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Preterm newborn presence detection in 
incubator and open bed using deep transfer 

learning
Raphaël Weber, Sandie Cabon, Antoine Simon, Fabienne Porée, and Guy Carrault

Abstract— Video-based motion analysis recently ap-
peared to be a promising approach in neonatal intensive
care units for monitoring the state of preterm newborns
since it is contact-less and noninvasive. However it is
important to remove periods when the newborn is absent or
an adult is present from the analysis. In this paper, we pro-
pose a method for automatic detection of preterm newborn
presence in incubator and open bed. We learn a specific
model for each bed type as the camera placement differs
a lot and the encountered situations are different between
both. We break the problem down into two binary classi-
fications based on deep transfer learning that are fused
afterwards: newborn presence detection on the one hand
and adult presence detection on the other hand. Moreover,
we adopt a strategy of decision intervals fusion in order
to take advantage of temporal consistency. We test three
deep neural network that were pre-trained on ImageNet:
VGG16, MobileNetV2 and InceptionV3. Two classifiers are
compared: support vector machine and a small neural
network. Our experiments are conducted on a database of
120 newborns. The whole method is evaluated on a subset
of 25 newborns including 66 days of video recordings. In
incubator, we reach a balanced accuracy of 86%. In open
bed, the performance is lower because of a much wider
variety of situations whereas less data are available.

Index Terms— Deep transfer learning, neonatal intensive
care units, preterm newborn, video monitoring

I. INTRODUCTION

NEWBORNS who are born before a gestational age of
37 weeks are considered premature and have not fully

developed all of their vital functions. In order to ensure their
optimal development, preterm newborns are hospitalized in
neonatal intensive care units (NICUs), where they generally
start their life in an incubator before gradually being settled
in an open bed and require particular attention from medical
staff. During their first days of hospitalization, extremely
and very preterm newborns are in an incubator, which is
a closed bed reproducing the in utero environment. They
are then transferred in an open bed when they are mature
enough. Regarding moderate and late preterm newborns, they
are directly in an open bed after their birth. The open bed
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might be a cradle or equipped with a warm radiant. The
monitoring of physiological signals allows to give information
to the medical staff about the newborn state and the progress
of maturation. Thus it helps them in the diagnosis of a disease
and supports the treatment decision. Cardiac and respiratory
signals are always monitored to detect, for instance, brady-
cardia and apnea. Brain activity may also be monitored for
detecting neurological disorders such as neonatal seizures [1].
The drawback of monitoring such signals is the invasiveness.
Indeed, it requires to stick adhesive electrodes or transducers
on the very fragile skin of the newborn, which may damage
it and increase the risk of infection.

Several technologies have been proposed in order to monitor
cardiac activity and/or respiratory signal in a non-invasive
manner (see [2], [3] for reviews), such as the use of capacitive
sensors [4], piezoelectric sensors [5], ultrasonic systems [6],
radar systems [7], thermal imaging [8] or cameras [9].

Moreover, video modality can be used for high-level analy-
sis and proved to be relevant in several clinical applications in
pediatrics, particularly with motion analysis [10]. Regarding
clinical applications involving preterm newborns, video-based
motion analysis has been investigated for instance for early
cerebral palsy detection [11], estimation of sleep stages [12],
or maturation characterization [13]. The latter is motivated by
the fact that the motor activity evolves along with the age
of the newborns [14]. Recently, analysis of motion estimated
from ECG has been investigated for the detection of late-onset
sepsis [15]. Indeed, it has been shown that sepsis is related to
lethargy, which can be observed as the absence of motion [16].
So it could be interesting to tackle this problem with video-
based motion analysis.

Nevertheless, video-based motion analysis faces several
challenges due to the real-life acquisition conditions in NICUs,
particularly in the context of long-term monitoring. As it
has been already highlighted in [9], [10], before analyzing
newborn motion, it is crucial to detect the periods when the
newborn is absent and when an adult is present in the image
frame. Indeed, in NICU, the newborn is regularly taken out of
the bed in order to change the bedding or to have skin-to-skin
contact with the parents. These periods must be discarded from
the analysis because otherwise it may be wrongly interpreted
as an absence of motion. Moreover, nurses regularly handle
the newborn inside the bed, which generates irrelevant motion
patterns in the image, so they must be discarded as well. In
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the perspective of a fully automatic video-based monitoring
system, it is essential to automatically detect the periods of
interest, i.e. when the newborn is solely present in the image.
Only a few papers have proposed to address this problematic
in NICUs. In [13] only adult presence detection in open bed
is considered, whereas in [9] both newborn absence and adult
presence are considered in incubator.

In this paper, we propose a video-based method for au-
tomatic detection of newborn presence in incubator or open
bed. The goal is to label images of a video stream with
three classes: “adult & newborn present,” “newborn absent”
and “newborn solely present.” Our method is based on deep
transfer learning. We use two binary classifiers: on the one
hand, we detect the presence of the newborn, on the other
hand, we detect the presence of adults. We add a strategy of
decision intervals fusion in order to take advantage of temporal
consistency. Finally, we fuse the decision of the two classifiers
in order to get one of the three classes. One originality of this
work is to address the problem of newborn presence detection
both in incubator and open bed, thus the whole stay of the
newborn in NICU can be analyzed with a common system.

