or improve renal function after green tea 89 

consumption (Vaz et al., 2018). On the other hand,  tea catechins can inhibit gluconeogenesis by 90 

activating the 5’AMP-activated protein kinase (AMPK) (Collins et al., 2007), possibly reducing 91 

glycogenic nephrosis. Also, EGCG can activate the protein kinase B (AKT) pathway enhancing cell 92 

survival and preserving nephron morphology (Hayashi et al., 2020). These effects may contribute to 93 

the prevention of DN development in recent-onset diabetes (Haraguchi et al., 2020). 94 

In a previous study, we demonstrated that the infusion of green tea was not able to prevent 95 

hyperglycemia in animals with experimental type 1 diabetes induced by streptozotocin (STZ) in 96 

young male Wistar rats (Ladeira et al., 2020a). Therefore, in the same model, we tested the 97 

hypothesis that the beneficial effects of tea in DN go beyond glycemic control. In this way, we 98 

investigated the effects of green tea infusion treatment on diabetic kidney disease in recent-onset 99 

type 1 diabetic young rats. Also, we used bioinformatics tools to explore tea catechin interaction in 100 

signaling pathways in the kidney. 101 

 102 
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2. Materials and methods 103 

2.1. Animals and ethics 104 

Eighteen male Wistar rats (30 days old; 82.52 ± 10.83g) were housed, two per cage, in 105 

polypropylene cages with autoclaved sawdust as cage bed, under controlled conditions of 106 

temperature (22 ± 2 ºC) and light-dark cycles (12/12h), and received food (Presence Alimentos, 107 

Paulínea, SP, Brazil) and water ad libitum. The use of animals in the research was approved by the 108 

Ethics Committee of Animal Use of the Federal University of Viçosa (CEUA/UFV – protocol 109 

number 53/2018). 110 

 111 

2.2. Green tea infusion preparation and analysis 112 

Green tea (Camellia sinensis) leaves were obtained from Leão® - Food and Beverages 113 

(Coca-Cola Company®, lot LO159), and prepared as infusion, to mimic the way it is normally 114 

consumed by humans. The infusion was prepared mixing the leaves with warm distilled water (1:40 115 

w/v, 80 °C) (Perva-Uzunalić et al., 2006). The mixture remained infused for 20 minutes on a 116 

magnetic stirrer. Then, it was filtered through a 0.45 µm porous filter, frozen at -80 °C and 117 

lyophilized. The lyophilized samples were resuspended in distilled water at the moment of use.  118 

The chromatographic profile, or fingerprint, was determined as described by Kim-Park et al. 119 

(Kim-Park et al., 2016), with some modifications. High-performance liquid chromatography 120 

(HPLC) (Prominence LC-20A, Shimadzu, Kyoto, Japan), equipped with Diode Arrangement 121 

Detector (DAD), LC-20AD pump, SPD-M20A detector, CTO-20A oven and LabSolutions 122 

software, was used to determine the EGCG content using a maximal absorption peaks at 272nm. It 123 

was used a Vydac C18 (4.6 x 250 mm) column, at 30 °C, with a 5µL injection volume. The mobile 124 

phase was composed of water and 2.0% acetic acid (1:1).  The infusion lyophilized powder was 125 

suspended in methanol before analysis. The mobile phase flow rate was 1.0 mL/min and the run 126 
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time was 15 min. The retention time of the main component, EGCG, was 4.5 min and the total 127 

amount of it was calculated using a standard curve (r² = 0.9967) developed under the same 128 

conditions using an EGCG chemical standard (≥ 98.0%, Sigma Aldrich Inc. - CAS Number 989-51-129 

5. St. Louis, MO, USA). The EGCG content was shown to be 19.38% of the total GTI content. The 130 

fingerprint is presented in the Figure 1.  131 

Also, we determined the total phenolic content and antioxidant capacity as previously 132 

described (Ladeira et al., 2020a). GTI presented a total amount of phenolic components of 3.88 ± 133 

2.49 mg gallic acid equivalent (GAE)/g GTI. The extract presented an antioxidant capacity of 3.26 134 

± 0.06 µMol Trolox equivalent (TE)/g GTI in the 2,2'-Azinobis-[3-ethylbenzthiazoline-6-sulfonic 135 

acid] (ABTS) assay and 46.38 ± 4.10 µMol FeSO4/g GTI in the ferric reducing antioxidant power 136 

(FRAP) assay.  137 

 138 

 139 

2.3. Experimental design, euthanasia, and tissue collection 140 

Twelve rats were randomly selected to integrate the diabetics groups. After 12h fasting, diabetes 141 

was induced by a single intraperitoneal (i.p.) injection of streptozotocin (STZ) (Sigma Chemical 142 

Co., St, Louis, MO, USA) at a dosage of 60 mg/kg of body weight (BW) diluted in 0.01 M sodium 143 

citrate buffer, pH 4.5. The healthy control group (n=6) received the buffer alone (i.p.) to simulate 144 

the injection stress. Fasting blood glucose levels were measured after 2 days using a glucometer 145 

