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Grid refinement in the three-dimensional hybrid recursive regularized lattice Boltzmann
method for compressible aerodynamics

Y. Feng , S. Guo,* J. Jacob, and P. Sagaut
Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France

Grid refinement techniques are of paramount importance for computational fluid dynamics approaches relying
on the use of Cartesian grids. This is especially true of solvers dedicated to aerodynamics, in which the capture
of thin shear layers require the use of small cells. In this paper, a three-dimensional grid refinement technique
is developed within the framework of hybrid recursive regularized lattice Boltzmann method (HRR-LBM) for
compressible high-speed flows, which is an efficient collide-stream-type method on a compact D3Q19 stencil.
The proposed method is successfully assessed considering several test cases, namely, an isentropic vortex
propagating through transition interface, shock-vortex interaction with intersection between grid refinement
interface and shock corrugation, and transonic flows over three-dimensional DLR-M6 wing with seven levels
of grid refinement.

I. INTRODUCTION

The lattice Boltzmann method (LBM) is an approach to
simulate fluid flows based on the discretization in space
and velocity of the Boltzmann equation [1–3]. Due to its
advantages for massively parallel computing as well as its
ability to handle very complex geometries, LBM has gained
popularity as a promising approach for computational fluid
dynamics. From initial academic benchmarks [4,5], the LB
methods was quickly extended to large scale applications
and spread towards exascale applications: full-scale vehicles
[6], large-scale fuel cells [7], urban scale environment flows
[8,9], meteorological flows [10], and complex hydrodynamic
problems [11], often with outstanding results.

Classical LB methods rely on the use of uniform grids
along with the collide-stream algorithm. Therefore, the nu-
merical cost simultaneously increases in both space and
time. As a consequence, the total memory cost and the
computational time increase extremely fast. As reported in
Refs. [12,13], the capacity of LB method using uniform
grids is reaching up to a trillion nodes on current petascale
supercomputers. To reduce the numerical cost in large scale
simulations, grid refinement techniques has been introduced
into the LBM framework [14–24].

A pioneering work of a node-based grid refinement concept
was conducted by Filipova and Hänel [14], in which fine
grid node values (either colocated with coarse grid nodes
or are located at mid-point of two coarse grid points) and
the nonequilibrium distribution functions are rescaled be-
tween fine grid and coarse grid. This approach has been
further developed and investigated by a number of works
[15,16,18,19,25–29]. Unlike the node-based approach, a cell-
based grid refinement was proposed by Chen et al. [22], which
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aims to guarantee satisfaction of conservation laws between
different space resolutions. The approach has been studied
and extended in several works [12,13,17,30,31]. Nevertheless,
most of the grid refinement techniques of LB methods were
successfully developed on standard lattices (D2Q9, D3Q19)
for nearly incompressible and athermal flows [25–29,32–34].

The classical collision-streaming procedure of LB method
offers many degrees of freedom to improve the collision
models. However, nonphysical discontinuous profiles, lack
of conservation for some physical quantities, under-resolved
scales and varying relaxation time at the grid refinement inter-
faces may induce different numerical stability and accuracy
issues in LB methods depending on the collision models.
Thanks to their capability to damp nonhydrodynamic modes
and their clear physical image, the regularized collision model
and its variants present good robustness and accuracy on
both uniform grid and multi-resolution grid [23,35]. The
connection and comparison of regularized model with SRT,
MRT, entropic, and central moment models are reported in
Refs. [35–40]. It is worth reminding that regularized collisions
models can be rewritten as two-relaxation-time models, and
also as a particular case of entropic models when considering
a global entropy instead of a local one.

The reason why grid refinement for compressible LB meth-
ods has been addressed by very few authors only is that most
existing LB models for high Mach flows rely on multispeed
lattices with wide stencils (D2Q17, D3Q39, D3Q343) that
render the design of grid interface conditions much more
difficult [41–44]. A grid refinement technique was proposed
on compressible LBM in multispeed type [44]. The D3Q343
lattice was adopted in their model for which the rescaling
procedure needs to be performed on multiple layer interface
nodes [e.g., 7 × 7× (3 + 2 + 1) nodes may be involved in
one dimensional domain decomposition]. Accordingly, it dra-
matically increases the algorithm complexity and numerical
cost in three dimensional simulations. Its high numerical costs
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motivated the development of alternative models and related
grid refinement technique. Recently, some LB models based
on the nearest-neighbor lattices for high Mach flows were pro-
posed [45–49]. Accurately propagating acoustic wave through
grid transition interface is recognized as a major issue in grid
refinement algorithm for compressible flows, and the difficul-
ties are strengthened in compressible LBM for aerodynamics.
Given the promising results obtained for the simulation of
compressible flows in high subsonic to supersonic regimes
with the hybrid recursive regularized LB model (HRR-LBM)
on D2Q9 and D3Q19 lattices [46,48,49], the development of
grid refinement techniques for compressible LBM on standard
lattices is regarded as a key step towards the development of
an efficient tool for compressible aerodynamics.

