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Abstract 

The ISCT MSC committee has been an interested observer of community interests in all matters related 

to MSC identity, mechanism of action, potency assessment and etymology and it has regularly 

contributed to this conversation through a series of MSC pre-conferences and committee publications 

dealing with these matters. Arising from these reflections, we propose that an overlooked and 

potentially disruptive perspective is the impact of in vivo persistence on potency that is not predicted by 

surrogate cellular potency assays performed in vitro and how this translates to in vivo 

outcomes.  Systemic delivery or extravascular implantation at sites removed from the affected organ 

system seem to be adequate in affecting clinical outcomes in many pre-clinical murine models of acute 

tissue injury and inflammatory pathology, including the recently EMA approved use of MSC in Crohn’s 

related fistular disease.  We further propose that MSC viability and metabolic fitness likely dominate as 

a potency quality attribute, especially in recipients poised for salutary benefits as defined by emerging 

predictive biomarkers of response. 
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Introduction 

Culture adapted mesenchymal stromal cells (hereafter MSC[1]), were first clinically tested in human 

subjects in the United States in 1995[2].  Nearly a quarter century later, the European Medicines Agency 

(EMA) approval of darvodstrocel, an adipose-derived MSC product for treatment of Crohn’-related 

perianal fistular disease, inaugurates the endorsement of MSCs as a bona fide pharmaceutical[3-5].  This 

approval foreshadows the good likelihood that other allogeneic MSC products derived from marrow, 

adipose and possibly puerperal discards, such as umbilical cord currently undergoing advanced clinical 

trials internationally, may meet the exacting bar of marketing approval for additional clinical indications.  

The common thread amongst these platforms is the use of MSC, but substantial divergence exists in 

practice in handling and delivery of this living cell product.  Continuously evolving pre-clinical data in 

animal systems provide insights on MSC function, fate and host response that may well optimize a 

pharmaceutical strategy first deployed 25 years ago.  This perspective seeks to capture these insights 

and how they inform the evolving clinical investigational use of MSCs. 

 

Ontogeny of culture adapted MSC 

For biologists with an interest in the cellular elements of the marrow hematopoietic stem cell (HSC) 

niche, the in vitro CFU-F assay remains a necessary functional attribute for identifying endogenous 

mesenchymal stem cells with HSC niche sustaining competency[6].  Murine in vivo marrow 

mesenchymal fate mapping and cell tracking studies have demonstrated that leptin receptor (LepR) 

marks CXCL12 and stem cell factor (SCF)-expressing HSC-sustaining Prx1+ niche cells [eg: CXCL12-

abundant reticular (CAR) cells] with robust CFU-F competency[7-10].  LepR+ mesodermal progenitor cells 

represent 0.3% of endogenous cells in adult mouse bone marrow and single cell RNAseq analysis 

marrow resident LepR+ cells demonstrates that this population is not monolithic but rather is 

constituted by at least fourteen LepR+ subsets distinguished by distinct gene signatures.   As an 

aggregate, LepR+ mesodermal progenitor cells generate more than 94% of serum-responsive CFU-Fs in 

vitro[11, 12].  Indeed, endogenous LepR+ mesodermal progenitor cells constitutively express both 

PDGFRα and PDGFRβ that likely drives their CFU-F competency in vitro in response to PDGF-rich, serum 

containing cell culture media[13].  Interestingly, LepR is dispensable for CFU-F competency since LepR-

deficient, but PDGFR+ marrow mesodermal progenitor cells maintain the ability to form CFU-F in 

vitro[12].  The pivotal role of PDGF responsiveness to generate CFU-F is further reinforced by the 

observation that dasatinib (a PDGFR signaling inhibitor) abolishes replicative capacity of CFU-Fs in 

vitro[14].  Therefore, LepR/PDGFRαβ marks endogenous murine marrow mesodermal progenitor with 
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CFU-F competency, but PDGFRαβ is sufficient to initiate and sustain culture adapted mesenchymal 

stromal cell expansion. Analogous analysis of human marrow derived CD271+ MSCs maps CFU-F 

ontogeny to LepR+/PDGFRαβ+ progenitors which highlights the functional convergence of PDGFRαβ from 

a comparative biology perspective between mouse and human CFU-F properties[15, 16]. 