(Accu-Chek® Performa, Roche LTDA. Jaguaré, SP, Brazil) in blood samples collected at the tail 146 

vein. All STZ-injected animals presented the fasting glycemia levels higher than 250 mg/dL and 147 

were included in the study. The diabetic rats were divided into two groups (n=6, each). Therefore, 148 

the experiment consisted of three groups: the healthy control group (Ctrl, n=6), which received 149 

water as a placebo; the diabetic control group (STZ, n=6), which also received water; and the 150 

diabetic group treated with the green tea infusion (STZ+GTI, n=6), that received the GTI (100 151 
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mg/kg body weight). All treatments were administered by gavage, daily, for 42 days. The dosage 152 

was equivalent to 7 cups (200mL) of tea, prepared according to the manufacturer instructions, 153 

mimicking a feasible human consumption dosage, considering survey data from the Asian 154 

population (Mineharu et al., 2011). 155 

We monitored body weight and water consumption using a precision scale (BEL M503, 156 

e=0.001g, Piracicaba, SP, Brazil), and 12h fasting blood glucose using test strips and a glucometer 157 

(Accu-Chek® Performa, Roche LTDA. Jaguaré, SP, Brazil) in blood samples from the tail vein. 158 

After the experimental period, the animals were euthanized by deep anesthesia (sodium 159 

thiopental, 60 mg/kg i.p.) followed by cardiac puncture and exsanguination. The kidneys were 160 

removed and weighed. One kidney (right) of each animal was frozen in liquid nitrogen and stored at 161 

-80 °C for enzymatic analysis, the other one (left) was immersed in Karnovsky fixative solution for 162 

24h for histopathological analyses. The renal somatic index (RSI) was calculated using the ratio 163 

between the kidney weight (KW) and BW, where RSI = KW/BW × 100 (Sertorio et al., 2019). 164 

 165 

2.4. Renal function markers 166 

Blood samples collected by cardiac puncture at the euthanasia were centrifuged at 4600 rpm for 167 

15 min at 4 ºC and the serum was separated.  Then we performed the analysis for quantification of 168 

urea and creatinine in the serum using biochemical kits (Bioclin Laboratories, Belo Horizonte, MG, 169 

Brazil) at the BS-200 equipment (Bioclin Laboratories, Belo Horizonte, MG, Brazil) following the 170 

manufacturer’s instructions. 171 

 172 
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2.5. Antioxidant enzyme and nitric oxide analysis 173 

The antioxidant enzyme analysis was performed with the supernatant obtained from 100 mg of 174 

frozen kidney tissue homogenized in ice-cold phosphate buffer (pH 7.0) and centrifuged at 12000 175 

rpm for 10 minutes at 4 ºC. The activity of the superoxide dismutase enzyme (SOD) was assessed 176 

by the pyrogallol method based on the ability of this enzyme to catalyze the reaction of the 177 

superoxide (O-2) and hydrogen peroxide (H2O2) (Dieterich et al., 2000). The glutathione S-178 

transferase (GST) activity was measured according to the method of Habig et al. (1974), and 179 

calculated from the rate of NADPH oxidation. The activity of catalase (CAT) was determined by 180 

measuring the kinetics of hydrogen peroxide (H2O2) decomposition as described by Aebi (1984). 181 

The nitric oxide (NO2
- and NO3

-) levels were quantified by the Griess method (Ricart-Jané et al., 182 

2002). The values of enzyme activities were normalized by the total protein content, determined 183 

with the Folin–Ciocalteu method according to Lowry et al. (1994). 184 

 185 

2.6. Determination of Ca2+, Na+/K+, Mg2+, and total ATPase activities 186 

The ATPase activity was determined following the procedure described by Al-Numair et al 187 

(2015). Briefly, 100mg of kidney fragments were homogenized in Tris-HCl buffer (0.1M, pH 7.4) 188 

and centrifuged at 12000 rpm for 10 min at 5ºC. The supernatant was used for the determination of 189 

the ATPase activity using NaCl, KCl, MgCl, and CaCl solutions at 0.1M. ATP solution (0.1M) was 190 

used as a substrate to generate free phosphate by the ATPases. The reaction was stopped with a cold 191 

solution of 10% TCA. Then, we centrifuged at 6000 rpm for 10 min and the supernatant was used to 192 

determine the inorganic phosphorus content by the Fiske and Subbarow method (Fiske and 193 

Subbarow, 1925). The ATPase activities were expressed as µMol of inorganic phosphorus/min mg 194 

of protein. 195 

 196 
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2.7. Chemical elements analysis 197 

The proportion of chemical elements in the renal cortex was assessed per area in fragments of 198 

frozen kidney, as described before (Ladeira et al., 2020b). We measured the proportion of sodium 199 

(Na), magnesium (Mg), chlorine (Cl), potassium (K), and calcium (Ca). Fragments were dried at 60 200 

°C for 96h, coated with carbon (Quorum Q150 T, East Grinstead, West Sussex, England, UK), and 201 

analyzed in a scanning electron microscope (JEOL, JSM-6010LA) with a Silicon Drift type X-ray 202 

detector system. The analysis was performed in an area of 50 μm², using an accelerating voltage of 203 

20 kV and a working distance of 10 mm. The results were expressed as a mean value of the 204 

proportions between the elements present in the samples. 205 

2.8. Histopathological and stereological analysis and assessment of DNA damage 206 

The fragments fixed in Karnovsky solution were then dehydrated in a crescent ethanol series 207 

and embedded in Historesin® (Leica, Nussloch, Germany). A rotary microtome (RM 2255, Leica 208 