The objective of this paper is to propose a grid refine-
ment algorithm for compressible aerodynamics relying on the
D3Q19 lattice model based on HRR-LBM. It is organized as
follows: Sec. II describes the key elements of the hybrid re-
cursive regularized lattice Boltzmann model for compressible
flows; in Sec. III, three-dimensional grid refinement for both
flow field solved by LBM and entropy equation by finite vol-
ume method is developed and the implementation is described
in details. Then, the results of three classical numerical tests
are illustrated and discussed in Sec. IV. Finally, Sec. V draws
conclusions.

II. HRR LATTICE BOLTZMANN MODEL FOR
COMPRESSIBLE FLOWS

A. Macroscopic governing equations

In the hybrid recursive regularized LB method defined in
Refs. [46,48,49], the associated macroscopic equations are
the compressible Navier-Stokes equations for mass and mo-
mentum conservation supplemented by an entropy equation
written in nonconservative form, leading to
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where ρ, u, p, s, and T are the density, velocity, pressure,
entropy, and temperature, respectively. The thermodynamic
closure and the viscous stress �αβ are given as

s = cv ln
p

ργ
, p = ρRT, (2)

�αβ = μ

[
∂uβ

∂xα

+ ∂uα

∂xβ

− 2

3

∂uγ

∂xγ

δαβ

]
, (3)

where cv , γ , and R are specific heat capacity at constant
volume, specific heat ratio, and gas constant, respectively. μ

is the fluid dynamic viscosity, λ heat conductivity, and δαβ

Kronecker δ.

B. Hybrid recursive regularized LB

In the hybrid approach used in the present paper, the lattice
Boltzmann solver aims at solving the mass and momentum
conservation Eqs. (1) and (1 b) while a finite volume solver is
used for the entropy Eq. (1).

Therefore, evolution equations are solved for fi(xα, t ), the
density distribution of particles with discrete velocity ciα at
(xα, t ), which can be obtained at time t + δt via a collide-
stream algorithm [4,41,50,51] that can be interpreted as Strang
splitting method [52]. The compressible lattice Boltzmann
BGK algorithm with hybrid recursive regularization is ex-
pressed as

collision : f ′
i (xα, t ) = f eq

i (xα, t ) +
(

1 − 1

τ

)
R( fi

neq)

+ δt

2
ψi(xα, t ), (4)

streaming : fi(xα, t + δt ) = f ′
i (xα − ciαδt , t ), (5)

where f ′
i denotes density distribution after collision. τ the

nondimensional relaxation time which is related with dynamic
viscosity through μ = p(τ − 0.5)δt . R( fi

neq) denotes the hy-
brid recursive regularization on off-equilibrium distribution
function f neq

i = fi − f eq
i + δtψi/2. Then, the macroscopic

density and momentum incorporated the general forcing term
ψi are updated as
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A classical three-dimensional lattice with 19 discrete ve-
locities (D3Q19) is used in this work. The discrete velocities
ciα is given by⎧⎨

⎩
(0, 0, 0) i = 0,

(±1, 0, 0), (0,±1, 0), (0, 0,±1) i = 1–6,

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) i = 7–18.

(7)

The improved third-order equilibrium distribution function
on D3Q19 lattice is used as f eq in Eq. (5), which is given
by [49]
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where Hi,αβ =ciαciβ−c2
s δαβ and Hi,αβγ=ciαciβciγ −c2

s [cδ]αβγ

denote the second and third order Hermite polynomials,
respectively, with [ciδ]αβγ = ciαδβγ + ciβδαγ + ciγ δαβ .