 

MSC form and function 

Culture adapted MSC meeting the 2006 ISCT minimal identity definition[17] can be derived from 

multiple tissue sources.  Amongst these, MSC derived bone marrow (M), adipose (A) and umbilical cord 

(UC) tissue are the most commonly studied in human clinical trials[18]. The CFU-F colony assay used by 

developmental biologist to define, in part, the stemness of endogenous marrow mesenchymal 

progenitors is directly analogous to passage 0 (P0) output which seeds the first step in culture-adapting 

polyclonal MSC expanded in number to form a cellular pharmaceutical.  Culture adapted bone MSC 

maintained in serum-rich media preserve some of the functional attributes of the tissue progenitors 

from which they are derived[19-21], such as the MSC(M) homeostatic expression of hematopoietic niche 

maintaining morphogens such as CXCL12 and SCF[13, 22].  However, distinct from their replicative 

quiescent marrow resident forbearers, post CFU-F MSC will activate the expression of morphogens and 

leukines not otherwise expressed in vivo under homeostatic conditions[23, 24].  An argument can be 

made that PDGFR expression as a functional marker of MSC CFU-F progenitors is a self-fulfilling 

prophecy considering that PDGF-rich serum is typically used as a source of mitogens when culture 

adapting MSC.  Whereas endogenous mesodermal progenitors are in replicative quiescence in steady 

state, mitogen activated MSC deploy a robust replicative activity in response to serum.  There is a strong 

consensus that culture adapted, polyclonal MSCs, are not a clonally pure population[25] but rather cell 

product with shared mesodermal identity features and replicative fitness of continuously expanding 

MSCs is associated with the expression of Twist1[26, 27].   

 

Replicating MSC deploy an altered transcriptome reminiscent of their innate response to injurious cues 

in vivo such as the expression of chemokines like CCL2 in addition to their canonical expression of 

factors like CXCL12 and SCF. An argument can be made that mitogen activated, mitotically active culture 

adapted MSC adopt a pre-programmed functionality primed for tissue injury response. Indeed,  factors 

comprising the secretome of culture adapted MSCs that convey anti-inflammatory and regenerative 

effects in murine models of tissue injury include CCL2, HGF, TSGL-1 and COX2, which are not expressed 

in quiescent endogenous progenitors[28]. A similar profile can be observed in human culture adapted 
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MSC as well.  Interestingly, many of the acquired in vitro functionalities of culture adapted MSC(M) 

mirror the response of endogenous LepR+ progenitors to marrow injury or alarmins.  The marrow 

endogenous LepR+ mesodermal compartment also will dynamically respond to TLR4 agonists such as LPS 

by upregulating expression of CCL2 that triggers egress of CCR2+ marrow resident myeloid cells and 

monocytes to the periphery[29] and provides a mechanistic link to the necessary immune modulating 

role of CCL2 arising from use of culture-adapted MSC[30-33] . Considering that TLR4 agonists also 

include alarmins such HMGB1, we can hypothesize that endogenous mesodermal progenitors can be 

activated by sterile tissue injury as well[34, 35].  These in vivo responses of LepR+ marrow cells to 

injurious somatic cues likely foreshadow the functional activation of PDGF-driven culture adapted MSCs 

and their distinct transcriptome.  In essence, CFU-F competency may well mirror the endogenous 

physiological tissue injury response of marrow-resident LepR+ cells.  Indeed, close analysis of 

endogenous LepR responses to injury may provide important mechanistic insights on the pharmacology 

of MSCs as a cell drug.  Of note, the transcriptome of culture adapted MSC(M) can be modulated to 

optimize functional properties by manipulating culture conditions such as oxygen tension[36], glucose 

restriction, as well as addition of recombinant morphogens or licensing cytokines[37].  For example, 

adding interferon-γ alone or in tandem with TNF-α to culture media for a few hours markedly augments 

the expression of chemokines CCL2, CXCL9/10/11 and induces expression of IDO and PD-L1[38].  

Functional tuning of MSC in this manner has been shown to substantially alter the pharmaceutical 

properties of live MSC administered in preclinical models of disease[39] and are now being evaluated as 

part of human clinical trials[40].  Conversely, overexuberant culture expansion of MSC morphs the 

mixed population of mesodermal-sourced cells to become clonally impoverished, with loss of 

mesodermal tissue plasticity and acquisition of a Twist1null phenotype and senescence that adversely 

impacts their functionality[41].   

 

Considering that the MSC-dependent mechanism of action is anchored in its secretome[42], a cogent 

argument can be made that the best cell therapy is done without any cells but rather using elements of 

the secretome such as components derived from extracellular vesicles (EV) like exosomes[43]. Indeed, 

characterization and translational development of MSC-derived exosomes[44, 45] and related EVs are of 

great interest[46, 47].  Whether this biological product can serve as an effective alternative to MSC 

therapy remains to be determined. 

 

MSC viability and necrobiology 
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Dead MSCs do not have a functional secretome and fail to inhibit immune cell function using standard in 

vitro functional assays[48].  Yet intravenous transfusion in mice of dead human MSC will trigger a 

vigorous host lung tissue transcriptional response leading to expression of a cascade of leukines[49].  