Biosystems, Nussloch, Germany) was used to cut the material into histological sections of 3 μm 209 

thickness, then, the section was mounted in glass slides and reacted with periodic acid and Schiff 210 

reagent (PAS), and counterstained with hematoxylin for histopathological and stereological 211 

evaluation. The analysis was carried as described before by Sertorio et al (2019). Also, slices 212 

stained with Toluidine Blue – Sodium borate 1% were used to analyze qualitatively the glomeruli 213 

morphopathological features. We analyzed 40 glomeruli, randomly photographed, per experimental 214 

animal. 215 

DNA damage was evaluated in sections of the kidney cortex stained with acridine orange (AO; 216 

green) and propidium iodide (PI; red) (Bernas et al., 2005; Suzuki et al., 1997). This fluorescent 217 

stain allows to evaluate the DNA damage, as damaged DNA presents red color, marked with PI, 218 

and integral DNA is marked in green by the AO (Dias et al., 2019). Digital images were captured 219 

using a photomicroscope (Olympus AX 70 TRF, Tokyo, Japan) and analyzed with Image-Pro 220 

Plus® 4.5 (Media Cybernetics, Silver Spring, MD) software according to Lima et al (2018). 221 
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 222 

2.9. Statistical analysis 223 

All the results were submitted to the Shapiro-Wilk test to check normality. The data expressed 224 

as percentages were transformed by angular transformation before the analysis. Results were 225 

expressed as mean ± standard deviation (mean ± SD) and analyzed using unpaired t-test when the 226 

variances are equal (by F test) and unpaired t-test with Welch's correction for data with unequal 227 

variances (Ctrl vs STZ; STZ vs STZ+GTI). The non-parametric data were compared with the 228 

Mann-Whitney test. The correlation analysis was carried out following Pearson’s correlation 229 

method, as the analyzed data were normally distributed. Statistical significance was established at P 230 

≤ 0.05.  231 

 232 

2.10. In silico pathway exploration 233 

After the in vivo experiment, we explored, through an in silico approach, the interactions of 234 

green tea catechins with proteins, in search of possible signaling pathways involved in the 235 

generation of the observed effects. For this, we built and analyzed a network of interactions based 236 

on information from the STRING and STITCH databases (Szklarczyk et al., 2017, 2016). 237 

A chemo-biology interactome network was built to elucidate the interactions between the tea 238 

compounds (catechins) and proteins expressed in the kidneys related to the positive effects founded 239 

in the in vivo experiment with diabetic rats. A prospective evaluation of compound-protein 240 

interactions (CPI) was done with the STITCH v.5.0 database (http://stitch.embl.de/) (Szklarczyk et 241 

al., 2016). The CPI settings were done according to (de Godoi et al., 2020). Briefly, the network 242 

downloaded from the database was limited to no more than 50 interactions, medium confidence 243 

score (0.400), network depth equal to 1, and the following methods of predictions were activated: 244 

experiments, databases, co-expression, and predictions. The search was set to retrieve results for 245 
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seven green tea catechins (Catechin, Catechin gallate, Epicatechin, Epicatechin Gallate, 246 

Epigallocatechin Gallate, Gallocatechin, and Gallocatechin Gallate), using the Homo sapiens 247 

species. All the catechins were imputed individually in the search, however, only four (Catechin, 248 

Epicatechin, Epicatechin Gallate, and Epigallocatechin Gallate) retrieve results of interactions, 249 

generating four small CPI subnetworks (data not showed), that were used in the posterior analysis. 250 

The four catechin-proteins network analysis was performed using Cytoscape v.3.8.0 251 

(Shannon, 2003). The four subnetworks were merged using the merge tool with the union function 252 

of the software. Then, we “STRINGfy” the resultant network, through the STRING v.1.5.1 253 

(Szklarczyk et al., 2017) to enable the protein interaction functions analysis. After that, we 254 

performed the Molecular Complex Detection analysis to detect clusters (i.e. densely connected 255 

regions) that may suggest functional protein complexes, with the MCODE v.1.6.1 app (Bader and 256 

Hogue, 2003). To that, the app was set up as described before (de Godoi et al., 2020). An MCODE 257 

score was calculated for each cluster. Additionally, the Reactome Pathways (Jassal et al., 2020) 258 

related to diabetic nephropathy pathogenesis were selected. 259 

To identify proteins that could be considered as a key regulator of essential biological 260 

processes to the network da network, we performed a centrality analysis, using the CentiScaPe v.2.2 261 

app (Scardoni et al., 2009) for Cytoscape. This app identifies the node (i.e. protein) that has a 262 

central position in the network by measuring the “betweenness” and “degree” of the node. Nodes 263 

with high betweenness and degree levels are named “bottlenecks” and are more probable to connect 264 

different clusters in the network (Yu et al., 2007). 265 

The functional information about all the network proteins, as the tissue-specific expression 266 

score and the cellular location score, was accessed by the ClueGO v.2.5.7 and CluePedia v.1.5.7 267 

apps (Bindea et al., 2013, 2009). The Specific Organ Expression Score (SOES) was accessed in this 268 

analysis and a filter to protein expression was used to apply the SOES to the PPI (Protein-Protein 269 

