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Abstract—Automatic quantification of the left ventricle (LV)
from cardiac magnetic resonance (CMR) images plays an impor-
tant role in making the diagnosis procedure efficient, reliable, and
alleviating the laborious reading work for physicians. Consider-
able efforts have been devoted to LV quantification using different
strategies that include segmentation-based (SG) methods and
the recent direct regression (DR) methods. Although both SG
and DR methods have obtained great success for the task, a
systematic platform to benchmark them remains absent because
of differences in label information during model learning.

In this paper, we conducted an unbiased evaluation and com-
parison of cardiac LV quantification methods that were submitted
to the Left Ventricle Quantification (LVQuan) challenge, which
was held in conjunction with the Statistical Atlases and Com-
putational Modeling of the Heart (STACOM) workshop at the
MICCAI 2018. The challenge was targeted at the quantification
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of 1) areas of LV cavity and myocardium, 2) dimensions of
the LV cavity, 3) regional wall thicknesses (RWT), and 4) the
cardiac phase, from mid-ventricle short-axis CMR images. First,
we constructed a public quantification dataset Cardiac-DIG with
ground truth labels for both the myocardium mask and these
quantification targets across the entire cardiac cycle. Then, the
key techniques employed by each submission were described.
Next, quantitative validation of these submissions were conducted
with the constructed dataset. The evaluation results revealed
that both SG and DR methods can offer good LV quantification
performance, even though DR methods do not require densely
labeled masks for supervision. Among the 12 submissions, the
DR method LDAMT offered the best performance, with a mean
estimation error of 301 mm2 for the two areas, 2.15 mm for the
cavity dimensions, 2.03 mm for RWTs, and a 9.5% error rate for
the cardiac phase classification. Three of the SG methods also
delivered comparable performances. Finally, we discussed the
advantages and disadvantages of SG and DR methods, as well
as the unsolved problems in automatic cardiac quantification for
clinical practice applications.

Index Terms—left ventricle, quantification, segmentation, re-
gression, deep neural network

I. INTRODUCTION

CARDIAC disease is one of the leading causes of world-
wide morbidity and mortality [1]. As the gold standard of

cardiac disease diagnosis, cardiac magnetic resonance (CMR)
images have been widely used in routine practice for early
detection, decision making, patient management, and treatment
evaluation. However, tedious visual inspections and manual
delineation have to be conducted by physicians before useful
and reliable clinical information can be inferred from the
hundreds of images typically used to examine each patient. In
addition, the manual contouring of myocardium is typically
limited to the end diastolic (ED) and end systolic (ES) frames
that makes it insufficient for dynamic function analysis during
the entire cardiac cycle. Even in this manner, the obtained
results heavily depend on the experience of physicians and
often exhibit high inter-observer variation [2].

Considerable efforts have been devoted to CMR image anal-
ysis. Specifically, automatizing this procedure by leveraging
the techniques from image processing, machine learning, and
more recently, deep learning, has been the focus. Accurate
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quantification of the left ventricle (LV) from cardiac images is
one of the most clinically important and frequently demanded
tasks for identification and diagnosing of cardiac diseases [3].
To provide a comprehensive global and regional cardiac func-
tion assessment, multi-type quantification of cardiac LV is
required, which simultaneously quantifies four types of cardiac
indices, such as cavity and myocardium areas, regional wall
thicknesses, LV dimensions and the cardiac phase, as shown in
Fig. 1, for every frame in the entire cardiac cycle. All of these
indices are necessary for evaluation of global and regional
cardiac function. Detailed definitions and clinical roles of them
can be found in [4]–[8] and subsection II-C . Due to the heavy
labeling workload of the full stack of short-axis slices, in this
challenge we focus on the quantification of one representative
mid-ventricle slice as proof of concept.

With regard to cardiac quantification, the following issues
must be effectively addressed to achieve reliable and accurate
quantification: 1) the appearance of myocardium is difficult
to be captured in presence of low contrast structure, inho-
mogeneity brightness and texture, various pathologies, and
high variability of cardiac structure across subjects; 2) the
heart motion is a complex non-rigid deformation process
that includes regional wall thickening, and circumferential
and longitudinal ventricular shortening, thus, it is even more
difficult to model.

Two categories of methods exist in LV quantification:
segmentation-based (SG) and direct-regression (DR) methods.
SG methods, first, intuitively segment the myocardium from
its surrounding background structures, and then, they calculate
the required cardiac indices from the segmented mask. DR
methods circumvent the segmentation procedure and estimate
the above-mentioned cardiac indices directly from the image
intensities. They build the mapping from image appearance
directly to the cardiac indices of interest with the objective of
minimizing the quantification error, instead of the segmenta-
tion error. Both SG and DR methods have obtained accurate
quantification performance with the help of advanced machine
learning techniques and manually annotated datasets, which
will be respectively detailed below.

A. Existing work on automatic cardiac LV quantification

1) SG methods: Most of the early work [6], [9] on auto-
matic CMR image quantification fall into this category, and
were based on the classical image segmentation methods such
as level-set, graph-cut, thresholding, and region growing. In
some cases, user interaction [10]–[12] and prior information
[10], [13]–[15] were required. However, inaccurate prior infor-
mation and strong user interaction may prevent these methods
from efficient clinical application.

Recent works take advantages of the powerful representation
capabilities of deep neural networks (DNN) and the rich
labeling information of large datasets with densely labeled
segmentation masks to train LV segmentation models. Convo-
lution neural networks (CNNs) have achieved great success in
cardiac segmentation with optional refinement by deformable
model [16] and level set [17], [18]. Fully convolution network
(FCN) have been used for cardiac segmentation [19], [20]

AS
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dim1

dim2

dim3

A-myoA-cav
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Fig. 1: The four tasks of LV quantification in the LVQuan
2018 challenge: areas of cavity (A-cav) and myocardium (A-
myo), directional dimensions of cavity (dim1∼dim3), regional
wall thicknesses (for regions of IS, I, IL, AL, A, AS), and
cardiac phase (1: systole or 0: diastole). (A: anterior; AS:
anterospetal; IS: inferoseptal; I: inferior; IL: inferolateral; AL:
anterolateral.)

because of its success in semantic segmentation of natural
images [21]. Other CNN structures utilized in cardiac seg-
mentation include 2D/3D Unet [22], grid-like CNN [23], [24],
dilated CNN [25], encoder-decoder architecture [26], parallel
coarse and fine network in polar space [27], 3D-CNN model
with deep supervision [28], and distance map regularized
Unet [29]. A comprehensive review of cardiac segmentation
can be found in [30]. SG methods can provide not only the
quantification results, but also the contour of the myocardium,
which can help validate and understand the quantification
results.

2) DR methods: When the densely labeled dataset is not
available, direct methods without segmentation have grown in
popularity in cardiac volume estimation, and obtained effective
performance benefiting from machine learning algorithms. The
pioneer work along this line followed a two-stage procedure:
feature engineering and regression learning. Cardiac images
were represented by hand-crafted features [31]–[34] or those
obtained by unsupervised learning [35], [36]. Then, cardiac
volumes were estimated from these features with a separated
regression model. Although these methods demonstrated their
effectiveness, they suffer from the vulnerable representation of
hand-crafted features and lack of deformation modeling of the
heart motion.