This work is part of the Digi-NewB project, whose aim
is to develop a monitoring system of preterm newborns,
with a focus on late-onset sepsis detection and maturation
characterization. It is the extension of a previously published
work [17] where we used the same workflow, but instead of
learning two binary classifiers, we trained one single 3-class
classifier. Moreover, in [17] the method was only tested in
incubator.

The remaining of this paper is organized as follows. After
having introduced the related work, we describe our method
for automatic detection of preterm newborn presence. Then,
we describe the database00 that we used in our experiments.
Next, we report the results of our experiments. Then, we
discuss the limitations of our method. Lastly, we conclude
the paper and give some perspectives of this work.

II. RELATED WORK

In the context of the Digi-NewB project, our team aims at
developing a new non-invasive monitoring system using video
analysis. Previous video-based works were mainly related
to motion analysis using frame differencing [18], [19] or
optical flow [20], [21], followed by extraction of features to
characterize motor activity [10]. However, a major limitation
to deploy these methods as a continuous monitoring technique
is the presence of adults in the field of view of the camera or
the absence of the newborn from the bed.

To overcome this difficulty, we proposed a first ad-hoc
method to deal with adult presence detection in open bed [13].
The arrival and the departure of the adult in the image frame
are detected by analyzing the change of motion in the image
edge. A manual initialization is needed as the algorithm must
start at a frame where the newborn is solely present in the
image. The method has been tested on a database of nine
newborns with a total of 149 hours of recording.

A similar approach has been proposed in [22] for infant
presence detection in cradle. It has not been applied to

recordings in NICUs but at home. Motion is estimated both
inside and outside a region of interest surrounding the cradle.
A set of temporal rules based on both motion estimates are
designed in order to decide whether the infant is in or out of
the bed. The method has been tested on a database of five
infants with 77 recordings of 24 hours each.

The drawbacks of these two methods are related to the
acquisition context in NICUs. If the camera is not optimally
placed, the newborn may generate motion in the image edge,
that would lead to a false adult detection. Noisy motion can
also be generated in the image edge by abrupt changes of
lighting. Moreover, the detection of adult presence may be
missed when the adult is present but is not moving for a
while. The same phenomenon may happen in the case of infant
detection when he or she is not moving. These methods are
not viable in the context of long-term monitoring in NICUs
because the approach has to be robust to camera placement
and lighting variations without any manual intervention.

In this context, image classification based on deep learning
appears as a way to overcome these limitations. In particu-
lar, deep transfer learning is a powerful approach when the
database has a lot of variety but the number of images is
not large enough to train a neural network from scratch. This
allows to benefit from the generalization capacities of a deep
neural network. Transfer learning methods aim at transferring
the knowledge of a source task to a target task. In the case
of deep learning, a neural network is pre-trained for the
source task. Then, the output layer performing classification
is replaced by another classifier that is trained for the target
task. The training dataset of the source task has usually a huge
number of samples, which leads to a model with a good ability
to generalize.

This technique has been used for a wide variety of target
tasks [9], [23]–[26], where the source task is usually ImageNet
classification [27]. The implementation choices lie mostly in
the deep neural network and the output classifier, and are
motivated by the target task. The most commonly used deep
neural networks are Alexnet [28] and VGG16 [29]. The output
classifier can be the output layer of the deep neural network
[24], another neural network with typically one or two layers
[9], [23], [25], or classical machine learning algorithms such as
support vector machine, logistic regression or random forests
[25], [26].

In particular, deep transfer learning with VGG16 [29] is
used in [9] for newborn presence detection. Regarding adult
presence detection, a two-stream network with ResNet50 [30]
is trained. It has been tested in incubator on a database of 15
newborns with a total of 214 hours of video recordings.

III. METHOD

In this section, we introduce our method of automatic
video-based detection of newborn presence. First, we give an
overview. Then, we detail each step of the method.

A. Overview
Fig. 1 gives an overview of the method. The idea is to

break the problem down into two binary classifications that
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TABLE I
DEFINITION OF THE CLASSES

Newborn Newborn
absent present

Adult absent “newborn “newborn solely present”
Adult present absent” “adult & newborn present”

are fused afterwards. On the one hand, there is the newborn
presence detection regardless of the adult presence, referred
to as “newborn” classification. On the other hand, there is the
adult presence detection, referred to as “adult” classification.

Binary classification is based on deep transfer learning. The
images of the video stream pass through a pre-trained deep
neural network in order to extract bottleneck features. These
features are then used as the input of the binary classifier,
which gives a sequence of decisions. In order to remove short
peaks of detection that are assumed to be irrelevant, we adopt
a strategy of decision intervals fusion.

Finally, the binary decisions are fused in order to get one
of the following classes, as illustrated in Table I:

• “adult & newborn present”: both newborn and adult are
present,

• “newborn absent”: newborn is absent, regardless of the
adult presence,

• “newborn solely present”: newborn is present and adult
is absent.

We choose to define only one class when the newborn is
absent because there are only a few images with newborn
absent and adult present compared to the other classes.