Interactome). Protein functions were accessed in the Human Gene database - GeneCards 270 
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(http://www.genecards.org/) (Rebhan et al., 1998) and compared with the functions related to their 271 

effects in diabetic nephropathy, described in the scientific literature.  272 

 273 

3. Results 274 

3.1. Experimental results 275 

Diabetic animals showed classical signs of polydipsia (Table 1) and polyuria observed 276 

during the experiment (noted in the cage bed). The initial body weight was maintained throughout 277 

the experimental period in the animals of the two diabetic groups, indicating a stagnation in the 278 

body weight gain, and a commitment of the body development by hyperglycemia, when compared 279 

to the healthy control group. Both diabetic groups remain severely hyperglycemic, and green tea 280 

infusion did not reduce blood glucose levels in the treated group. 281 

The kidney weight was reduced in the diabetic groups when compared with the Ctrl group 282 

(P < 0.0001) and it was reflected in the kidney somatic index (P < 0.0001). In addition, this result 283 

may be related to the body development impairment due to hyperglycemia, as showed by 284 

bodyweight reduced values. These data are presented in Table 1. 285 

The serological analysis revealed that diabetes increased the serum levels of urea and the 286 

GTI did not act modifying this parameter (Figure 2, A). In the same way, creatinine levels were also 287 

higher in the diabetic groups than the healthy control without effect by GTI treatment (Figure 2, B). 288 

 The GTI was capable of inducing a higher activity of GST enzyme (Figure 3, C), and nitric 289 

oxide levels were increased in both diabetics groups, without any effect of GTI treatment (Figure 3, 290 

D). The activity of SOD and CAT in the kidney were not impacted by diabetes or GTI treatment in 291 

the kidney. 292 

 Figure 4 shows the measurements of microelements and ions that participate in the filtration 293 

and reabsorption dynamics in the kidney. Despite diabetes have not affected any of the elements 294 

Jo
urn

al 
Pre-

pro
of



13 
 

analyzed (Figure 4, A – F), green tea infusion altered Mg and Cl amounts compared to the STZ 295 

group (Figure 4, B and D). Although all altered values (Mg and Cl) remain between the Ctrl normal 296 

reported values, the relationship between all these elements were impaired by diabetes (Figure 4, 297 

G), and GTI was not able to restore the homeostatic environment of ion dynamics. Additionally, we 298 

detected a reduced activity of the Na+/K+ ATPase pump in the diabetic group (Figure 4, H). The 299 

Ca2+ and Mg2+ ATPases, as the total ATPase activity were not affected. 300 

 Histopathological analysis revealed a reduced glomerular volume in the diabetic groups 301 

(Figure 5, C), despite no differences in the glomeruli number per area (mm²) (Figure 5, B). Sections 302 

of the healthy control group did not show any pathological feature, and the measurements are 303 

compatible with the described ones for the species. However, the diabetic groups presented an 304 

abnormal accumulation of glycogen in the tubules, known as glycogen nephrosis. The volume of 305 

glycogen accumulation in the diabetic group was increased compared with the Ctrl group (Figure 5, 306 

D), however the GTI treatment was able to prevent the glycogen granules accumulation in the 307 

diabetic animals (Figure 5, D). 308 

 Diabetes led to a reduced proportion of AO-positive cells in the renal cortex (Figure 6, A), 309 

indicating a reduced proportion of cells without DNA damage. A direct consequence of that is the 310 

increased proportion of IP-positive cells, shown in Figure 6, B. On the other hand, GTI was able to 311 

counteract these effects, improving the proportion of AO-positive cells (Figure 6, A), and reducing 312 

the proportion of the IP-positive cells (Figure 6, B).  313 

 Glomerular morphological analysis reveals diabetic glomerulus surrounded by flattened 314 

epithelial cells, with pathological alterations that were less frequent in the group treated with GTI. 315 

Diffuse mesangial expansion was more frequent, present in almost every glomeruli in the STZ 316 

group. Bowman’s capsule lesions were more frequent in the untreated diabetic than in the STZ+GTI 317 

group. Nodular mesangial expansion was not observed in any group. Moderate dilation in the lumen 318 

of the proximal tubule was more frequent in the STZ group. Also in the STZ group, the basal region 319 
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of the proximal tubular cells presented the accumulation of aggregated stained granules, more 320 

densely than in the healthy group, possible mitochondria aggregation (Itagaki et al., 1995). 321 

Furthermore, karyocytomegaly was frequently observed in the STZ group and less frequency in the 322 

STZ+GTI group, as so as cytoplasmatic microvesicles, possibly lipid droplets, in the proximal 323 

tubule cells (Figure 7). 324 

3.2. Virtual analysis 325 

The STRING network is presented in Figure 8, A, and highlights the two main functional 326 

clusters (Cluster 1 and Cluster 2). The Reactome Pathway analysis for each cluster is summarized in 327 