A(0)
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s (θ − 1)δαβ and A(0)
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ρc2
s (θ − 1)[uδ]αβγ are, respectively, the second- and

third-order coefficient of Hermite polynomials with
[uδ]αβγ = uαδβγ + uβδαγ + uγ δαβ . The nondimensional
temperature θ = RT/c2

s satisfies the equation of state for
perfect gas given by p = ρc2

s θ with cs being lattice sound
speed. The weighting factors wi for each discrete velocity are
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In the HRR collision model, the nonphysical modes [53]
are filtered by a hybrid recursive regularization operator,
which is expressed as
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where A(1)
αβ = ∑

i ciαciβ f neq
i is the second-order off-

equilibrium moment and the third-order off-equilibrium
moment is recursively computed by using A(1)

αβγ = uαA(1)
βγ +

uβA(1)
γα + uγA(1)

αβ . In addition, the off-equilibrium moment is
fractionally approximated by its solution in Chapman-Enskog
analysis by using A(1,HRR)
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The second-order isotropic central difference scheme is em-
ployed to compute the numerical gradient operator. Then,
A(1,HRR)

αβ is employed in the hybrid recursive regularization
Eq. (5).

In addition, a correction term introduced in the forcing
term to balance symmetry-breaking errors due to the topology
of the lattice and the expression of the collision kernel. It is
expressed as [46,49]

ψi = wi

2c4
s

{
Hi,xx

∂

∂x

[
ρux

(
1 − θ − u2

x

)] − Hi,yz
∂

∂x
(ρuxuyuz )

+Hi,yy
∂

∂y

[
ρuy

(
1 − θ − u2

y

)] − Hi,xz
∂

∂y
(ρuxuyuz )

+Hi,zz
∂

∂z

[
ρuz

(
1 − θ − u2

z

)] − Hi,xy
∂

∂z
(ρuxuyuz )

}
. (12)

C. Finite volume solver for entropy conservation equation

As mentioned in Sec. II A, the nonconservative form of
entropy conservation Eq. (1) is solved by a finite volume
method [46]. The first-order explicit Euler scheme is adopted
for time integration, i.e.,

sn+1 = sn + δt [RHSC (sn) + RHSD(sn) + �n], (13)

where RHSC , RHSD are related to the convection term and
the diffusion term, respectively. � is a source term related
to the heat generation induced by viscous dissipation. The
convective flux is constructed using MUSCL scheme [54]
equipped with the van Albada limiter [55]. The classical
second-order central difference scheme is adopted for the
diffusion term.

D. Shock capturing, initial and boundary conditions

For discontinuous compressible flows, the shock sensor
and associated artificial viscosity used in Jameson-Schmidt-
Turkel (JST) scheme [56] are adopted in the HRR-LB model
to handle the shock waves. Accordingly, an effective relax-
ation time can be summed as τe = (μ + μsw )/p with μ and
μsw being fluid dynamic and Jameson’s artificial viscosity,
respectively. Then the nondimensional relaxation time τ =
τe/δt + 0.5 is actually employed in the following test cases
with shocks. In the following simulations, the inviscid flows
are treated as quasi-inviscid, with a very small nondimen-
sional viscosity μ = 10−15.

The boundary conditions for distribution functions are
implemented by a finite difference-based reconstruction ap-
proach along with the hybrid recursive regularization proce-
dure [35,46]. First, the macroscopic values ρ, u, T, and s on
the boundary nodes are prescribed for plane solid walls or
estimated for curved solid walls by a cut-cell-based method
[57]. For far-field open boundaries, the characteristic bound-
ary conditions coupled with an absorbing sponge layer is used
to compute macroscopic values on the boundary nodes. Then
the distribution functions are computed as fi = f eq

i + f neq
i .

The off-equilibrium distribution function f neq
i is recursively

reconstructed from macroscopic variables and their gradients.
The detailed implementation of boundary conditions is given
in Ref. [57].

The initial conditions are also implemented by the re-
construction approach where the distribution functions are
summation of f eq

i and f neq
i . The equilibrium part is directly

computed by Eq. (8) while the off-equilibrium distribution
function f neq

i is reconstructed from macroscopic variables.

III. 3D GRID REFINEMENT FOR COMPRESSIBLE
HRR-LBM

A. Grid refinement procedure

In this section, a procedure for three-dimensional grid
refinement in the HRR-LBM for compressible flows is pro-
posed. The present grid refinement method is based on mul-
tidomain decomposition in which the computational domain
is discretized in space with a hierarchy of uniform embedded
meshes with a grid step ratio of 2 between two successive
refinement areas.
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FIG. 1. Visualization of the grid arrangement around transition
in resolution; the nodes in © are located on the coarse grid and the
nodes in • are located on the fine grid. The nodes in (• + ©) are
in collocated transition nodes, the nodes in (• + �) are transition
fine nodes located on the edge-center of coarse grid, and the nodes
in (• + ♦) are transition fine nodes located on the face-center of
coarse grid.