B. Bottleneck features extraction
In the context of deep transfer learning, bottleneck features

correspond to the knowledge of the source task. They are
extracted from a deep neural network that has already been
trained for a specific classification problem.

Fig. 2 illustrates bottleneck features extraction. First, the
image must be pre-processed according to the input layer of
the pre-trained network. Then it passes through the network
but stops before the output layer, which is usually a fully-
connected layer performing the classification. Thus, we obtain
the most high-level features of the pre-trained network and
they are ready to be used for another classification problem.

In this paper, the selected source task is ImageNet [27] as it
proved to be powerful in deep transfer learning. We test three
different deep neural networks:

• VGG16 [29],
• MobileNetV2 [31],
• InceptionV3 [32].

The pre-processing step consists in resizing the image to the
shape 250 pixels x 250 pixels. MobileNetV2 requires a specific
shape, so in this case it is 224 pixels x 224 pixels.

C. Classification
Two binary classifications are performed: “newborn” classi-

fication and “adult” classification (see Subsection III-A). The

binary classifiers are trained for the target task and take as
input the bottleneck features extracted from a pre-trained deep
neural network.

In this paper, two kinds of classifiers are tested: support
vector machine (SVM) with a linear kernel and small neural
network (NN). The small neural network consists of one fully-
connected layer with the rectified linear unit as the activa-
tion function, followed by another fully-connected layer with
softmax as the activation function. Droupout regularization is
applied before this layer in order to prevent overfitting.

D. Decision intervals fusion

A binary classifier returns a sequence of decisions for a
video. Let i be a class. We call “interval of class i” a sub-
sequence where all the decisions are equal to class i. If the
duration of the temporal interval that separates two successive
intervals of class i is less than a threshold δi, then the latter
are fused by changing the decisions of the separating interval
to class i. This process is done sequentially with a different
threshold for each class.

Fig. 3 illustrates the step of decision intervals fusion for
the positive class. There are three intervals for the positive
class: [t1, t2], [t3, t4] and [t5, t6]. So, the separating intervals
are [t2, t3] and [t4, t5]. Since t3 − t2 > δ1 and t5 − t4 ≤ δ1,
only the interval [t4, t5] is changed to class 1.

E. Binary fusion

Let dn be the decision for “newborn” classification and da
be the decision for “adult” classification. The final decision
df is computed as follows:

df =


“adult & newborn present,” if dn = 1 & da = 1,

“newborn absent,” if dn = 0,

“newborn solely present,” if dn = 1 & da = 0.
(1)

For an objective evaluation, the proposed approach was
compared to two other methods [13], [17] in Section V.

IV. DATABASE DESCRIPTION

This work is part of the Digi-NewB project in which a
large database of video recordings has been acquired. For our
experiments, we created two subsets from this database: the
database of still images and the database of videos. The former
will be used to train the binary classifiers and the latter to set
the parameters of decision intervals fusion. Both of them are
split with respect to the bed type: incubator and open bed.

In this section, we introduce these two databases. In the
first subsection we focus on the data acquisition setup. In the
following subsections we describe the content of the database
of still images and then of the database of videos.

This study received ethics approval from the Ouest IV
Ethics Committee (reference number 34/16) and one parent
of each newborn gave its signed agreement to take part in it.
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Fig. 1. Overview of our method for automatic video-based detection of newborn presence
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Fig. 2. Illustration of bottleneck features extraction
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Fig. 3. Illustration of decision intervals fusion for the positive class

A. Data acquisition setup

In the scope of the Digi-NewB project, a dedicated audio
and video acquisition device was designed [33]. In particu-
lar, it embedded two black & white infrared cameras with
a resolution of 752x480 pixels (FMVU-03MTMCS), each
one associated with an infrared illumination by four LEDs
(VSMY3850 from Vishay). LEDs operate in the near infrared
at 850 nm and have a spectral bandwidth of 30 nm. Having
two cameras allows two different viewpoints of the newborn.
Video streams were encoded with MPEG-4 encoding, under
AVC container, at 25 frames per second. The protocol for
camera positioning has been approved by the Biomedical
Engineering Department of CHU Rennes. Furthermore, the
Hygiene department of CHU Rennes helped us to elaborate a
sterilization protocol.

When the newborn is in an incubator, it has been decided, in
coordination with the doctors and nurses, to place the camera
inside the incubator at the foot of the newborn, in order to be
the least disturbing for the medical staff. Thus it enables to
acquire images of good quality, with a narrow image view. In
this context, the newborns are continuously monitored during
one day up to 11 days.

When the newborn is in an open bed, there is more freedom
in the camera placement, so the view of the newborn might
be quite narrow or wide. Compared to the incubator, this
leads to very different viewpoints of the newborn and the
surrounding environment, which explains why we split the
database according to the bed type. In the context of open
bed, there are up to five recordings per newborn, each one

(a) Incubator

(b) Open bed

Fig. 4. Example images of the class “adult & newborn present”

lasting few hours up to 24 hours and spaced out of ten days.
Data was collected in six different NICUs during routine

care with no constraints apart from very few instructions on
camera placement, so there is a wide variety of background
and lighting. The variety of the images is illustrated in Fig. 4
to 6, according to the three target classes.