Table 2. The centrality analysis showed that protein kinase B 1 (AKT1) is the protein classified as 328 

the “bottleneck” in the network and has the capacity to integrate the functional pathways that 329 

participate in the catechins effects in the kidney (Figure 8, B). The implications of AKT1 in green 330 

tea induced signaling in diabetic nephropathy are discussed below. All proteins in the PPI network 331 

are expressed in the normal kidney in different degrees. 332 

 333 

4. Discussion 334 

 Our results showed that green tea infusion treatment was able to prevent glycogen 335 

accumulation in the renal tubules, reduce the DNA damage caused by the hyperglycemic state in 336 

renal cortex cells, and act preventing the aggravation of glomerular morphological alterations, 337 

independently of any hyperglycemia reduction. These outcomes confirm that green tea positive 338 

effects in diabetic nephrosis are broader than glycemic regulation related effects. Although our 339 

study has not shown a strong improvement in organ function, DNA preservation is determinant in 340 

cell survival and proper function, and glomerular morphological integrity is elemental to the 341 

filtration process. Such results, together with the in silico considerations, may indicate key points in 342 

Jo
urn

al 
Pre-

pro
of



15 
 

the signaling pathways to improve diabetic nephropathy treatment, as coadjuvant, and prevention, 343 

with an herbal medicine, widely distributed and highly accepted around the world. 344 

In adult animals, the weight of the kidney is increased by the damage caused by 345 

hyperglycemia. Such injuries lead to hypertrophy and compensatory hyperplasia in the tubules, in 346 

order to preserve the glomerular filtration function, thus increasing the kidney’s weight (Herman-347 

Edelstein and Doi, 2016). However, our animals were induced to diabetes at a younger age, so that 348 

they had not passed the full development process of the body and organs, including the kidneys, that 349 

would still go through a period of growth, with subsequent weight gain (Arataki, 1926). The 350 

damage caused by hyperglycemia at this stage of life seems to have been severe enough to delay the 351 

progression of the organ's normal growth, stagnating the weight gain together with the entire body 352 

development of the animal, as described in other experimental conditions with young animals (da 353 

Silva et al., 2016; Haraguchi et al., 2020; Silva et al., 2009). Besides, such damage may have 354 

extended to prevent green tea's positive effects on kidney function markers found in other studies 355 

with adult animals (Hayashi et al., 2020; Renno et al., 2008). Our data suggest that diabetes, when 356 

rises early, impairs the development of the kidney, as well as the glomerulus, reflected in the low 357 

volume of the glomerulus and appearance of pathological features (e.g. mesangial expansion, 358 

karyocytomegaly, and glomerular basal membrane alterations) in the diabetic animals compared to 359 

healthy control. Although we have not observed statistical difference, the size of glomerulus was 360 

observed to have a higher mean and a lower variance (SD) in the group treated with green tea 361 

compared with the diabetic one, approaching the characteristics that describe the control group. 362 

Such data are in line with the protective effects on glomerular morphology exercised by EGCG, the 363 

main catechin found in green tea (Yoon et al., 2014). 364 

It is known that catechins in green tea have a hypoglycemic and preventive effect on high 365 

glucose levels (Fu et al., 2017), and it was assumed that the beneficial effects of green tea in 366 

diabetic nephropathy, especially concerning the tubular glycogen nephrosis, were due to this 367 

hypoglycemiant capacity (Renno et al., 2008). However, green tea treatment, or its isolated catechin 368 
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administration, can generate positive outcomes without the achievement of proper glycemic control 369 

(Hayashi et al., 2020), confirming that tea’s effect on diabetes goes beyond improving glucose-370 

related harms.  371 

The glycogen accumulation in renal tubules, as presented in our study, is a hallmark of 372 

experimental diabetic nephropathy induced by STZ or Alloxan in experimental models (Kang et al., 373 

2005). In normal conditions, glucose is reabsorbed almost completely in the proximal tubule by 374 

sodium-dependent glucose transporter 2 (SGLT2) and, in lower levels, by sodium-dependent 375 

glucose transporter 1 (SGLT1), and appears in the urine when the absorptive capacity is 376 

extrapolated (Bailey, 2011; Vallon and Thomson, 2017). Additionally, proximal tubule cells have a 377 

greater capacity to perform gluconeogenesis from lactate, glutamine, and glycerol, and this is an 378 

upregulated process in diabetes (Eid et al., 2006). The glycogen accumulated in the tubule may 379 

result from the sum of factors including abnormally increased absorption, and increased 380 

gluconeogenesis (Herman-Edelstein and Doi, 2016; Mather and Pollock, 2011).  381 

Green tea catechins are shown to act as SGLT1 inhibitors in vitro (Kobayashi et al., 2000), 382 

suggesting that tea treatment forces the glucose reabsorption process in the kidney to be done by 383 

SGLT2 alone. At the time, there is no evidence suggesting an inhibitory effect of catechins on 384 

SGLT2. However, EGCG was shown to inhibit glucose production via gluconeogenesis in cells by 385 

activating the AMPK (Collins et al., 2007). Also, EGCG suppresses gluconeogenic gene expression 386 

(e.g. glucose-6-phosphatase and phosphoenolpyruvate carboxykinase) via the phosphoinositide 3-387 

kinase (PI3K) pathway (Waltner-Law et al., 2002). Such a mechanism in kidney cells could lead to 388 

a reduced glucose overload and the improvement of glycogen accumulation in proximal tubules and 389 

may explain the positive outcomes of GTI treatment in our study.  390 

Furthermore, diabetes can increase the expression of SGLT2 and sodium-hydrogen 391 

antiporter 3 (NHE3), in response to the higher demand for adenosine triphosphate (ATP) to 392 

maintain the glucose reabsorption flow (Herman-Edelstein and Doi, 2016). The great capacity of 393 
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tubular cells to perform gluconeogenesis, a process that consumes a lot of ATP, further increases 394 

the demand for the molecule (Gilbert, 2017). Such increased demand for energy therefore enhances 395 

the oxygen (O2) demand creating a hypoxic environment in the tubular cells (Herman-Edelstein and 396 