The transcriptional response can be mapped to lung resident phagocytic macrophages that engulfed the 

dead MSCs and thus laden secondarily migrated to liver within 72 hours and promptly vanished 

thereafter[50].  A similar abbreviated transient persistence occurs following intravenous administration 

of MSCs with impaired fitness arising from product handling protocols such as cryobanking[51] and 

thawing at time of infusion.  The necrobiological host response is entirely autonomous from any MSC 

functionality and has to do with cell recycling of necrotic/apoptotic cellular elements.  In itself, the 

necrobiological immune dampening host response may have salutary effects in systemic inflammatory 

syndromes[52, 53].  However, the effect would be expected to be short lived considering the virtual 

absence of any MSC functionality or transient engraftment permissive for a MSC-dependent 

pharmaceutical effect.  Indeed, the negative outcome of a placebo-controlled randomized study of IV 

delivered allogeneic MSC in ARDS was plausibly linked to poor product viability at release[54].  More so 

than any other quality attribute, MSC product viability and metabolic fitness at the time of 

administration to recipient most likely influences clinical potency of final formulation[55, 56].  

 

MSC fate following adoptive transfer – the competing forces of transient engraftment and 

efferocytosis 

When culture adapted MSC(M) are transfused intravenously in mice they display a brief period of 

engraftment predominantly in lung and within days disappear either from apoptosis or efferocytosis.  

The host lung efferocytotic response is unleashed whether the infused MSC product be viable or 

deliberately rendered apoptotic.  Host phagocytosis of transfused MSC was first considered a 

biologically silent event, but a mounting body of evidence informs that efferocytosis (phagocytosis of 

cells) triggers a profound host immune suppressive event driven by IL-10-polarized phagocytic 

macrophages, let the MSCs be dead or alive[5].  In contrast, live MSCs administered in the extravascular 

space can persist in vivo for weeks or months and provides a pharmacologically plausible argument that 

MSC secretome provide over an extended period of time for paracrine factors acting on bystander 

somatic and immune cells[57].  If the host efferocytotic response was the sole mechanism via which 

adoptive transfer of MSC lead to clinical effects in vivo, then dead MSCs should be as potent as live cells, 

which they are not[58].   However, a host efferocytotic response may suffice to gain clinical benefit 

under certain circumstances such as in acute GVHD.  A powerful argument that functional transient 
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engraftment and metabolic activity of MSCs play a role in their salutary effects in vivo is supported by 

perfusion experiments of MSC separated from subject blood by permeable membranes that allow for 

secreted factors to be released yet cloaks MSC from phagocytosis.  Indeed, in such a system it was 

shown that MSC secretome profoundly alters host myeloid cell biology and that live MSCs substantially 

alter their secretome including massive release of extracellular vesicles and a matrix of leukines[59]. 

 

Route of administration impacts MSC persistence in vivo, potency and adverse event risks 

Route of administration of MSC for any given ailment follows one of three typical clinical approaches: 

the most common being intravenous transfusion, followed by directly to afflicted tissue or target organ 

(eg: intrathecal, intra-articular or arterial inflow to target organ) and as a depot in an extravascular 

compartment (subdermal, intraperitoneal or intramuscular)[60].  Direct delivery to an afflicted organ is 

predicated on the premise that pharmaceutical potency is dependent on direct tissue engraftment to 

maximize paracrine effect.  This line of thought rationally informs anatomically targeted tissue 

engineering where MSC regenerative effect is sought at a specific locale such as bone repair, vascular 

insufficiency or monoarticular joint degeneration[61].  The successful development of darvodstrocel for 

Crohn’s associated enterocutaneous fistular disease is an example of the successful outcome of this 

strategy[5]. Along these lines, embedding of MSC in biomaterials and delivered as an implant can have 

profound effects on persistence and clinical effects[62, 63].  However, where tissue injury and 

inflammation intersect, organ targeted delivery may not necessarily be the optimal means of MSC 

delivery to optimize clinical outcome.  This theorem has been aggressively pursued in the cardiovascular 

space where direct myocardial delivery has been examined in an array of clinical trials, including an 

unsuccessful phase III trial of endomyocardial delivery of autologous MSC [64].  Indeed, tissue targeted 

delivery can be counterproductive since post hoc analysis suggested an inverted U dose/response 

relationship [eg: injecting more cells directly in heart made things worse] [65].  A revisionist approach is 

that intravenous delivery of MSC can be as effective as direct cardiac delivery despite near absence of 

demonstrable myocardial tropism of transfused cells[66]. A similar paradigm informs most clinical trials 

for neuroinjury where MSCs are administered IV rather than directly in to brain substance to achieve 

clinical ends[60], especially considering the effectiveness of IV delivered MSCs to improve experimental 

rodent neuroinjury[67].  When sought, tropism of MSC to target organ following intravenous delivery 

can be demonstrated albeit the fraction of input making its way to target is vanishingly small[68, 69].  