Fig. 4 shows example images of the class “adult & newborn
present.” The adult presence might be temporally short, for
example when the nurse measures temperature, or long, for
example during an intervention. In incubator, it is character-
ized by the emergence of the adult’s arm. The hand may be
hardly visible when emerging in a shaded area (see the top
right image, inside the white circle). Sometimes it can be
characterized by the emergence of the adult’s body as well.
In open bed, the encountered situations are much more varied
than in incubator since the surrounding environment might
occupy a large part of the image. For example in the image in
the bottom right, the adult is standing up in the background.
We can see that the cradle is near the bed of the parents, who
might lay on it for several hours.

Fig. 5 shows example images of the class “newborn absent.”
We encounter images with a blank mattress or the bed body.
The adult may be present for changing the bedding (see the
top right and bottom right images).

Fig. 6 shows example images of the class “newborn solely
present.” In incubator, the newborn may be totally covered by
the blanket or there may be a stuffed toy near the newborn
(see the top right image in the left bottom corner). In the case
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(a) Incubator

(b) Open bed

Fig. 5. Example images of the class “newborn absent”

(a) Incubator

(b) Open bed

Fig. 6. Example images of the class “newborn solely present”

of the open bed, the bed might be in any orientation. During
the night, the surrounding environment is not visible.

Table II describes the population of the Digi-NewB project
that has been used in this study, including 120 newborns
from the six different NICUs. Since there can be several
recordings for one newborn, for each newborn we computed
the cumulative recording duration and then we computed the
mean and standard deviation along newborns. The distribution
of total recording duration per NICU is as follows: 35.6%,
3.2%, 17.5%, 3.6%, 20.2%, 19.8,%. This reflects the respective
ability of each NICU to include newborns and the differences
of acquisition conditions in each NICU.

B. Database of still images

In order to select the deep neural networks for bottleneck
features extraction and then train the binary classifiers (see

TABLE II
SUBSET OF THE POPULATION OF DIGI-NEWB USED FOR THIS STUDY.

GA STANDS FOR GESTATIONAL AGE. PMA STANDS FOR

POST-MENSTRUAL AGE. STD STANDS FOR STANDARD DEVIATION AND

IS GIVEN IN NUMBER OF DAYS (FOR GA, PMA, RECORDING DURATION)
OR GRAMS (BIRTH WEIGHT).

Number of newborns (% male) 120 (60%)
Mean birth weight in grams (STD) 1319.71 (681.17)

Mean GA (STD) 29+3 (28.94)
Mean PMA (STD) 33+0 (35.09)

Mean total recording duration
per newborn in days (STD) 7.81 (8.01)

TABLE III
DISTRIBUTION OF THE CLASSES IN THE DATABASE OF STILL IMAGES

Class Number of images
Incubator Open bed

“adult & newborn present” 2150 1361
“newborn absent” 1346 1370

“newborn solely present” 1465 1128
Total 4961 3859

Fig. 1), we created a database of still images with 57 newborns
in incubator for a total of 4961 images and 60 newborns in
open bed for a total of 3859 images. The following procedure
was adopted for extracting the images: a set of images were
randomly picked from the Digi-NewB database and has been
manually annotated by one annotator with regards to the three
classes (see Table I). Table III details the distribution of images
in each class.

C. Database of videos
For validating and testing the whole process on videos, we

created a database of videos split into a validation set and
a test set for both bed types. All the video recordings have
been manually annotated by one annotator with regards to the
three classes (see Table I). The validation set is composed
of newborns that are included in the validation set used for
training the final binary classifiers, so they are included in the
database of still images. The test set is composed of newborns
that are not included in the database of still images.

Table IV details the content of the database of videos with
the number of newborns, the total quantity of data in number of
days and the distribution of the three classes. We can see that
in incubator this distribution is similar between the validation
set and the test set, whereas in open bed there is a lot of variety.
The difference of data quantity between incubator and open
bed is explained by the fact that, according to the protocol of
the Digi-NewB project, for a single newborn a recording can
last up to ten days in incubator, whereas in open bed there are
up to five recordings, each lasting up to 24 hours and spaced
out of ten days.

V. RESULTS

In this section, we report the results of our experiments.
They are divided in two parts: the classification of still images

.  
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TABLE IV
DISTRIBUTION OF THE CLASSES IN THE DATABASE OF VIDEOS. ANP

STANDS FOR THE CLASS “ADULT & NEWBORN PRESENT." NA STANDS

FOR THE CLASS “NEWBORN ABSENT." NSP STANDS FOR THE CLASS

“NEWBORN SOLELY PRESENT." STD STANDS FOR STANDARD

DEVIATION.

Validation Test

In
cu

ba
to

r Number of newborns 4 7
Data quantity (days) 28.02 28.48
Mean % ANP (STD) 8.69 (1.60) 8.24 (3.76)
Mean % NA (STD) 11.58 (8.76) 9.42 (4.34)
Mean % NSP (STD) 79.73 (9.77) 82.34 (6.81)

O
pe

n
be

d

Number of newborns 5 9
Data quantity (days) 3.17 7.05
Mean % ANP (STD) 22.24 (21.87) 22.34 (16.54)
Mean % NA (STD) 14.14 (6.01) 31.33 (15.83)
Mean % NSP (STD) 63.62 (20.23) 46.33 (19.00)

and the classification of videos. In the former we focus on the
selection of the pre-trained network for bottleneck features
extraction and the selection of the classifier. The latter allows
us to focus on the parameters setting of decision intervals
fusion and to assess the performance of the whole method.