A typical refinement interface between the coarse grid at
Lth level and the fine grid at (L + 1)th level is illustrated in
Fig. 1. Let us use subscript c to denote variables defined on the
coarse grid and f for fine grid quantities. Thus, defining δxc

and δx f the spatial grid spacing of the coarse and fine grids,
respectively.

δx f = 1

2
δx f = 1

2(L+1)
δx0, δt f = 1

2
δt f = 1

2(L+1)
δt0, (14)

where δx0 and δt0 are mesh size and time step at the coars-
est level L = 0, respectively. Due to the uniform convective
scaling, the nondimensional relaxation time and the second
order Hermite coefficients (A(1)

αβ) should be rescaled between
the fine grid and the coarse grid following

τ f − 0.5

τc − 0.5
= δxc

δx f
= 2,

A(1)
αβ,c

A(1)
αβ, f

= 2
τc

τ f
. (15)

In the present multidomain approach, the collision-
streaming algorithm described in Eq. (4) cannot be applied
at the transition nodes. A communication algorithm between
the fine and coarse domains is needed to exchange infor-
mation through interfaces. Compared with commonly used
grid refinement techniques in athermal flows, some additional
treatments are needed in the present case to solve the entropy
equation and to compute the macroscopic variable gradients
appearing in the Hermite coefficients and correcting terms
involved in the compressible HRR-LB method. The procedure
of the communication for the grid refinement on HRR-LB
solver is described as follows:

(1) The collision step is done at all (fine and coarse) nodes
using Eq. (5).

(2) The streaming step is applied at ordinary nodes • and
© which are far from the transition interface. Meanwhile,
the propagation step is also applied on the coarse grid nodes
located on the transition interface labeled by (• + ©).

(3) The moments including the macroscopic values (ρ,
uα , T ) and the second order Hermite coefficients (A(1)

αβ) are
computed via Eq. (6) at ordinary nodes • and © and on the
coarse grid points located on the transition (• + ©).

(4) The entropy is updated by solving Eq. (13) at ordinary
nodes • and © and on the coarse grid points located at the
transition (• + ©).

(5) Time interpolation is performed to evaluate the quan-
tities (ρ, uα , T , A(1)

αβ) on the fine grid points colocated with
coarse grid ones on the transition interface marked by (• +
©). The time interpolation method is described in the next
paragraph.

(6) The gradients represented by a general form ∇φ in
the second order Hermite coefficients A(1,FD)

αβ and in the
correcting term ψ are calculated at the fine grid nodes • which
are one cell away from the transition interface.

(7) Spatial interpolation is used to update the moments
(ρ, uα , T , A(1)

αβ) at nodes (• + �) and on nodes (• + ♦). The
detailed algorithm of 3D spatial interpolation is also described
in the following paragraph.

(8) With updated macroscopic values, the gradients rep-
resented by a general form ∇φ in the second order Hermite
coefficients A(1,FD)

αβ and in the correcting term ψ are calcu-
lated at the ordinary nodes •, © and on the coarse grid points
located at the transition (• + ©).

(9) Time and space interpolations are used on the gradi-
ents ∇φ to update the value of A(1,FD)

αβ and correcting term ψ

on the fine grid points located at the transition (• + �) and
(• + ♦)

(10) After the above steps all the data required in Eq. (5)
for ordinary fine nodes • are known and the second collision,
streaming and moment steps are applied at all fine grid nodes.

(11) The entropy value of the second step on fine grid is
update by solving Eq. (13) at the ordinary nodes • and ©.

(12) The Hermite coefficients A(1,FD)
αβ and the correcting

term ψ are calculated on the fine grids nodes • and (• + ©).
(13) The Hermite coefficients A(1)

αβ) at nodes (• + ©) are
duplicated and rescaled from coarse grid scale to fine grid
scale using Eq. (15), then distribution functions at coarse
grid nodes (• + ©) are assembled to prepare a pre-collision-
streaming distribution function for the coarse nodes at the
transition nodes (• + ©) for the next time step.

(14) After the above steps all the data required in Eq. (5)
for fine grid and coarse grid at same physical time are known
for the next time step.