Doi, 2016). However, the blood supply of O2 in this case is severely affected by the endothelial 397 

damage caused by glucose, leading to loss and obstruction of capillaries, worsen the oxygen supply 398 

(Herman-Edelstein and Doi, 2016). In this way, a deeper hypoxic environment is generated, 399 

favorable to the activation of apoptosis via the Caspase pathway, and the fibrosis development in 400 

the organ by stimulating the Transforming growth factor-beta (TGF-β) pathway. In turn, the 401 

progression of fibrosis further worsens hypoxia, aggravating cell death in the organ (Gilbert, 2017). 402 

This mechanism is also accompanied by increased expression of stem cell factor (SCF) and 403 

proto‑oncogene c‑kit (c-kit) (Yin et al., 2018). In contrast, ellagic acid, a derivative polyphenol 404 

found in green tea (Yang and Tomás-Barberán, 2019), is shown to inhibit tyrosinase activity 405 

(Yoshimura et al., 2005) inhibiting the SCT-Kit pathway and alleviating the damages caused by 406 

hypoxia. 407 

In this same line, green tea extract can inhibit the fibroblast growth factor receptor (FGFR) 408 

signaling by reducing the expression of fibroblast growth factor (FGF) (Sartippour et al., 2002), and 409 

EGCG impedes the signaling pathway of the platelet-derived growth factor (PDGF), other 410 

profibrotic factors (Park et al., 2006). 411 

Hypoxia can aggravate diabetic kidney disease by upregulating the expression of Toll-Like 412 

Receptor 4 (TLR4) ligands in diabetes, as fibronectin (Zhang et al., 2018) and high-mobility group 413 

box 1 (HMGB1) (Feng et al., 2020). The activation of the TLR4 signal mediated by the TIR-414 

domain-containing adaptor-inducing Interferon-β (TRIF) culminate in the activation of the nuclear 415 

factor κ B (NF-κB) that lead to inflammation and fibrosis in the kidney (Feng et al., 2020). 416 

However, EGCG was shown to inhibit the TLR pathway activation in vitro (Youn et al., 2006) and 417 

to reduce the NFκB expression (Yamabe et al., 2006) suggesting that tea may act through this 418 

mechanism to promote anti-inflammatory and antifibrotic protection in the kidney.   419 
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Our results showed that green tea was able to reduce the binding of propidium iodide to 420 

DNA and enhance GST activity, suggesting an improvement in DNA integrity or that there was 421 

some reduction in the damage caused by hyperglycemia or oxidizing agents. A previous study 422 

showed that EGCG can inhibit apoptosis induced by oxidative stress (Itoh et al., 2005) preserving 423 

renal cells in an in vitro model. Also, green tea polyphenols can contribute to reduce apoptosis 424 

levels in diabetic nephropathy by blocking the glycogen synthase kinase-3 β (GSK3β) interaction 425 

with the tumor protein 53 (TP53), reducing Caspase 3 activity in podocytes leading to higher cell 426 

survival rates (Borges et al., 2016; Peixoto et al., 2015). A review study by Mohabbulla Mohib et al. 427 

(2016) summarizes other possible mechanisms that green tea protects the nuclear envelope and the 428 

genome, including the stabilization of the DNA strand and also the reduction of NF-κB expression 429 

culminating in the already discussed positive outcomes. 430 

The homeostatic maintenance of the ions inside the cell may influence the antioxidant 431 

enzyme activities (Soetan et al., 2010). Our results show that green tea was not able to reverse the 432 

dysregulation in the relationship between the ions in the kidneys, which actively participate in the 433 

functioning of antioxidant enzymes. Also, oxidative stress may be responsible to inhibit Na+/K+ 434 

ATPase activity by oxidation of thiol groups in the pumps (Al-Numair et al., 2015), and despite the 435 

increased GST activity shown in our study, Na+/K+ ATPase function was not recovered.  436 

The PI3K/AKT/mammalian target of rapamycin (mTOR) pathway is linked to metabolic 437 

regulation in diabetic nephropathy and also in the development of human kidney cancer. This signal 438 

cascade is upregulated in diabetes and is closely related to glycogen tubular accumulation (Ribback 439 

et al., 2015). EGCG is shown to inhibit both PI3K and mTOR, by competitively binding in the 440 

ATP-binding sites in these proteins (Van Aller et al., 2011). Additionally, mTOR inhibition can 441 

restore the autophagy mechanism, reduced by mTOR overexpression in diabetes, and contribute to 442 

cellular renovation in the kidney. Also, the PI3K/AKT/mTOR pathway is related to de novo 443 

lipogenesis in the kidney (Ribback et al., 2015), which can lead to lipid accumulation, as in line 444 
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with the microvesicles showed in Figure 6 D. Green tea treated animals didn’t present this 445 

cytoplasmic microvesicles.  446 

Our in silico results show that protein kinase B (AKT) is the central protein in the catechin 447 

mediated effects in the kidney. EGCG can activate the diacylglycerol kinase (DGK) pathway, 448 

promoting the inactivation of protein kinase C beta (PKC-β) and improving the condition of 449 

diabetic nephropathy (Hayashi et al., 2020). Such a process is initiated the interaction of EGCG 450 

with the 67-kDa laminin receptor (67LR), which is known as an EGCG receptor (Tachibana et al., 451 