Experiments are conducted with scikit-learn [34] and keras
with tensorflow backend.

A. Classification of still images
1) Protocol: As illustrated in Fig. 1, two binary classifica-

tions are considered. First, “newborn” classification focuses
on newborn presence detection, regardless of adult presence:
the negative class is “newborn absent” and the positive class
is the union of “adult & newborn present” and “newborn
solely present.” We used class balancing during the training as
the dataset is heavily unbalanced for this problem. Secondly,
“adult” classification focuses on adult presence detection: the
negative class is “newborn solely present” and the positive
class is “adult & newborn present.”

For each classification problem, we have to select the pre-
trained deep neural network for bottleneck features extraction
on the one hand (see Subsection III-B) and the classifier on
the other hand (see Subsection III-C). We used the database
of still images (see Subsection IV-B) for the experiments.

We adopted a 5-fold cross-validation strategy with preser-
vation of classes proportion. For each fold, the database is
split in three sets: train (72.25%), validation (12.75%) and
test (15%). We make sure that a newborn is included only
in one of the three sets. The performance is assessed with
the following metrics expressed as a percentage: balanced
accuracy, recall and specificity. We computed the mean metrics
over the test sets of the cross-validation folds. The advantage
of balanced accuracy is to provide an overall performance,
while taking into account unbalance between the classes.
Recall and specificity are not impacted by unbalance between
the classes.

Regarding SVM, regularization parameter is set on valida-
tion set so that it maximizes balanced accuracy. Regarding
NN, as a first step we chose the stochastic gradient descent

(SGD) as optimizer with decay and momentum set to 0. We
conducted a grid search on the following parameters:

• Size of the fully-connected layer: {64, 128, 256},
• Learning rate of SGD: {10−1, 10−2, 10−3, 10−4, 10−5}.

Then, we kept the couple of parameters leading to the best
balanced accuracy and we conducted another grid search on
the following parameters:

• Optimizer: {SGD, rmsprop, adagrad, adam}
• Decay of the optimizer: {0, 10−2, 10−3},
• Momentum of the optimizer (when applicable):
{0, 0.5, 0.9}.

In the end we kept the set of parameters leading to the best
balanced accuracy.

2) Results: Table V reports the performance of classifica-
tion in incubator on the database of still images. Regarding
“newborn” classification, the highest balanced accuracy is
obtained with the combination of MobileNetV2 and SVM.
Regarding “adult” classification, the highest balanced accuracy
is obtained with the combination of InceptionV3 and NN,
followed by the combination of InceptionV3 and SVM. The
combination of MobileNetV2 and NN gives a better balanced
accuracy than InceptionV3 and SVM but it does not offer a
good trade-off between recall and specificity.

Table VI reports the performance of classification in open
bed on the database of still images. Regarding “newborn”
classification, the best balanced accuracy is obtained with the
combination of VGG16 and NN, followed by the combination
of VGG16 and SVM. Regarding “adult” classification, the best
balanced accuracy is obtained with the combination of VGG16
and SVM. The performances are significantly lower than the
other binary problems, which was to expect since the variety
of situations is much wider.

For comparison purpose, both in incubator and open bed,
we reported the performance of classification with logistic
regression (LR) applied directly on the pixels of the image
(resized to 250 pixels x 250 pixels). We can see that the
performance is really poor with LR compared to deep transfer
learning, which witnesses the fact that the good performance
of our method is not due to a highly biased database, but due
to the pre-trained neural network.

B. Classification of videos

1) Protocol: In incubator, for “newborn” classification we
selected the combination of MobileNetV2 and SVM, for
“adult” classification we tested the combination of Incep-
tionV3 and both SVM and NN. In open bed, for “newborn”
classification we tested the combination of VGG16 and both
SVM and NN, for “adult” classification we selected the
combination of VGG16 and SVM. The binary classifiers have
been trained on the database of still images (see Subsection
IV-B) with 80% of images for training and 20% for validation.

We used the database of videos (see Subsection IV-C) for
assessing the performance of the whole process. We down-
sampled the videos to one image per second because of heavy
processing. It does not cause loss of information as we do not
seek to detect events that are shorter than one second.

.  