B. Time interpolation algorithm

As mentioned above, an interpolation step is needed at the
transition interface. And the temporal interpolation and spatial
interpolation are employed in the grid refinement procedure
to communicate information of the distribution function and
macroscopic variables, e.g., entropy s, temperature T . Here,
the detailed algorithm of temporal and spatial interpolation is
presented.

First, in temporal view of a spatially collocated nodes, the
information on the fine grid and on the coarse grid at even
time steps are synchronous, as shown in Fig. 2. However,
the variables on the fine grid at odd time steps must be
interpolated from the coarse grid.



(a)

(b)

FIG. 2. Temporal interpolation along time line. The nodes in
(• + ©) are in collocated transition nodes. (a) Odd time step,
(b) even time step.

The overlapped (• + ©) nodes are in even time steps
while the (• only) nodes are in odd time steps. The follow-
ing second-order scheme is used in this study to interpolate
macroscopic variables, ρ, uα , T , nonequilibrium moment
A(1)

αβ and correction term ψi, which is expressed in a generic
variable φ,

φ
(t )
f = φ

(t−δt f )
f + φ

(t+δt f )
c − φ

(t−2δt f )
f

3
, (16)

where φ
(t+δt f )
c is practically obtained in advance on coarse

grid.

C. Spatial interpolation technique in 3D grid refinement

In three-dimensional grid refinement, two-step approach of
spatial interpolation is performed to reduce the complexity of
interpolation on surface. In the first step, to obtain the vari-
ables located on the fine grid points located in the transition,
which is marked by (• + �) in Fig. 3, a one-dimensional
interpolation is performed along edges of interface which is
parallel to the refinement interface.

For instance (type A nodes in Fig. 3, the 1D interpolation
performed along the x-direction edge is given as follows:

φ(i, j, k) = − 1
16φ(i − 3, j, k) + 9

16φ(i − 1, j, k)

+ 9
16φ(i + 1, j, k) − 1

16φ(i + 3, j, k), (17)

where the cubic interpolation is adopted in the above equation
since the linear interpolation can not conserve the mass [15].
In addition, an asymmetric scheme is adopted where the
number of neighbors is not fulfilled in Eq. (17), type B nodes

FIG. 3. 1D view along transition edge. The nodes in (• + ©) are
in collocated transition nodes, the nodes in (• + �) are transition fine
nodes located on the edge-center of coarse grid.

FIG. 4. 2D spatial interpolation in x-y plane. The nodes in (• +
�) are transition fine nodes located on the edge-center of coarse
grid. (• + ♦) are transition fine nodes located on the face-center of
coarse grid.

in Fig. (1 b), the formula is given by the following:

φ(i, j, k) = − 2
16φ(i − 3, j, k) + 12

16φ(i − 1, j, k)

+ 6
16φ(i + 1, j, k). (18)

Then a two-dimensional interpolation is performed on the
transition interface to update the variables located in center
point of coarse grid. For instance, as shown in Fig. 4, the bi-
interpolation performed in x-y plane is given as follows:

φ(i, j, k) = 1
2 [− 1

16φ(i − 3, j, k) + 9
16φ(i − 1, j, k)

+ 9
16φ(i + 1, j, k) − 1

16φ(i + 3, j, k)]

+ 1
2 [− 1

16φ(i, j − 3, k) + 9
16φ(i, j − 1, k)

+ 9
16φ(i, j + 1, k) − 1

16φ(i, j + 3, k)]. (19)

Similarly, when the required number of neighbors is not
available, the same asymmetric scheme as in Eq. (18) is used
in the associated direction.

D. Grid refinement for entropy equation

In the present compressible HRR-LBM, the entropy equa-
tion is solved by a finite volume method. Although the FVM is
suitable for nonuniform grids, the same multidomain compu-
tational grid is used in the FVM to keep the consistency with
the LB solver.

In this study, the mesh size δx and the time step δt in
entropy equation are the same as those used to solve the



LB equation in each domain. Similarly, the same spatial and
temporal interpolation techniques are used on entropy s in the
FVM as those used in LB solver for macroscopic variables.
For instance, the spatial interpolation is written as

s(i, j, k) = − 1
16 s(i − 3, j, k) + 9

16 s(i − 1, j, k)

+ 9
16 s(i + 1, j, k) − 1

16 s(i + 3, j, k), (20)

while time interpolation is given by

s(t )
f = s

(t−δt f )
f + s

(t+δt f )
c − s

(t−2δt f )
f

3
. (21)

IV. RESULTS AND DISCUSSION

The proposed grid refinement method is now assessed con-
sidering a set of test cases with increasing level of difficulty.