2004), and is also capable of activating the AKT in the kidney (Kumazoe et al., 2020). Hayashi et al 452 

(2015) showed that EGCG activates DGK-α via 67LR binding. In a recent study (Hayashi et al., 453 

2020), the authors proposed that this mechanism occurs by activating 67LR receptors in the cell 454 

membrane, which, when activated, promotes the translocation of the DGK to the membrane, 455 

through the formation of 67LR-DGK-α and α3-β1 integrin’s complex, promoting greater focal 456 

adhesion of podocyte foot process in the glomerular basement membrane, ensuring cell adhesion, in 457 

addition to inhibiting α and β PKC (Hayashi, 2020), preserving glomerular morphology. This 458 

mechanism may be responsible for the positive effects concerning glomerular preservation by green 459 

tea ingestion. Other catechins present in green tea composition may exert effect by AKT pathway 460 

activation by a different receptor, as they do not bind with the 67LR (Tachibana et al., 2004), 461 

however the primary membrane receptor for them are still unknown.  462 

 463 

5. Conclusion 464 

The components of green tea can interact with proteins participating in cell signaling 465 

pathways that regulate energy metabolism, including glucose and glycogen synthesis, glucose 466 

reabsorption, hypoxia management, and cell death by apoptosis. Such interaction leads to reduced 467 

accumulation of glycogen in the kidney’s cells of the proximal tubules in diabetes, as well as to 468 

reduce DNA damage. These results also reflect in a preserved glomerulus morphology, with 469 
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improvement in pathological features, and suggesting a prevention of kidney function impairment. 470 

Our results show that such benefits are achieved regardless of the blood glucose status, and are not 471 

dependent on the reduction of hyperglycemia to be achieved. 472 
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 788 

 789 

Figure captions 790 

Figure 1. Chromatogram of the green tea infusion (Camellia sinensis). In detail: peak of the major 791 

compound (Epigallocatechin gallate). 792 

 793 

Figure 2. Renal function markers of male Wistar diabetic rats treated or not with green tea infusion 794 

and a healthy control group. A – Urea (mg/dL). B – Creatinine (mg/dL). Mean ± SD. The statistical 795 

differences are indicated with lines with the P-value above or below them. Data were compared by 796 

Student t-test (Ctrl vs STZ; STZ vs STZ+GTI) considering statistical differences when P ≤ 0.05. (n 797 

= 6 animals/group). 798 

 799 

Figure 3. Antioxidant enzymes and nitric oxide levels of male Wistar diabetic rats treated or not 800 

with green tea infusion and a healthy control group. A – Superoxide dismutase. B – Catalase. C – 801 

Glutathione S-Transferase. D – Nitric oxide. Mean ± SD. The statistical differences are indicated 802 

with lines with the P-value above or below them. Data were compared by Student t-test (Ctrl vs 803 

STZ; STZ vs STZ+GTI) considering statistical differences when P ≤ 0.05. (n = 6 animals/group). 804 

 805 

Figure 4. Microelement proportions and its correlations, and ATPase activity in the kidney of male 806 

Wistar diabetic rats treated or not with green tea infusion and a healthy control group. A – Sodium 807 

(%). B – Magnesium (%). C – Phosphorus (%). D – Chlorine (%). E – Potassium (%). F – Calcium 808 

(%). G – Elemental correlations. H - Na+/K+, Ca2+, Mg2+ and total ATPase activity. Mean ± SD. 809 
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The statistical differences are indicated with lines with the P-value above or below them. Data were 810 

compared by Student t-test (Ctrl vs STZ; STZ vs STZ+GTI) considering statistical differences when 811 

P ≤ 0.05. The correlations were calculated by Pearson’s method and the r² is shown in the upper 812 

number of each graph cell, the bottom number in each graph cell corresponds to the P-value of each 813 

correlation. (n = 6 animals/group).  814 

 815 

Figure 5. Representative PAS stained photomicrographs, histopathological and stereological 816 

parameters of the kidney´s cortex of male Wistar diabetic rats treated or not with green tea infusion 817 

and a healthy control group. A – Kidney’s cortex photomicrography. The glomeruli are delimited 818 

by the dotted line. The glycogen nephrosis areas are indicated by the arrowheads. The scale bar is 819 

indicated in the figure. B – Glomeruli / mm². C – Total glomerular volume (mm³). D – Glycogen 820 

nephrosis volume (mm³). The box represents the interquartile interval with the median indicated 821 

(horizontal line), and the whiskers represent the superior and inferior quartiles. The statistical 822 

differences are indicated with lines with the P-value above or below them. Data were compared by 823 

Student t-test (Ctrl vs STZ; STZ vs STZ+GTI) considering statistical differences when P ≤ 0.05. (n 824 