Deep learning-based methods leverage the powerful rep-
resentation learning ability and end-to-end learning frame-
work, thus these limitations are well addressed. CNNs were
employed for ROI cropping, slice localization, and volume
estimation from cardiac images of ES and ED frames [37].
[38] proposed the first end-to-end framework for cardiac
indices quantification based on a cascade convolution auto-
encoder and regression network, wherein only the true values
of the cardiac indices were utilized to supervise the parameter
learning. A two-branch architecture with recurrent neural
network (RNN) was proposed in [39] to predict the RWT
values of the whole cardiac sequences. More cardiac indices
were included in [40] using a multitask neural network setting,
where the mutual relatedness within and between tasks were
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TABLE I: General information of existing datasets, including number of patients, whether the data comes from multiple or
single source, age, gender, and representative pathologies. For patient’s age, a triple of mean {min, max} is provided for each
dataset. For patient’s gender, male:female is provided.

No. Souce Age Gender Pathology
SCD 45 Multiple 61.1{23,88} 32:13 Heart failure with/without infarction, HCM, and normal
LSVC 200 Multiple 62.73{34,84} 73:22 (training set) Myocardial infraction
ACDC 150 Single Unknown Unknown Normal, heart failure with infarction, DCM, HCM, abnormal right ventricle
UK BioBank >20000 Single 56.5{40,69} 54.4% female Community volunteers
DSB2015 1140 Multiple 42.2{2,88} 669:471 Normal to abnormal cardiac function

modeled by the group lasso and consistency constraints. This
task relatedness was later improved by the Bayesian-based
relationship learning (DMTRL) [41], which achieved the state-
of-the-art performance.

Both SG and DR methods have achieved great success in
automated cardiac quantification and provide a great potential
for routine clinical application. Therefore, a uniform platform
for benchmarking the SG and DR methods simultaneously will
help in the advancement of research on cardiac quantification
and in accelerating its practical application.

B. Existing datasets for MRI cardiac image analysis

Irrespective of the use of segmentation or direct regression,
the ultimate goal of cardiac quantification is to automatically
compute the clinically significant cardiac indices which will
appear on the report of physicians for reference of further
diagnosis, evaluation, and monitoring. Research on cardiac
image analysis has been greatly promoted by publicly acces-
sible datasets, particularly those proposed in conjunction with
international challenges. However, most of these datasets focus
on segmentation of myocardium, whereas a publicly accessible
dataset for direct prediction of multiple cardiac indices has
rarely been considered. In the following section, we briefly
review the existing CMR datasets. Please note that this is not
a full coverage of existing CMR datasets.

The Sunnybrook Cardiac Data (SCD) 1 was provided to the
public for the cardiac LV segmentation challenge of MICCAI
2009. It consisted of cine-MRI images of 45 subjects from
groups of healthy, hypertrophy, heart failure with infarction
and heart failure without infraction. Expert-drawn contours of
the endocardium and epicardium were provided as the ground
truth for segmentation.

Left Ventricular Segmentation Challenge (LVSC) 2 [2] in the
STACOM workshop at MICCAI 2011 provided steady-state
free precession CMR images in short axis and long axis views
from 200 patients with coronary artery disease and regional
wall motion abnormalities. Binary masks of the myocardium
for the 100 training cases were provided.

The Automatic Cardiac Diagnosis Challenge (ACDC) 3 [42]
in MICCAI 2017 provided cine-MRI images of short-axis
view, from 150 clinical routine patients, and covers five well-
defined groups according to the medical reports: normal, heart
failure with infraction, dilated cardiomyopathy (DCM), hyper-
trophic cardiomyopathy (HCM), and abnormal RV. Manually-

1http://www.cardiacatlas.org/studies/sunnybrook-cardiac-data/
2http://www.cardiacatlas.org/challenges/lv-segmentation-challenge/
3https://www.creatis.insa-lyon.fr/Challenge/acdc/

drawn 3D volumes of LV and RV cavities and myocardium at
ED and ES frames were provided for segmentation reference.

UK Biobank [43] is currently the largest CMR dataset
with more than 20,000 community volunteers and targeting
100,000 subjects. The CMR protocol includes white blood
CMR, short- and long-axis cine CMR, strain CMR, flow CMR
and parametric CMR. Top quality expert annotations were
provided along with the data, including manual delineations
of LV endocardium, epicardium, and RV endocardium.

While the previous datasets provide the manual contours or
segmentation mask, which require heavy annotation workload.
In clinical practice, critical cardiac indices, such as EF and
chamber size, are often provided in the physicians’ report,
and can be directly employed to learn automatic quantification
methods, and in the meantime avoid heavy annotation work.

The 2015 Second Annual Data Science Bowl4 (DSB2015)
can be considered as a dataset for direct regression of ejection
fraction from CMR images. It provided 2D cine images with
approximately 30 frames across the cardiac cycle for a large
number of cases (500 for training, 200 for validation and 440
for test), along with the LV volumes at the ED and ES frames.
No manually segmented ground truth was provided in this
dataset. However, no quantitative information for the frames
other than ED and ES frames were provided, thus studies on
the dynamic cardiac function analysis cannot be conducted.
Besides, apart from EF, other indices as shown in Fig. 1 are
also of great clinical significance [4], [5], [7], [8], yet were
ignored in this database.

General information of these datasets are also illustrated in
Table. I.

C. Contributions

While cardiac quantification has been a hot research topic in
medical image analysis and is of great significance in routine
clinical practice, there is never a uniform platform that can be
employed for benchmarking both SG and DR quantification
methods. In this work, we provided such a platform through
the Left Ventricle Quantification challenge (LVQuan 20185),
which was held in conjunction with the Statistical Atlases and
Computational Modeling of the Heart (STACOM) workshop
at MICCAI 2018. The main contributions of this work are as
follows:

• The LVQuan 2018 Challenge established the first mile-
stone of LV quantification for 2D mid-ventricle short-axis
CMR images. The dataset associated with the challenge

4https://www.kaggle.com/c/second-annual-data-science-bowl
5https://lvquan18.github.io/
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created a foundation for researches on LV quantification
by providing ground truth labels simultaneously for both
LV segmentation and multiple cardiac indices.

• The challenge established the state of art for LV quantifi-
cation methods, revealed the strengths and weaknesses
of SG and DR methods and the effects of combining
them, discovered the appropriate network architectures
for SG and DR methods, and summarized the unsolved
problems in cardiac quantification. This will further ad-
vance the performance of cardiac quantification and take
a step closer to automatic generation of rich diagnostic
quantitative reports in practical clinical application.

• The challenge revealed an important but often overlooked
fact that without the densely labeled segmentation masks,
DR methods can still achieve accurate results that are
equally good to those of SG methods. This makes it
possible to develop more accurate and stable quantifi-
cation methods by combining pixel-level supervised SG
methods on small dataset with weakly supervised DR
methods on large easily acquired dataset.