ACCEPTED MANUSCRIPT

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2021.3062617, IEEE Journal of
Biomedical and Health Informatics

WEBER et al.: PRETERM NEWBORN PRESENCE DETECTION IN INCUBATOR AND OPEN BED USING DEEP TRANSFER LEARNING 7

TABLE V
PERFORMANCE OF BINARY CLASSIFICATION IN INCUBATOR ON THE DATABASE OF STILL IMAGES

Bottleneck Classifier Set
“newborn” classification “adult” classification

Balanced
accuracy Recall Specificity Balanced

accuracy Recall Specificity

None LR Val 55.71 65.82 45.60 52.37 60.39 44.35
Test 56.00 69.88 42.11 54.09 63.28 44.91

VGG16
SVM Val 87.63 92.85 82.41 82.37 83.83 80.90

Test 89.60 92.81 86.38 82.39 84.76 80.01

NN Val 85.02 92.74 77.30 77.90 81.35 74.45
Test 86.15 92.64 79.67 76.06 83.02 69.10

Mobile-
NetV2

SVM Val 89.91 91.96 87.86 82.35 86.17 78.52
Test 91.21 92.85 89.57 81.22 87.38 75.06

NN Val 89.41 93.62 85.19 82.94 96.13 79.75
Test 91.03 94.48 87.58 84.40 87.59 77.20

Incep-
tionV3

SVM Val 88.37 90.25 86.48 82.74 85.08 80.39
Test 88.16 90.03 86.29 83.50 84.04 82.96

NN Val 88.64 94.47 82.81 84.06 86.64 81.48
Test 89.68 93.79 85.57 85.36 85.36 85.13

TABLE VI
PERFORMANCE OF BINARY CLASSIFICATION IN OPEN BED ON THE DATABASE OF STILL IMAGES

Bottleneck Classifier Set
“newborn” classification “adult” classification

Balanced
accuracy Recall Specificity Balanced

accuracy Recall Specificity

None LR Val 49.55 60.41 38.69 60.39 63.75 57.04
Test 51.10 55.48 46.72 62.36 63.65 61.08

VGG16
SVM Val 87.21 86.96 87.46 73.01 72.37 73.64

Test 82.97 83.54 82.39 74.72 78.81 70.62

NN Val 88.07 89.55 86.59 70.37 73.03 67.70
Test 83.98 83.36 84.60 69.63 77.19 62.08

Mobile-
NetV2

SVM Val 84.69 82.14 87.24 74.92 81.03 68.81
Test 79.46 76.33 82.59 74.25 75.22 73.29

NN Val 84.57 86.99 82.16 73.77 78.43 69.10
Test 80.46 82.61 78.30 72.72 73.56 71.88

Incep-
tionV3

SVM Val 86.16 83.36 88.97 68.39 77.65 59.13
Test 81.94 76.76 87.12 69.00 72.13 65.86

NN Val 86.24 89.04 83.45 70.87 72.04 69.70
Test 81.68 83.87 79.49 72.99 71.30 74.69

Regarding decision intervals fusion, there are three param-
eters to set (see Subsection V-A.1 for the definition of the
classification problems):

• δn0 for negative class of “newborn” classification,
• δn1 for positive class of “newborn” classification,
• δa1 for positive class of “adult” classification.

In our database, we observed several situations where the
presence of an adult lasts for only one second. So, we decided
not to perform decision intervals fusion on the negative class
of “adult” classification (“newborn solely present”) in order to
avoid changing the class of images with an adult present to
“newborn solely present.”

The thresholds were set separately for incubator and open
bed thanks to a grid search with the following values: δn0 and
δn1 ranging from 0 second to 30 seconds with a step of 2
seconds, δa1 ranging from 0 second to 120 seconds with a step

of 5 seconds. We selected the triplet (δn0 , δ
n
1 , δ

a
1 ) that leads to

the best balanced accuracy on the validation set.
2) Results: For “newborn” classification, the grid search

showed that δn0 allows to decrease the recall and increase
the specificity, whereas δn1 has the opposite effect with less
impact. A combination of the two can lead to an increase
in the balanced accuracy. First, δn0 is used to significantly
increase the specificity, then the induced decrease of the recall
is compensated with δn1 . In our experiments, the impact of δn0
stops being significant above 10 seconds. The optimal values
are δn0 = 4 seconds and δn1 = 30 seconds in incubator, δn0 = 8
seconds and δn1 = 28 seconds in open bed. The choice of
limiting the value of δn1 below 30 seconds is arbitrary. In open
bed, SVM outperformed NN when applied on videos, so we
chose to report the results with SVM.

Regarding “adult” classification, the grid search showed that

.  
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TABLE VII
PERFORMANCE OF CLASSIFICATION ON VIDEOS IN INCUBATOR. FUSION

STANDS FOR DECISION INTERVALS FUSION. BA STANDS FOR

BALANCED ACCURACY. R1, R2 AND R3 STANDS RESPECTIVELY FOR

RECALL OF “ADULT & NEWBORN PRESENT," “NEWBORN ABSENT" AND

“NEWBORN SOLELY PRESENT" CLASSES.

Method Fusion Set BA R1 R2 R3
Motion

[13] No Val - 87.78 - 88.98
Test - 80.99 - 90.98

3-class
[17] Yes Val 85.09 90.48 78.86 85.93

Test 80.50 82.47 75.42 83.60

Propo-
sed

method

No Val 86.09 79.98 88.83 89.45
Test 80.91 65.68 88.27 88.77

Yes Val 88.77 93.13 89.23 83.94
Test 86.02 84.37 89.18 84.50

δa1 allows to increase the recall and decrease the specificity
while increasing the balanced accuracy. The optimal values
are δa1 = 40 seconds in incubator and δa1 = 120 seconds in
open bed. In incubator, SVM outperformed NN when applied
on videos, so we chose to report the results with SVM.