Indeed, there is no conclusive in vivo evidence that direct tissue tropism is required for the beneficial 

effects MSCs for improving tissue injury or inflammatory syndromes.  For example, subdermal delivery 
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of MSC – far removed from injured tissue – was the most effective means of improving colitis outcomes 

in mice[58].  This observation speaks to the likely systemic effect of viable MSCs on triggering a 

reparative response by injured tissue, and this response is also likely linked to in vivo persistence 

allowing for prolonged host delivery of MSC secretome[70].   

 

MSC quality attributes and pharmacological disposition inform potency 

Culture adapted MSCs that retain replicative fitness will produce a matrix of factors, including 

extracellular vesicles which as an aggregate drive anti-inflammatory and tissue regenerative 

functionality.  However, these theoretically desirable features are forfeited if at time of administration 

the cells are dead, dying or damaged defaulting towards a canonical host efferocytotic response[28].  

Furthermore, the administration of MSC intravenously – let the product be fit or compromised – does 

not allow for meaningful in vivo persistence which compromises the window of time for mass action to 

take place.  Tissue targeted delivery of MSCs can address this issue in part but can be clinically 

unfeasible or counterproductive.  The observation that extravascular depot of MSCs is associated with 

substantially greater cell drug persistence and is associated with meaningful clinical response in organ 

systems far removed from the depot, speaking the systemic mobilization of host bystander cells that 

remodel the immune milieu of injured tissue.  These observations gleaned from pre-clinical animal 

model systems inform that undead MSC delivered as an extravascular depot may well provide a potent 

mechanistically informed alternative to intravenous administration with its attendant limitations on 

transient engraftment[58].  Furthermore, the avoidance of IBMIR and concerns related to 

thrombogenesis[71], especially if MSCs are “tuned” in a manner which leads to companion increased 

surface expression of Tissue Factor or other potentially injurious factors, provides for clinically 

deployable alternates which can allow for second generation, gene enhanced, MSC products[72, 73]. 

 

Predictive biomarkers of MSC response – the next frontier 

Notwithstanding the quality attributes of MSC defining their potency in pre-clinical animal systems, the 

human condition entails genetic and acquired diversity of subjects that muddies the predictable MSC 

responsiveness seen in inbred animal systems.  These animal systems are not well adapted to identify 

host biological genetic or functional features predictive of response to an otherwise identical cell 

pharmaceutical.  It is therefore not surprising, despite use of MSCs bearing identical identity and 

functional features, that human subject clinical response will lack uniformity.  Hence, the value in 

defining demographic, clinical and biological features of human subjects that are predictive of MSC 
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response prior to initiation of therapy[74].  The utility of such biomarkers is critical for reasoned 

attribution of targeted therapies in many clinical conditions.  The same line of thought applies for MSC 

therapies where the pharmacoeconomic and opportunity costs of delivering costly treatments to 

subjects unlikely to respond may forfeit the value proposition of MSC[75]. A patient unlikely to respond 

can pivot to alternates rather than be subjected to futility.  The MSC in GVHD experience highlights the 

reasoned restriction to pediatric subjects due to their observed higher rate of response than their elders 

as a simple demographically defined biomarker[76].  The identification of subject functional properties, 

such as the ability of patient blood lymphocytes to lyse MSCs in vitro as a potential predictor of response 

of adults with GVHD is also showing promise[77].  The identification and prospective validation of host 

predictive markers of response to MSC may well pave the way to targeted testing and deployment of 

MSC cell technologies in clinical trials that complement the parallel efforts in optimizing their cell 

intrinsic potency potential. 

 

Conclusion 

MSC have graduated from investigational to regulatory approved cell drug treatments in major 

jurisdictions.  This development foreshadows likely positive outcomes for treatment of an expanding 

pool of inflammatory and tissue injury syndromes. Evolving understanding of mechanism of action and 

empirical clinical experience is informing upon heretofore poorly understood quality attributes as well 

as pharmacological disposition that markedly affect clinical potency.  This knowledge base will inform 

the ISCT espoused ethical and scientifically sound clinical development of “tuned” MSC and their 

byproducts as useful tools in addressing disorders poorly responsive to conventional medicinal 

chemistry by soliciting host intrinsic repair mechanisms. 
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