The remainder of this paper is organized as follows. In
Section II, we first present details of the proposed database
Cardiac-DIG employed in the challenge. Then, we describe
the submissions of the LVQuan 2018 Challenge from all par-
ticipants, particularly the core techniques utilized in these sub-
missions. The challenge protocols and the evaluation criteria
of the quantification performance are described in Section IV.
All the methods are analyzed and compared in Section V.
Section VI concludes the paper.

II. CARDIAC-DIG DATASET

The Cardiac-DIG dataset was developed for the LVQuan
2018 Challenge. The frame-wise labeling of the myocardium
mask and multiple indices across the entire cardiac cycle en-
ables the dataset to benchmark both SG and DR quantification
methods with respect to global, regional, and temporal cardiac
functions.

A. Data collection

The challenge was held in two stages (i.e., training and test)
to ensure a fair procedure. For the training stage, a dataset
of 2D cine MR images of 145 subjects was collected from
three hospitals affiliated with two health-care centers (London
Healthcare Center and St. Joseph’s HealthCare). The ages of
the subjects were between 16 and 97 years, with average
age of 58.9 years. The pixel spacings of the MR images
ranged from 0.68 mm/pixel to 2.08 mm/pixel, with a mode of
1.56 mm/pixel. Because all the subjects were collected from
clinical practice without any specific selection, pathologies
from moderate to severe cardiac issues were present, which
included regional wall motion abnormalities, myocardial hy-
pertrophy, dilated cardiomyopathy, mildly enlarged LV, atrial
septal defect, LV systolic dysfunction, LAD territory ischemia,
and constrictive pericarditis, etc. For the dataset, the LV
of each subject was divided into equal thirds perpendicular
to the long axis of the heart following the standard AHA
prescription [44], and a representative mid-ventricle slice with

visible papillary muscle and trabecula was selected. Although
quantification of full stack of short-axis slices leads to accurate
calculation of LV volumes, it also results in remarkable heavy
labeling work. This challenge focused on the mid-cavity slices.
Each subject contained 20 frames of the mid-ventricle slice
throughout a whole cardiac cycle, which was obtained with
electrocardiogram-gating and breadth-holding.

For the test stage, another dataset that included the 2D short
axis cine MR images of 30 subjects from the same institutions,
was collected in the same manner as in the training dataset.
Demographic information of the training and test datasets can
be found in Table II.

B. Pre-processing

All cardiac images in both the training and test datasets
underwent several preprocessing steps, as shown in Fig. 2,
including 1) landmark labeling, wherein the two intersections
of LV and RV are manually marked as the reference points; 2)
rotation, which makes the line that connects the two landmarks
vertical; 3) ROI cropping, wherein a square area encloses the
LV with size twice the distance between the two landmarks;
and 4) resizing, wherein all the ROI images are resized to a
standard size of 80×80. In this procedure, the same rotation,
cropping, and resizing were applied to all the frames of a
patient to preserve the original myocardium motion across the
cardiac cycle. After this procedure, the images from different
patients are approximately aligned in size, orientation, and
scale.

The pre-processing procedure can 1) alleviate the difficulties
of the task a lot and make reserchers focus on the quantifi-
cation or segmentation of the myocardium, and 2) make the
evaluation not biased by various pre-processing.

Landmark Labeling

Rotation Cropping Resizing

Fig. 2: Procedure of the pre-processing, which includes land-
marking labeling, rotation, cropping, and resizing to normalize
images of all subjects in size, orientation, and scale.

C. Ground truth

We further provided the ground truth values of the afore-
mentioned clinical related measurements (as shown in Fig. 1)
for the whole MR sequences of our dataset. These information
are closely related to heart failure, cardiomyopathy, myocardial
infarction and hypertension [6] and are critical for computation
of recommended quantitative information (ejection fraction
(EF), LV mass, LV volumes) according to the clinical guide-
lines [4], [5], [45]. These measurements are illustrated in Fig. 1
and described as follows:

• Areas of cavity and myocardium (mm2), which describe
the size of the blood pool and myocardium. With areas of
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the full stack SAX slices, we could obtain LV volumes,
LV mass and EF, which are essential for cardiac function
evaluation and cardiac events monitoring [46].

• Directional dimensions (mm), which describe the size of
the LV cavity and can be used to estimate the LV volume,
and together with the wall thicknesses, to categorize the
hypertrophy and remodeling [5]. The three dimensions
are in directions of AS-IL, IS-AL and A-I.

• Regional wall thicknesses (mm), which describe the mean
thickness of the myocardium in each segment and can
be employed to quantify regional dysfunction, such as
those seen in myocardial ischemia or after myocardial
infarction [6].

• Cardiac phase (0/1), which is a binary vector and indi-
cates whether a frame is diastolic or systolic (0/1) across
the whole sequences.

For each subject, all frames in the cardiac sequence were
manually contoured to obtain the epicardial and endocar-
dial borders, which were double-checked by two experienced
physicians each having more than 10 years of experience in
diagnostic imaging. The LV cavity and myocardium areas
can be easily obtained by counting the pixel numbers in the
binary masks of the cavity and myocardium. The regional wall
thicknesses were obtained by using a center line method. First,
myocardial thicknesses were automatically acquired from the
two borders in 60 measurements using the 2D centerline
method [47]. Then, the myocardium was divided into six
segments (as shown in Fig. 4 of [44]), with 10 measurements
per segment. Finally, these measurements were averaged per
segment as the ground truth of regional wall thicknesses.
The cavity dimension for each direction was calculated by
averaging the distance of 10 pairs of points that from the
opposite positions of the endocardial border. Papillary muscles
and trabeculations were excluded in the myocardium. The
values of RWT and cavity dimensions were normalized by the
image dimension, whereas the areas were normalized by the
total number of pixels. During evaluation, the obtained results
were converted to physical thickness (in mm) and area (in
mm2) by reversing the resizing procedure and multiplying the
pixel spacing for each subject. The cardiac phase was obtained
based on whether the cavity area increases or decreases for two
successive frames.

It is worth noting that we aim to quantify the LV, not only
for the ES and ED frames (as in most existing segmentation
methods) but also for frames across the entire cardiac cycle.
In this way, more complex cardiac functions can be explored
such as wall thickening, cardiac remodeling. The statistical
information of these measurements for the training and test
datasets can be found in Table II. We can draw that all the
measurements are roughly aligned, with the supports for the
training dataset being slightly larger.

III. SUBMISSIONS TO THE LVQUAN18 CHALLENGE

The challenge was launched in November 27, 2017, when
the training data were released and accessible on request.
The challenge attracted wide interests from institutions around
the world, and a total of 49 requests of dataset were re-
ceived. Among them, 12 teams successfully submitted a

TABLE II: Demographic information and the statistics of the
ground truth labels in the training/test dataset. For each con-
tinuous variable, a triple of {min, median, max} is provided.
For cardiac phase, numbers of the two classes are displayed.