We compared the performance of our method with our
previous work [17] and the method of [13]. In our previous
work, we used the same technique of deep transfer learning,
but instead of training two binary classifiers, we trained one
3-class classifier. The method of [13] only deals with adult
detection, so the detection of the newborn is the manual
annotation and we do not report balanced accuracy and recall
of “newborn absent”. The detection of the adult is performed
by analyzing the motion in the edge of the image and requires
a manual initialization.

Table VII reports the performance of classification in in-
cubator. The decision intervals fusion allows to increase the
balanced accuracy, particularly on the test set, while increasing
recall of “adult & newborn present” and decreasing recall of
“newborn solely present.” Since our priority in our application
context is to minimize the number of false positives with
regards to “newborn solely present,” it is desirable to increase
the recall of “adult & newborn present” and “newborn absent.”
Compared to the 3-class model [17], the combination of
binary classifiers allows to significantly increase the recall of
“newborn absent,” while keeping a similar recall on the two
other classes. Compared to [13], our method reaches a greater
recall of “adult & newborn present” and a lower recall of
“newborn solely present,” so we have a slightly better ability
to detect adult presence.

Table VIII gives the mean confusion matrix computed on
the test set in incubator. We can see that most of the errors
occur mainly when incorrectly classifying “adult & newborn
present” as “newborn solely present” and vice versa.

Table IX reports the performance of classification in open
bed. The decision intervals fusion allows to increase bal-
anced accuracy both on the validation set and the test set
by significantly increasing the recall of “adult & newborn
present” and decreasing the recall of “newborn solely present,”
which is desirable in our application context. Compared to the
incubator, the performance is very low and there is a poor

TABLE VIII
MEAN CONFUSION MATRIX COMPUTED ON TEST SET OF THE DATABASE

OF VIDEOS IN INCUBATOR. ANP STANDS FOR THE CLASS “ADULT &
NEWBORN PRESENT." NA STANDS FOR THE CLASS “NEWBORN

ABSENT." NSP STANDS FOR THE CLASS “NEWBORN SOLELY PRESENT."

Prediction
ANP NA NSP

G
ro

un
d

tr
ut

h ANP 84.37% 2.64% 12.99%
NA 4.21% 89.18% 6.60%
NSP 12.48% 3.02% 84.50%

TABLE IX
PERFORMANCE OF CLASSIFICATION ON VIDEOS IN OPEN BED. FUSION

STANDS FOR DECISION INTERVALS FUSION. BA STANDS FOR

BALANCED ACCURACY. R1, R2 AND R3 STANDS RESPECTIVELY FOR

RECALL OF “ADULT & NEWBORN PRESENT," “NEWBORN ABSENT" AND

“NEWBORN SOLELY PRESENT" CLASSES.

Method Fusion Set BA R1 R2 R3
Motion

[13] No Val - 68.21 - 78.90
Test - 68.94 - 54.72

3-class
[17] Yes Val 72.91 62.15 77.69 78.90

Test 57.44 58.95 64.98 55.62

Propo-
sed

method

No Val 73.85 51.81 86.26 83.46
Test 56.49 42.84 68.47 65.78

Yes Val 79.48 76.16 89.67 72.61
Test 58.46 56.46 69.16 57.45

ability to generalize since the balanced accuracy drops by
21.02% between the validation set and the test set. The same
conclusion applies to the 3-class method [17]. In this context,
the method of [13] based on motion analysis in the image
edge could be more suitable for adult detection, but it would
need to cope with two difficulties. First, it may happen that
the light is often turned on and off, which generates motion in
the image edge and leads to an incorrect adult detection. Thus
this affects the recall of “newborn solely present.” Secondly,
the parent may lie motionless on the bed for a long time,
which leads to adult presence not detected. Thus this affects
the recall of “adult & newborn present.”

Table X gives the confusion matrix computed on the test
set in open bed. We can see that regarding “adult & newborn
present” and “newborn solely present,” there are more images
misclassified as “newborn absent” compared to the incubator
(see Table VIII). Moreover, there is a more significant per-
centage of “newborn absent” images that are misclassified as
“newborn solely present” compared to the incubator (see Table
VIII).

VI. DISCUSSION

Overall, this work shows that a deep transfer learning
approach is relevant for the detection of periods of sole
presence of the newborn. Indeed, a good generalization of
the model is obtained in incubator with more than 86% of
balanced accuracy. The results are weaker in open bed but are
still encouraging since it is the first time that the problems of
adult presence detection and newborn presence detection have
been considered together.

.  
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TABLE X
MEAN CONFUSION MATRIX COMPUTED ON TEST SET OF THE DATABASE

OF VIDEOS IN OPEN BED. ANP STANDS FOR THE CLASS “ADULT &
NEWBORN PRESENT." NA STANDS FOR THE CLASS “NEWBORN

ABSENT." NSP STANDS FOR THE CLASS “NEWBORN SOLELY PRESENT."