= 6 animals/group). 825 

 826 

Figure 6. Representative acridine orange (AO) and propidium iodide (IP) stained photomicrographs 827 

of the kidney´s cortex of male Wistar diabetic rats treated or not with green tea infusion and a 828 

healthy control group. A – Kidney’s cortex photomicrography. Green nuclei – AO-positive; Yellow 829 

to reddish nuclei – IP-positive; Arrows indicate PI-positive nuclei. Scales bars are indicated in the 830 

figure. B – AO-positive cells (%). C – IP-positive cells (%). Mean ± SD. The statistical differences 831 

are indicated with lines with the P-value above them. Data were compared by Student t-test (Ctrl vs 832 

STZ; STZ vs STZ+GTI) considering statistical differences when P ≤ 0.05. (n = 6 animals/group). 833 
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Figure 7. Representative photomicrographs of the glomerulus, stained with Toluidine Blue – 835 

Sodium borate 1%, of male Wistar diabetic rats treated or not with green tea infusion and a healthy 836 

control group. A – A normal glomeruli of an animal from the healthy control group. B – Diabetic 837 

glomeruli. Arrowhead indicates a thickening in the glomeruli basal membrane. C – Diabetic 838 

glomeruli. Arrow indicates a region of diffuse mesangial expansion. D – Diabetic glomeruli. Thick 839 

arrow indicates a remarkable vacuolization in the macula densa region. Thin arrows indicate 840 

cytoplasmic microvesicles in the proximal tubule cells. E – Diabetic glomeruli. Squares indicate 841 

karyocytomegaly in the proximal tubule. Dotted circles indicate basal regions in the tubular cells 842 

with accumulation of stained granules, possible mitochondria aggregation. The glomeruli present a 843 

dilated Bowman’s space.  844 

 845 

Figure 8. In silico exploration of catechins effects in the kidney. A – Compound-Protein 846 

Interactome network, highlighting tea catechins (green nodes), bottleneck protein (red node), cluster 847 

1 (grey nodes), and cluster 2 (light blue nodes). B – Centrality analysis for the CPI network, the 848 

blue lines represent the threshold of the parameter.   849 
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 868 

Table 1.  869 

Blood Glucose, biometric parameters and water consumption of male Wistar diabetic rats treated or 870 

not with green tea infusion and a healthy control group. 871 

 Ctrl STZ STZ+GTI 
Blood Glucose (mg/dL) 85.38 ± 7.53 475.00 ± 33.14* 542.80 ± 42.20# 
Initial body weight (g) 84.26 ± 14.97 81.27 ± 9.46 81.75 ± 7.57 
Final body weight (g) 288.10 ± 44.16 93.08 ± 23.42* 99.75 ± 13.04 
Body weight gain (g) 203.80 ± 30.81 11.82 ± 21.87* 18.00 ± 16.18 
Kidney weight (g) 0.98 ± 0.07 0.78 ± 0.18# 0.86  ±  0.08 
Renal somatic index (%) 0.34 ± 0.05 0.84 ± 0.13* 0.87 ± 0.10 
Initial water consumption (mL/day) 44.45 ± 10.02 44.48 ± 9.87 41.78 ± 11.16 
Final water consumption (mL/day) 39.25 ± 6.13 118.8 ± 17.45* 139.8 ± 10.26# 

Mean ± SD. Data were compared by Student t-test (Ctrl vs STZ; STZ vs STZ+GTI) considering 872 

statistical differences when P ≤ 0.05.  Asterisk (*) indicates difference with P < 0.0001, and the 873 

hash (#) indicates different means with P < 0.05. (n = 6 animals/group). 874 
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 881 

 882 

Table 2.  883 

Reactome pathways identified for each cluster with specific interest to the diabetic nephropathy 884 

pathological state, identified by the comparison of the CPI network with the Reactome Pathway 885 

database with the corresponding adjusted P-values. 886 

Cluster Proteins Reactome Pathway Adjusted P-
value 

Cluster 1 NR1H4, CCL2, IL8, IL6, 
MAPKAPK5, STAT3, PIN1, 
PARP1, CASP8, MTOR, MAPK3, 
MAPK8, MLH1, CASP3, CASP9, 
GSK3B, HIF1A, BID, MAPK1, 
MAP2K1, BAX, BCL2, FOS, JUN, 
APC, AKT1, CDKN1A, CDK2, 
TP53, CTNNB1, TCF7L2 

Apoptosis 
Signaling by SCF-KIT 
Signaling by FGFR in disease 
Signaling by PDGF 
TRIF-mediated TLR3/TLR4 signaling 
AKT phosphorylates targets in the cytosol 

1.76 x 10-7 
1.06 x 10-6 
4.35 x 10-6 
6.00 x 10-6 

6.00 x 10-6 
1.15 x 10-5 

Cluster 2 DB02077, RPIA, POR, H6PD, 
PGLS, PGD, AKT1, TYW1, 
MTRR, NOS2, DB08019, 
DB08018, AC1NDS4X, NOS1, 
CAV1, NDOR1, CIAPIN1, 
HSP90AA1, UBC, NOS3 
 

eNOS activation 
Pentose phosphate pathway  
AKT phosphorylates targets in the cytosol 
Metabolism of carbohydrates  
Cellular response to hypoxia 
PI3K/AKT/mTOR activation 
 

1.05 x 10-6 
1.30 x 10-5 

3.70 x 10-5 
1.53 x 10-4 

1.50 x 10-3 

6.29 x 10-3 
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