Training dataset Test dataset

Sex
Male: 50
Female: 20
Unknown:73

Male: 20
Female:10

Age (year) {16, 59, 97} {11, 58, 80}
Weight (kg) {45.36, 86.18, 230} {70, 79.5, 93}
EF (%) {9.6, 40.6, 73.8} {16, 42.5, 87}
A-cav (mm2) {485, 2099, 4936} {535, 2118, 4560}
A-myo (mm2) {788, 1922, 3812} {1164, 2453, 4181}
Dimensions (mm) {23.8, 51.5, 81.0} {24.2, 52.0, 78.9}
RWTs (mm) {1.40, 8.76, 24.43} {4.67, 10.96, 22.86}

Phase Diastolic: 1680
systolic: 1220

Diastolic: 342
systolic: 258

(a) 2D/3D CNN (b)encoder-decoder (c) IDA

(e) dilation (f) dense (g) residual (i) RNN(h) HDA

convolution

block

HDA

dilation conv

aggregation

LSTM

(d) Inception

Fig. 3: Various network structures are utilized by the sub-
missions, to extract powerful cardiac representations (a, b),
to enhance the feature extractions (d, e, f, g), to aggregate
features from multi-scale and resolutions (c, h), and to model
the temporal dynamics of cardiac motion (i).

paper describing their algorithm, and test results for final
performance evaluation. These submissions fell into three
categories: SG, DR, and Combined (COM). These methods
employed various techniques trying to solve the challenges
of the quantification task mentioned previously. Specifically,
CNN and encoder-decoder networks were mostly utilized to
capture image features effectively at various levels, whereas
RNN and 3D CNN were employed to model the temporal
dynamic dependency during the deformation procedure of the
cardiac cycle. Besides, the multi-task relationship [41] was
also modeled in the DR methods to deliver compatible multiple
predictions. Fig. 3 demonstrates the conceptual architectures
of some key networks. In the following, we describe the details
of all submitted methods. The original papers can be accessed
in [48].

A. SG methods

ResUNet [49] tackled the LV quantification task as my-
ocardium segmentation and employed the well-know segmen-
tation network Unet [50] (encoder-decoder like architecture,
as shown in Fig. 3(b)) in a modified manner, in which the
convolution layers in each block were replaced by residual
units (Fig. 3(g)). The residual unit has been shown to improve
the diversity of network depth, thus leading to improved
performance over the traditional convolution layer. During net-
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work training, free-form deformation-based data augmentation
was employed to improve the generalization ability. Finally the
cardiac indices were calculated by projecting the segmentation
mask into the polar space.

ESUPNet [51] proposed a cascading DNN for LV quantifi-
cation. Again the Unet (Fig. 3(b)) was employed for segmenta-
tion, with inception-like units inserted after the first and second
blocks of the contracting path, for the purpose of integrating
information of multi-scales and enhancing high-level feature
learning and supervision. Then, an RNN (Fig. 3(i)) for tem-
poral dynamic modeling was used for the phase classification
from the LV indices that were obtained from the segmentation
result.

UNetMF [52] made use of the Unet (Fig. 3(b)) to generate a
probability map, which was then used to initialize a continuous
Max-flow segmentation for refinement. Image edge informa-
tion was used to regularize the final segmentation result.

SegNetRF [53] first obtained high-level features using a
semantic segmentation method SegNet [54], which has a sim-
ilar structure to the encoder-decoder (Fig. 3(b)). The network
was initialized with weights of an ImageNet-pretrained VGG-
16. To retrieve the two contours in a reliable manner, a
series of refinement procedures were followed, which included
myocardium and cavity refinement, ED localization, ED re-
finement based on salient perceptual grouping model, and
temporal refinement.

CNTCVX [55] contributed the only non-DNN-based
method, which was an unsupervised image-driven method for
LV segmentation. The entire pipeline included intensity-based
image analysis for cavity localization, statistic-based feature
extraction for the myocardium, cavity, and background, and
then prior knowledge based constraints such as connectivity
and near convexity.

B. DR methods
LDAMT [56] made use of a deep layer aggregation (LDA)

network [57] to fuse information from different layers and
scales to directly predict the cardiac indices for the three
regression task. Specifically, the LDA network introduced
two novel structures, namely, iterative deep aggregation (IDA,
Fig. 3(c)) and hierarchical deep aggregation (HDA, Fig. 3(h)),
to better fuse semantic and spatial information. The multi-task
relationship regularization proposed in [41] was used during
network training to ensure the consistency of multiple outputs.
The cardiac phase was then predicted from a polynomial fitted
to the cavity area to avoid prediction noise.

HQNet [58] followed the framework of [41] and proposed
a multi-task quantification network (HQNet). The network
was constituted by a hierarchical 3D multi-scale convolution
neural network (HCNN) for feature extraction and two LSTM
networks for temporal modeling (Fig. 3(i)). Inception-like
modules (Fig. 3(d)) with 3D convolution was used in the
HCNN. In addition, multi-task relationship constraints [40],
[41] were also utilized in the objective function to improve
the final estimation accuracy.

CNN3DST [59] proposed a CNN that consisted of an
encoder-CNN (Fig. 3(a)) for feature extraction and a spatial-
temporal CNN for temporal dynamics modeling and fusion of

spatial and temporal information. Two branches for the regres-
sion tasks and the classification yielded the final predictions.
In the network, a stack of k adjacent frames were taken as
input to predict the corresponding indices of the center frame.

FNN2D3D [60] used an FCN (Fig. 3(a)) for feature extrac-
tion, where the authors introduced the module of alternative
3D and 2D convolutions to utilize the temporal information.
Two parallel paths were then followed for the regression and
the classification tasks, respectively.

Besides these DR methods in the challenge, we also in-
clude one of the pioneer work DMTRL [41] for performance
comparison. DMTRL leverages the powerful representation of
deep neural network and learns mutual relationship between
different tasks to improve the generalization ability of the
learning model.

C. Combined methods

MMED [61] proposed a collection of LV quantification
methods under a common network architecture with multiple
modes, in order to conduct a fair comparison of the SG and
DR methods and to provide a basic idea of the degree to
which the binary masks can assist the quantification task. The
network architecture included the frequently used encoder-
decoder (Fig. 3(b)) for feature extraction, and then two flexible
branches for segmentation and regression. The whole network
could work in the mode of SG, DR, or combined. The role of
temporal dynamic modeling was also studied using an RNN
module between the encoder and decoder. The three different
modes of the method were denoted as MMED-S, MMED-R,
and MMED-SR, respectively.

EnCNNU [62] presented an ensemble learning method for
the LV quantification task. Specifically, it leveraged comple-
mentary information from the CNN-based (Fig. 3(a)) direct
regression and the Unet-based (Fig. 3(b)) segmentation, by
ensemble learning with a gradient boosting algorithm.

DenseUMT [63] combined information of both segmenta-
tion mask and quantification label to help train the network.
Unet (Fig. 3(b)) for segmentation was first enhanced using
dense blocks (Fig. 3(f)) and dilation blocks (Fig. 3(e)), and
then the index-specific feature was extracted using a shallow
CNN. This was followed by two RNN modules (Fig. 3(i)) for
temporal dynamic modeling.