A. Isentropic vortex convection

The first test case deals with the convection of an isentropic
vortex by an inviscid uniform flow. The computational domain
size was [0, 10] × [0, 10] × [0, 0.05]. The free-stream con-
ditions were ρ∞ = 1, u∞ = 1.0, v∞ = 0, p∞ = 1, Ma∞ =
0.845. At the initial time, the following disturbance was added
to the above free-stream:

ρ =
[

1 − (γ − 1)b2

8γπ2
e1−r2

] 1
γ−1

, p = ργ , (22)

u = u∞ − b

2π
e

1
2 (1−r2 )(y − yc), (23)

v = v∞ + b

2π
e

1
2 (1−r2 )(x − xc), (24)

where b = 0.5 is the vortex strength and r = [(x − xc)2 +
(y − yc)2]1/2 is the distance from the vortex center (xc, yc) =
(5, 5).

The grid was refined in the subdomain defined as [3, 7] ×
[3, 7] × [0, 0.05] with a mesh size �xmin = 0.025. The grid
size of the outer part of the computational domain was
�x = 2�xmin. In our simulation, the minimum time step of
the simulation was �tmin = 0.005. The maximum time step
was �tmax = 0.01. To simulate an inviscid flow, the dynamic
viscosity was set equal to μ = 10−15. Periodic boundary
conditions are implemented in all directions.

Figures 5, 6, and 7 show the density, velocity, and tem-
perature contours after 19T, respectively. Here, 1T is 1 flow-
through-time, i.e., the time needed by the vortex to travel
over a distance equal to the computational domain size. In the
figures, the grid refinement region is colored with gray. It can
be very clearly seen that there is no oscillation or discontinuity
occurring on the interface between the fine mesh and coarse
mesh. The shape of the initial perturbations are very well
preserved even after 19T. After 20 flow-through-time (FTT),
the distributions of density, velocity and temperature along the
domain symmetry lines are displayed in Fig. 8. The results
denoted by blue line are obtained by present LB without
grid refinement on a grid with the same mesh as the fine
subdomain. It is observed that both the results with and
without grid refinement are very close to the exact solution.
The L2 errors obtained using different �xmin are shown in

FIG. 5. Computed density field at different time of 19.2T (a) and
19.3T (b). The grid-refined subdomain is marked by the square in
gray.

Fig. 9. It can be found that the present grid-refinement method
performed a second order convergence rate.

B. Shock-vortex interaction

With the shock and vortex moving across the interface
between the fine mesh and coarse mesh, the shock-vortex
interaction problem is a very relevant test case to validate
the grid refinement method. In this problem, a single vortex
moves from right to left and interact with a stationary normal
shock wave. The right and left states of the normal shock are
as follows:

ρR = 1.0, ρL = (γ + 1)M2
s

2 + (γ − 1)M2
s

ρR, (25)

pR = 1.0, pL = (
2γ

γ + 1
M2

s − γ − 1

γ + 1
)pR, (26)



FIG. 6. Computed streamwise velocity (x-direction) field at dif-
ferent time of 19.2T (a) and 19.3T (b). The grid-refined subdomain
is marked by the square in gray.

TR = pR/ρR, TL = pL/ρL, (27)

uR = −Ms, uL = −2 + (γ − 1)M2
s

(γ + 1)M2
s

Ms, (28)

vR = 0, vL = 0. (29)

The initial density, pressure, tangential and radial velocity
fields of the vortex are given by

ρθ (r) =
[

1 − γ − 1

2
M2

v r exp (1 − r2)

] 1
γ−1

, (30)

p(r) = 1

γ
ργ (r), (31)

uθ (r) = Mvr exp [(1 − r2)/2], ur (r) = 0, (32)

where the distance from the vortex core r is nondimensional-
ized by the vortex radius R. The above flow field of vortex is

FIG. 7. Computed temperature field at different time of 19.2T (a)
and 19.3T (b). The grid-refined subdomain is marked by the square
in gray.

added to the upstream of the shock wave at initial time. The
following flow parameters were used in the test:

Ms = 1.2, Mv = 0.25, Re = 800, R = 1, γ = 1.4. (33)