Prediction
ANP NA NSP

G
ro

un
d

tr
ut

h ANP 56.46% 17.12% 26.41%
NA 8.42% 69.16% 22.41%
NSP 19.86% 22.69% 57.45%

The development of a method for automatic preterm new-
born presence in NICU is a relatively new field of research.
To date, the closest work to our study is [9]. In this work, two
systems are developed: one for newborn detection (equivalent
to our “newborn” classification) and one for intervention
detection (equivalent to our “adult” classification). Their study
took place in one NICU. Regarding “newborn” classification,
they reached an accuracy of 98.8%, a recall of 100% and
a specificity of 96.8%. Regarding “adult” classification, they
annotated 214 hours of video recordings and reached an
accuracy of 94.5%, a recall of 94.7% and a specificity of
94.4%. For both classification problems, their performances
are higher than in our study. But it is worth to keep in mind
that in [9], only video recordings in daylight illumination were
considered, whereas we include both daytime and nighttime
in our study. Moreover, in our study, there are six different
NICUs and the method has been validated and tested on
a larger database of videos with more than 1300 hours of
annotated video recordings in incubator. So there is a broader
variety of situations in our study which might explain the
weaker performance.

However, some limitations can be identified in our study
and offer prospects for improvement. For instance, potential
sources of bias such as capture bias, negative bias and category
bias can be discussed [35], [36].

First of all, although capture bias had been limited in our
study thanks to the high diversity in collected images, we
noticed a drop between the validation and the test set with
regards to the class “adult & newborn present” in incubator
(see Table VII). This may denote a lack of generalization of
our model for this particular class. To cope with this difficulty,
we could enhance the database of still images, which is used
to train the binary classifiers.

Secondly, the negative bias induced by the two binary
classifiers is restricted due to the clinical context of our
application. Indeed, the situation where both newborn and
adult are absent mostly concerns empty rooms with no activity,
so that the diversity of this class is mainly based on the
disparity of the viewpoints and the background of the rooms.
However, the possibility of obstruction of the video camera
was not taken into account and this may be a significant
negative class bias. One way to solve this problem would be
to integrate a class with obstructed camera into the learning
process.

Thirdly, there may be a category bias in open bed as
witnesses the poor performance in this case. We investigated

this aspect further by splitting the results according to the type
of open bed: warm radiant (see the right image in Fig. 4(b))
and cradle (see the left image in Fig. 4(b)). For the latter, the
newborn is almost full-term and the cradle is near the parents’
bed, which is partly visible in the image. These recordings are
particularly difficult to analyze because of a wider variety of
situations compared to recordings in warm radiant. We have
noticed that the model has a better ability to generalize in
warm radiant than in cradle. In future work, it may be relevant
to split the data in open bed into two parts (warm radiant and
cradle) and train two separate models. But this would require
a much larger database of still images in order to cope with
the wide variety of encountered situations.

Another limitation is that we take into account the full
image which may cause the discard of relevant periods in
clinical applications such as newborn motion analysis. Indeed,
in open bed, images with an adult in the background would
be discarded, despite the fact that the area of the newborn is
not impacted by this presence. In order to be able to detect the
adults only when they are manipulating the newborn, we could
perform bed segmentation to extract the region of interest.
Thus, this region would be the input for adult’s detection and
newborn motion estimation. The difficulty with this approach
is that when the adult is in the background, he still may be
visible next to the bed because of the open bed transparency.

VII. CONCLUSION

In the context of long-term video-based monitoring of
preterm newborn activity in NICU, it is of primary importance
to be able to accurately detect the presence of the newborn
prior to automatic analysis such as motion estimation. In this
paper, we introduced a new method of video-based detection of
preterm newborn presence in incubator and open bed. To our
knowledge, this is the first method exploiting videos acquired
during standard clinical care of several NICUs. This problem
was addressed as a classification problem and we proposed to
fuse the decisions of two binary classifiers: one for newborn
presence detection, the other one for adult presence detection.
They both follow the same workflow based on deep transfer
learning: bottleneck features, extracted from a pre-trained deep
neural network, are used as input of a classifier. We then
adopted a strategy of decision intervals fusion in order to
take advantage of temporal consistency. A comparative study
between several bottleneck features (extracted from VGG16,
MobileNetV2 and InceptionV3 deep neural networks) and
classifiers (SVM, NN) was conducted.

As a result, we obtained a good performance in incubator
with a balanced accuracy of more than 86% on both the
validation set and test set. This is a satisfying result and our
method will be used in a clinical trial [37]. Regarding open
bed, the balanced accuracy on the validation set reached almost
80% but dropped to 58% on the test set, which witnesses the
fact that there are a lot more of variability in open bed whereas
less data are available. This result is not satisfying and is not
sufficient for a use in a clinical application involving open bed.

Further works could focus on methodological aspects and
clinical applications. For the first point, the use of classifiers

.  
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or neural networks that take into account temporal information
-for example, to model arrival and the departure times of the
adults-, is one perspective direction. Additionally, in open bed,
our method could benefit from a greater amount of data in
order to model the wide variety of situations. For the second
point, the proposed approach will be used in order to automati-
cally analyse newborn motion, which is of primary importance
for different clinical applications, including late-onset sepsis
detection and evaluation of neurobehavioral development.
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