IV. PERFORMANCE EVALUATION

A. Configurations

The challenge included a training phase and a test phase.
During the training phase, both the cardiac images and their
labels (i.e, the segmentation mask and the values of all cardiac
indices) for 145 subjects were released to all participants.
Five-fold cross validation (CV) was recommended during this
phase for model validation. No external data were allowed
in this phase (Network weights pre-trained with ImageNet
were granted because of the appearance difference between
natural and medical images). During the test phase, only
the cardiac images of the 30 subjects were provided to the
participants according to the challenge schedule. The labels
of segmentation masks and quantification values were kept by
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TABLE III: Performance of all submissions for the LVQuan
2018 challenge on the training dataset with 145 subjects under
the five-fold cross validation (CV) protocols. For each task,
only the average performance is shown here and the best result
is highlighted in boldface. Average MAE is shown for areas,
dimensions and RWTs, and error rate is shown for cardiac
phase. All the methods achieved performance better or close
to the state-of-the-art DMTRL.

Methods Area Dimension RWT Phase
(mm2) (mm) (mm) (%)

SG-based methods
ResUNet 62.3 0.79 0.68 6.72
ESUPNet 62 1.14 0.96 8
UNetMF? 141.7 1.77 1.39 -
MMED-S 120 1.25 1.03 7.8
SegNetRF† - - - 10
CNTCVX 176 2.23 1.75 10.3
DR-based methods
LDAMT 156 2.03 1.38 8.1
MMED-R 158 2.08 1.51 9.4
HQNet* 197 2.57 1.51 9.8
CNN3DST 190 2.29 1.42 3.85
FNN2D3D 188 2.42 1.42 8.76
Combined methods
MMED-SR 142 1.94 1.42 8.6
EnCNNU‡ 124 2.27 1.62 13.7
DenseUMT 173 2.44 1.37 7.8
DMTRL 180 2.51 1.39 8.2

?: 45 subjects in the training set were used for test; †: only Pearson
correlation coefficients were report on the training set; *:7-fold CV was
used; ‡:3-fold CV was used. For MMED, the results for all three modes

were reported.

the organizer to conduct the final performance evaluation of
different submissions.

B. Evaluation Criteria

The performances of all submissions were evaluated in
terms of estimation accuracy of all frames in the cardiac cycle.
For the three types of LV indices, the mean absolute error
(MAE) between the ground truth and the estimated values
were computed to assess the estimation accuracy. For the
cardiac phase, error rate (ER) was computed. Let y ∈ RN

and ŷ ∈ RN be the two vectors of the predicted values and
the true values of one cardiac index, where N is the total
image number. These evaluation criteria were computed as:

MAE(y, ŷ) =
1

N

N∑
i=1

|yi − ŷi|, (1)

ER(y, ŷ) =
∑N

i=1 1(y
i 6= ŷi)

N
100%. (2)

V. RESULTS AND ANALYSIS

All three categories of methods for cardiac quantification
were evaluated within the same framework, 1) to examine
their capability of providing accurate quantification results for
the task of LV quantification and their generalization ability
to novel data, 2) to compare the performance between SG
and DR methods and reveal their strengths and weakness,
and 3) to reveal problems that remain unsolved in cardiac

quantification. We also added the performance of DMTRL
both on the training set and the test set for comparison.

A. Performance on the validation dataset

As demonstrated in Table III, under the five-fold cross
validation framework, all the submissions performed very well
for all three LV indices and the cardiac phase on the training
dataset, which were either clearly better or very close to the
performance of the state-of-the-art model of DMTRL [41].
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Fig. 4: Average frame-wise estimation errors of the LV indices
for all submissions on the test dataset. The DR method
LDAMT and the SG method ResUNet perform consistently
well for all frames across the whole cardiac cycle and for
all indices. (Similar colors represent methods from the same
category.)

SG methods With the help of densely labeled myocardium
masks for supervision during model training, the SG methods
performed very well for all tasks. The best performance was
achieved by ResUNet, with an average MAE of 62.3 mm2,
0.79 mm, and 0.68 mm for areas, dimensions and RTWs,
respectively, and a 6.72% ER for the cardiac phase. As a refer-
ence, the median and maximum values of these indices in the
dataset are shown in Table II. This excellent performance could
be attributed to the residual units in the Unet, which provided
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Fig. 5: Qualitative analysis of the SG method ResUNet and the DR method LADMT for a good case (top) and a bad case
(bottom). Ground truth and prediction results of the whole cardiac sequences by the two methods are shown for A-cav, A-myo,
dim1, RWT1, from left to right.

more diversity of information flow, and facilitated the network
training [57]. Other methods that employ Unet and encoder-
decoder architectures include ESUPNet, UNetMF, MMED-S,
and SegNetRF. They also obtained similar performances. It
is worth noting that CNTCVX was the only non-DNN-based
segmentation method that used traditional image processing
techniques, and it still obtained comparable performance to
that of DMTRL on the training dataset.

DR methods With only the quantitative values of LV indices
directly supervising the training procedure, the DR methods
(LDAMT, MMED-R, HQNet, CNN3DST, and FCN2D3D),
which are all based on DNNs, achieved inferior performances
compared to the SG methods, while still being comparable
to those of DMTRL. The best performance was achieved by
LDAMT, with an average MAE of 156 mm2, 2.03 mm, and
1.38 mm for area, dimensions and RTWs, and an 8.1% ER for
the cardiac phase. It fused semantic and spatial information
by aggregating layers with IDA and HDA, thus leading to a
lower training error. MMED-R with the DR mode performed
similarly to LDAMT and was better than the remaining DR
methods.

Combined methods With ground truth values of both the
segmentation mask and the cardiac indices during the network
training, the combined methods performed slightly better than
the DR methods. MMED-SR obtained the lowest MAE for
dimensions (1.94 mm), EnCNNU for areas (124 mm2), and
DenseUMT for RWTs (1.37 mm). DenseUMT obtained the

lowest error rate (7.8%) for cardiac phase prediction.
From these observations, we could draw that when validated

on the training database: 1) the SG methods easily achieved
better performance than the DR methods; 2) the DR ones
require sophisticated network, e.g, LDA, to achieve good
performance; 3) segmentation masks can help improve the
performance of DR methods with more detailed pixel-level
supervision, whereas the reverse is not necessarily true.

B. Performance on the test dataset

The generalization of all submissions were evaluated on the
test dataset, and the results are shown in Table IV. For the
three modes of MMED methods, only MMED-S is reported
in the final test since it works best. As can be observed, the
performances of the three types of methods obtain higher
prediction error for four tasks on the test dataset than on
the training dataset. Of the SG methods, none achieved the
best performance for all tasks. ResUNet achieved the lowest
MAE for areas (301 mm2) and RWT (2.15 mm), whereas
ESPUNet achieved the lowest MAE for dimensions (2.16
mm) and SegNetRF for the cardiac phase (9%). Of the DR
methods, the best performance was achieved by LDAMT with
a mean MAE of 301 mm2, 2.15 mm, and 2.03 mm for areas,
dimensions, and RWTs, respectively, and 9.5% for the cardiac
phase. For the combined methods, EnCNNU achieved the
lowest MAE for areas (311 mm2) and dimensions (3.29 mm),
while DenseUMT achieved the lowest MAE for RWTs (2.02
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TABLE IV: Performance of all submissions on the test dataset (30 unseen subjects). MAE±std is shown for areas, dimensions
and RWTs, and error rate is shown for cardiac phase. For each category, the best result is highlighted in boldface. The best
DR method and the best SG methods perform very close to each other.

Methods MAE of areas (mm2) MAE of Dimension (mm) MAE of RWT (mm) Phase
A-cav A-myo mean dim1 dim2 dim3 mean IS I IL AL A AS mean (%)

SG-based methods

ResUNet 176 426 301 2.24 2.31 2.43 2.33 2.01 2.11 2.47 2.29 2.02 1.99 2.15 10
±134 ±232 ±183 ±1.68 ±1.86 ±1.73 ±1.76 ±1.28 ±1.40 ±1.56 ±1.39 ±1.41 ±1.12 ±1.36

ESUPNet 225 490 357 2.38 2.21 1.87 2.16 2.58 2.7 2.77 2.27 2.03 2.14 2.41 12.7
±168 ±233 ±201 ±1.87 ±1.92 ±1.43 ±1.74 ±1.36 ±1.45 ±1.57 ±1.52 ±1.63 ±1.26 ±1.47

UNetMF 204 413 309 2.7 2.7 3.14 2.85 1.84 2.53 2.52 2.43 2.54 2.07 2.31 12.33
±140 ±200 ±170 ±3.35 ±3.47 ±3.52 ±3.45 ±1.24 ±1.46 ±1.57 ±1.60 ±1.59 ±1.45 ±1.48

MMED-S 214 469 341 2.68 2.61 2.72 2.67 2.16 2.57 2.62 2.1 2.07 2.13 2.28 10.33
±139 ±216 ±178 ±1.73 ±1.68 ±1.70 ±1.70 ±1.26 ±1.39 ±1.44 ±1.25 ±1.25 ±1.12 ±1.29

SegNetRF 119 818 468 3.19 2.51 3.14 2.95 7.33 4.33 4.58 5.17 4.03 3.15 4.77 9
±95 ±268 ±182 ±2.29 ±1.80 ±2.10 ±2.06 ±2.34 ±1.96 ±2.34 ±2.24 ±2.04 ±1.93 ±2.14

CNTCVX 249 382 320 2.7 4.65 3.21 3.51 2.78 1.88 1.78 2.01 2.26 3.74 2.41 11.2
±169 ±270 ±220 ±1.99 ±3.07 ±2.06 ±2.37 ±1.82 ±1.44 ±1.42 ±1.68 ±1.67 ±1.93 ±1.66

DR-based methods

LDAMT 189 413 301 2.21 2.11 2.12 2.15 2.05 2.09 2.25 1.89 1.9 2.08 2.03 9.5
±137 ±194 ±165 ±1.56 ±1.64 ±1.63 ±1.61 ±1.13 ±1.33 ±1.32 ±1.21 ±1.20 ±1.16 ±1.23

HQNet 596 500 548 7.96 7.3 7.44 7.56 4.7 3.05 3.24 2.44 2.58 4.33 3.39 21.3
±447 ±411 ±429 ±6.02 ±5.68 ±6.11 ±5.94 ±2.90 ±2.06 ±2.44 ±1.92 ±2.24 ±2.83 ±2.40

CNN3DST 494 371 432 4.04 4.43 4.19 4.22 2.58 2.12 2.5 2.04 1.93 2.46 2.27 19.5
±350 ±265 ±308 ±3.15 ±3.41 ±3.13 ±3.23 ±2.04 ±1.80 ±2.01 ±1.82 ±1.70 ±1.91 ±1.88

FCN2D3D 288 463 375 3.81 3.57 3.56 3.65 2.58 2.47 2.63 2.18 2.27 2.57 2.45 12.83
±189 ±256 ±223 ±2.35 ±2.31 ±2.40 ±2.35 ±1.53 ±1.52 ±1.79 ±1.51 ±1.44 ±1.50 ±1.55

Combined methods

EnCNNU 247 377 311 3.61 3.3 2.97 3.29 2.14 2.35 2.46 1.99 1.67 1.76 2.07 15.67
±184 ±228 ±206 ±2.58 ±2.39 ±2.33 ±2.43 ±1.42 ±1.56 ±1.60 ±1.36 ±1.22 ±1.25 ±1.40

DenseUMT 295 363 329 3.93 3.65 3.65 3.75 1.7 2.11 2.48 2.07 2.07 2.03 2.08 10.5
±218 ±261 ±239 ±2.66 ±2.56 ±2.74 ±2.65 ±1.24 ±1.41 ±1.72 ±1.40 ±1.43 ±1.37 ±1.43

DMTRL 244 374 309 3.82 3.59 3.71 3.70 2.27 2.08 2.33 2.00 1.90 2.09 2.11 13.7
±181 ±251 ±215 ±2.72 ±2.67 ±2.70 ±2.70 ±1.57 ±1.50 ±1.66 ±1.52 ±1.46 ±1.40 ±1.52

mm) and ER for the cardiac phase (10.5%). When compared
to the state-of-the-art DMTRL, both ResUNet and LDAMT
perform better for cavity area and dimensions and similar for
RWTs.

According to the work of [20] in which inter-reader variabil-
ity was studied with three human observers and 50 subjects,
the inter-reader variability for LV cavity and myocardium con-
tours ranged from 1.00 to 1.21 mm in terms of mean contour
distance. Considering the fact that both the endocardium and
epicardium contours must be accurate to obtain RWTs, and
two points of the opposite direction on the endocardium define
the dimension, the inter-reader variability for dimensions and
RWTs are approximately 2.00 to 2.42 mm. The DR method
LDAMT achieved the lowest estimation error for dimensions
(2.15mm) and RWTs (2.03mm), which is actually comparable
with the reported inter-reader variability in [20].

Fig. 4 shows the frame-wise estimation error of all sub-
missions on the test dataset for cavity area, myocardium area,
dimensions, and RWTs. As the plots show, SegNetRF achieved
consistently the lowest estimation errors for the cavity area for
all frames across the entire cardiac cycle, whereas it achieved
the worst performance for the myocardium area. The network
employed in SegNetRF tended to learn better endocardium
borders then epicardium borders, which in turn led to poor
estimation of RWTs. Most of the submissions performed
generally well across the entire cardiac cycle, whereas HQNet
and CNN3DST were prone to deliver higher estimation errors
for frames close to ES, where the borders of myocardium can
be easily affected by papillary muscles. LDAMT and ResUNet

seemed to perform consistently well across the entire cardiac
cycle and for all these indices.

We tested the significance of difference between different
methods with paired student’s t-tests for areas, dimensions,
and RWTs, and the p-values are shown in Table V. We
highlighted the p-values that are higher than 0.05. As can
be drawn, most of the differences between two quantification
methods are statistically significant. Considering the best SG
method ResUNet and the best DR method LDAMT, the dif-
ference in performance is insignificant for areas and significant
for dimensions and RWTs. The prediction results of these
two methods for two cases in the test dataset are shown in
Fig. 5. For the good case who has clear boundary between the
myocardium and the surrounding background, both methods
can capture the variations well across the whole cardiac cycle.
ResUNet estimates the A-cav and dimensions better than
LADMT, while the latter performs better for A-myo. For the
bad case whose lateral boundaries are nearly invisible, both
methods fails for A-myo, and RWT, and ResUNet performs
better for A-cav, due the high contrast between the cavity and
the myocardium.

A comparison between the validation performance on the
training dataset and the test performance indicates how these
submissions generalize to new data. The results in Tables III
and IV reveal that lower validation errors on the training
dataset did not necessarily lead to better generalization. For
example, ESUPNet and MMED-S achieved lower generaliza-
tion than LDAMT for all the four tasks, despite their better
performance on the training dataset. CNN3DST obtained a
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high ER for the cardiac phase prediction but achieved the
lowest ER for the training dataset.

C. Discussions on SG and DR methods
SG vs. DR methods The aforementioned results demon-

strated that with the common goal of cardiac indices quan-
tification, both SG and DR methods have great potential
to obtain accurate estimation. In clinical practice, automatic
cardiac quantification methods have the potential to help
alleviate the tedious workload of manually contouring and
measurement of important cardiac indices from plenty of
imaging data. On one hand, analysis from these imaging data,
such as systolic function evaluation, cardiac event monitoring,
hypertrophy categorization, remodeling indication, regional
dysfunction indication, can be completed with a greatly im-
proved efficiency with the results of automatic quantification
methods. Therefore, the whole clinical workflow, including
diagnosis, progress monitoring, decision making and treatment
evaluation, can all be advanced. On the other hand, automatic
methods can reduce the observer variation, thus improve the
clinical value of those quantification results. Besides, reliable
and interpretable quantification results allow experts’ visual
inspecting and make it easy to explain, therefore user’s un-
derstanding and trust can be easily built, which is critical for
practical application of automatic methods.

However, both types of methods possess advantages and
disadvantages. As mentioned in [49], SG methods allow
straight visual assessment of a network’s outputs and thus
facilitate the identification of failed cases, and guide proposing
of new algorithms for improvement. The segmentation results
may add values for other applications including image-guided
cardiac interventions [52]. The segmentation and computation
steps make the whole quantification procedure less of a black
box, and easy to understand and explain. Such a outcome ex-
planation is important for users to build trust on the computer-
assisted system [64]. By contrast, DR methods estimate di-
rectly the final quantification values from the appearance of
cardiac images, which is more like a black box, regardless of
the image feature or network architecture that is employed.
In addition, DR methods apparently cannot provide visual
inspection.

However, DR methods for cardiac quantification in them-
selves can be viewed as great success given the fact that
they circumvent the requirement of numerous densely labeled
images. In clinical practice, cardiac physicians produce reports
by first describing the appearance of the myocardium and its
motion abnormality locally and globally, and then recording
the obtained measurements. These measurements in the reports
can be readily employed for DR methods to learn the quantifi-
cation model, therefore making it easy to include other slices
and conduct large-scale and multi-center studies. Besides, the
additional measuring step for SG methods to obtain the final
quantification results is not required in DR methods.

Combination of SG and DR It is worth noting the effective-
ness of the combination strategy, which was also encouraged
during the challenge to maximally leverage the supervisory in-
formation from both the binary segmentation mask and quan-
titative ground truth values. Of the three combined methods,

DenseUMT and EnCNNU achieved improved performance
when the two tasks were combined. For MMED, the combined
method of MMED-SR obtained better performance only over
its DR counterpart MMED-R, and inferior performance to
its SG counterpart MMED-S. This inferior performance of
MMED-SR may have been because the two branches share
the same Unet for feature extraction, which was more suitable
for and more frequently updated by the segmentation task.
This resulted in features with greater discrimination capability
for the segmentation and less expressiveness for the regres-
sion. By contrast, the two tasks did not share parameters in
DenseUMT and EnCNNU. The segmentation task provided a
warm start for the CNN embedding module to learn regression
features in DenseUMT. In EnCNNU, the segmentation and
regression were implemented in two separate networks, with
one achieving better estimation for areas and dimensions and
the other for RTWs. The two networks complemented each
other well and delivered improved accuracy when combined
by a gradient-boosting-based ensemble learning algorithm.

Given these discussions, combining the advantages of both
SG and DR methods has a great promise for the task of
LV quantification. A method with visualization ability learned
from a few densely labeled samples and quantification ability
learned from large-scale records of measurement will be a
flexible way for interpretable and accurate clinical application.

VI. CONCLUSION

Given the clinical significance of the task, the LV quantifi-
cation challenge attracted a wide global interest to achieve
advancements in the area of LV quantification. With the
leading techniques in machine learning, the difficulties related
to robust image representation, and the temporal deformation
of myocardium for cardiac images were effectively alleviated,
and excellent LV quantification performances were obtained
by the submissions. Evaluation of these submissions demon-
strated that 1) both SG and DR methods can achieve good
and comparable performance, whereas DR methods can relieve
the dependency on densely labeled binary masks; 2) to obtain
stable and accurate prediction, more attentions must be given
to the design of network architecture in DR methods than
to that in SG methods to extract robust representations of
anatomic structures. The dataset for this challenge will remain
open to the community to encourage more advancements in
cardiac quantification regrading this aspect.

Despite the good performance achieved in this challenge,
problems remain to be solved for real application of cardiac
quantification in routine practice. First, only one slice of the
mid-cavity was included in this challenge, which means that
only 2D evaluation results were obtained. Full stack slices
must be included to obtain accurate 3D evaluations. In this
case, inter-slice dependency should be explored, for example,
by means of recurrent neural network, sequential learning [65],
or label propagation. Anatomical priors of the basal and
apical slices can also be introduced into the model to further
improve the performance. Second, in addition to the four tasks
considered in the LVQuan Challenge, other clinical indices
such as myocardium strain and regional motion are also
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TABLE V: p-values of paired student’s t-test are demonstrated to test the significance of performance difference for different
methods. p-values higher than 0.05 are highlighted in bold face.

ESUPNet UNetMF MMED-S SegNetRF CNTCVX LDAMT HQNet CNN3DST FCN2D3D EnCNNU DenseUMT
Areas
ResUNet <0.001 0.41 <0.001 <0.001 0.042 0.98 <0.001 <0.001 <0.001 0.25 0.0033
ESUPNet <0.001 0.10 <0.001 <0.001 <0.001 <0.001 <0.001 0.07 <0.001 0.0062
UNetMF <0.001 <0.001 0.20 0.38 <0.001 <0.001 <0.001 0.74 0.028
MMED-S <0.001 0.03 <0.001 <0.001 <0.001 <0.001 <0.001 0.22
SegNetRF <0.001 <0.001 <0.001 0.0013 <0.001 <0.001 <0.001
CNTCVX 0.034 <0.001 <0.001 <0.001 0.33 0.38
LDAMT <0.001 <0.001 <0.001 0.22 0.0023
HQNet <0.001 <0.001 <0.001 <0.001
CNN3DST <0.001 <0.001 <0.001
FCN2D3D <0.001 <0.001
EnCNNU 0.057
Dimensions
ResUNet 0.041 <0.001 <0.001 <0.001 <0.001 0.031 <0.001 <0.001 <0.001 <0.001 <0.001
ESUPNet <0.001 <0.001 <0.001 <0.001 0.97 <0.001 <0.001 <0.001 <0.001 <0.001
UNetMF 0.034 0.25 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
MMED-S <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
SegNetRF <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
CNTCVX <0.001 <0.001 <0.001 0.21 0.036 0.05
LDAMT <0.001 <0.001 <0.001 <0.001 <0.001
HQNet <0.001 <0.001 <0.001 <0.001
CNN3DST <0.001 <0.001 0.0011
FCN2D3D 0.00021 0.44
EnCNNU <0.001
RWTs
ResUNet <0.001 <0.001 0.0092 <0.001 <0.001 0.014 <0.001 0.087 <0.001 0.09 0.17
ESUPNet 0.05 0.0063 <0.001 0.9 <0.001 <0.001 0.047 0.55 <0.001 <0.001
UNetMF 0.41 <0.001 0.062 <0.001 <0.001 0.52 0.014 <0.001 <0.001
MMED-S <0.001 0.0083 <0.001 <0.001 0.94 0.0014 <0.001 <0.001
SegNetRF <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
CNTCVX <0.001 <0.001 0.055 0.49 <0.001 <0.001
LDAMT <0.001 <0.001 <0.001 0.55 0.38
HQNet <0.001 <0.001 <0.001 <0.001
CNN3DST 0.018 0.0038 0.0077
FCN2D3D <0.001 <0.001
EnCNNU 0.78

major indicators of cardiac function and should be included
to deliver a comprehensive evaluation of cardiac function.
Third, quantification of these cardiac indices is not the final
task. Even though not directly, the metrics considered in this
challenge are necessary for the calculation of LV EF, cavity
volume, LV mass, and evaluation of regional wall thickening
and myocardium remodeling. The relation between them and
cardiac function must also be analyzed, so that the automatic
quantification can be applied to all stages of cardiac disease,
including diagnosis, evaluation, monitoring and prognosis to
improve the entire work flow of cardiac disease treatment.
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of Alejandro Debus was supported by the Santa Fe Science,
Technology and Innovation Agency (AS ACTEI), Government
of the Province of Santa Fe, through Project AC-00010-18,
Resolution N 117/14.

REFERENCES

[1] W. H. Organization et al., Global status report on noncommu-
nicable diseases 2014. World Health Organization, 2014, no.
WHO/NMH/NVI/15.1.

[2] A. Suinesiaputra, B. R. Cowan, A. O. Al-Agamy, M. A. Elattar,
N. Ayache, A. S. Fahmy, A. M. Khalifa, P. Medrano-Gracia, M.-P. Jolly,
A. H. Kadish, D. C. Lee, J. Margeta, S. K. Warfield, and A. A. Young, “A
collaborative resource to build consensus for automated left ventricular
segmentation of cardiac MR images,” Medical Image Analysis, vol. 18,
no. 1, pp. 50 – 62, 2014.

[3] T. D. Karamitsos, J. M. Francis, S. Myerson, J. B. Selvanayagam, and
S. Neubauer, “The role of cardiovascular magnetic resonance imaging in
heart failure,” Journal of the American College of Cardiology, vol. 54,
no. 15, pp. 1407–1424, 2009.

[4] J. Schulz-Menger, D. A. Bluemke, J. Bremerich, S. D. Flamm, M. A.
Fogel, M. G. Friedrich, R. J. Kim, F. von Knobelsdorff-Brenkenhoff,
C. M. Kramer, D. J. Pennell et al., “Standardized image interpretation
and post processing in cardiovascular magnetic resonance: Society for
cardiovascular magnetic resonance (SCMR) board of trustees task force
on standardized post processing,” Journal of Cardiovascular Magnetic
Resonance, vol. 15, no. 1, p. 35, 2013.

[5] R. M. Lang, M. Bierig, R. B. Devereux, F. A. Flachskampf, E. Foster,
P. A. Pellikka, M. H. Picard, M. J. Roman, J. Seward, J. Shanewise
et al., “Recommendations for chamber quantification,” European journal
of echocardiography, vol. 7, no. 2, pp. 79–108, 2006.

[6] P. Peng, K. Lekadir, A. Gooya, L. Shao, S. E. Petersen, and A. F. Frangi,
“A review of heart chamber segmentation for structural and functional
analysis using cardiac magnetic resonance imaging,” Magnetic Reso-
nance Materials in Physics, Biology and Medicine, vol. 29, no. 2, pp.
155–195, 2016.

[7] V. O. Puntmann, R. Gebker, S. Duckett, J. Mirelis, B. Schnackenburg,
M. Graefe, R. Razavi, E. Fleck, and E. Nagel, “Left ventricular
chamber dimensions and wall thickness by cardiovascular magnetic



ACCEPTED MANUSCRIPT

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2021.3064353, IEEE Journal of
Biomedical and Health Informatics

12

resonance: comparison with transthoracic echocardiography,” European
Heart Journal–Cardiovascular Imaging, vol. 14, no. 3, pp. 240–246,
2013.

[8] N. Kawel, E. B. Turkbey, J. J. Carr, J. Eng, A. S. Gomes, W. G. Hundley,
C. Johnson, S. C. Masri, M. R. Prince, R. J. van der Geest et al., “Normal
left ventricular myocardial thickness for middle-aged and older subjects
with steady-state free precession cardiac magnetic resonance: the multi-
ethnic study of atherosclerosis,” Circulation: Cardiovascular Imaging,
vol. 5, no. 4, pp. 500–508, 2012.

[9] C. Petitjean and J.-N. Dacher, “A review of segmentation methods in
short axis cardiac MR images,” Medical Image Analysis, vol. 15, no. 2,
pp. 169–184, 2011.

[10] A. Gupta, L. Von Kurowski, A. Singh, D. Geiger, C.-C. Liang, M.-
Y. Chiu, L. Adler, M. Haacke, and D. Wilson, “Cardiac MR image
segmentation using deformable models,” in Computers in Cardiology
1993, Proceedings. IEEE, 1993, pp. 747–750.

[11] E. Nachtomy, R. Cooperstein, M. Vaturi, E. Bosak, Z. Vered, and
S. Akselrod, “Automatic assessment of cardiac function from short-axis
MRI: procedure and clinical evaluation,” Magnetic resonance imaging,
vol. 16, no. 4, pp. 365–376, 1998.

[12] I. B. Ayed, H.-M. Chen, K. Punithakumar, I. Ross, and S. Li, “Max-
flow segmentation of the left ventricle by recovering subject-specific
distributions via a bound of the bhattacharyya measure,” Medical image
analysis, vol. 16, no. 1, pp. 87–100, 2012.

[13] Y. Wu, Y. Wang, and Y. Jia, “Segmentation of the left ventricle in cardiac
cine MRI using a shape-constrained snake model,” Computer Vision and
Image Understanding, vol. 117, no. 9, pp. 990–1003, 2013.

[14] A. Pednekar, U. Kurkure, R. Muthupillai, S. Flamm, and I. A. Kaka-
diaris, “Automated left ventricular segmentation in cardiac MRI,” IEEE
TBME, vol. 53, no. 7, pp. 1425–1428, 2006.
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