The Reynolds number was defined by Re = ρRaRR/μR

with aR being the sound speed of the upstream of the shock.
A computational domain [−20R, 8R] × [−12R, 12R] ×
[0,�xmax] was considered in the simulation. Here, �xmax

was the maximum mesh size of the grid system. Initially, the
vortex was located at x = 2R and y = 0, and the planar shock
wave was specified at x = 0 by imposing density, velocity,
and pressure variables corresponding to the above left and
right states of the normal shock. In the computational do-
main, a subdomain with grid refinement was introduced. The
minimum (in the fine grid subdomain) and maximum (in the
outer subdomain) grid size were �xmin = 0.0125R,�xmax =
0.025R. Two grid-refinement configurations denoted by



FIG. 8. Distributions of density, velocity, and temperature at
midline at t = 20T. The refined domain is located between the two
dotted lines.

FIG. 9. L2 error obtained by the LBM with the present grid
refinement approach. N = 10/�xmin.

FIG. 10. Sound pressure field obtained by the present HRR-LBM
with grid refinement on Grid-a configuration at t = 1 (a), and t = 6
(b), respectively. The grid-refined domain is inside the square marked
by red dotted line.

Grid-a and Grid-b were considered to assess the robustness
and the accuracy of the proposed grid refinement method. For
Grid-a configuration, the grid refinement was implemented
in the area [−2R, 2R] × [−2R, 2R] × [0,�xmax]. Thus, the
initial center of the vortex was at the interface between fine
and coarse mesh in Grid-a. The grid refinement re-
gion of Grid-b configuration was [−0.5R, 0] × [−R, 1.5R] ×
[0,�xmax]. It can be found that the normal shock was initially
located at the fine-coarse mesh interface in Grid-b.

The sound pressure fields obtained on Grid-a and Grid-b
are plotted in Figs. 10 and 11, respectively. Here, the sound
pressure �p is defined as �p = (p − pL )/pL. In these two
figures, the grid refinement regions are also colored with
gray. It is observed that the fields computed in both config-
urations are very similar to the reference solution given in
Ref. [58]. There is no oscillation or discontinuity found on the



FIG. 11. Sound pressure field obtained by the present HRR-LBM
with grid refinement on Grid-b configuration at t = 1 (a), and t = 6
(b), respectively. The grid-refined domain is inside the square marked
by red dotted line.

coarse-fine mesh interface in both figures. For the quantitative
comparison, the distributions of the sound pressure are plotted
in Fig. 12, in which r is the distance from the center of
the vortex. The results represented by symbols are related to
the reference solution given in Ref. [58]. It is seen that the
results obtained on both Grid-a and Grid-b are in very good
agreement with the reference results.

To further validate the method of grid refinement,
the shock-vortex interaction with flow parameters Ms =
1.2, Mv = 0.5, Re = 400 is also simulated in this study.
Figure 13 presents the density field at t = 8. The contour
levels from 0.92 to 1.55 with an increment of 0.0053 are
used, which are the same with Fig. 10 in Ref. [58]. It is
observed that the density contours obtained by the LB-grid-
refinement smoothly through the refinement interfaces and
perfectly match the reference results.

FIG. 12. Distributions of the sound pressure. top: radial distribu-
tion at the angle θ = −45◦; bottom: circumferential distribution at
t = 6. The reference data in Ref. [58] are denoted by symbols.

C. Transonic viscous flow over NACA0012 airfoil

Next, a viscous flow over the NACA0012 airfoil at
Ma∞ = 0.85 was investigated using the grid-refinement tech-
nique. The computational domain size was x ∈ [−12, 22] ×
y ∈ [−12, 12] × z ∈ [0, 0.2], where the chord of the air-
foil was chosen as a reference length scale. On the left
boundary of the domain, the subsonic inflow parame-
ters were Ma∞ = 0.85, α = 0, ρ∞ = 1, p∞ = 1/γ , u∞ =
0.85, v∞ = 0, Re = 10000. The isothermal nonslip bound-
ary condition was implemented on the surface of the airfoil.

FIG. 13. Density field at t = 8, Mv = 0.5, Re = 400. The con-
tour levels are from 0.92 to 1.55 with an increment of 0.0053.



FIG. 14. Instantaneous Ma number (a) and vorticity fields (b) at
time t = 16.36. Grid refinement interfaces are denoted by solid lines.

The top, bottom, and right boundary were subsonic outlet
conditions.

A computational grid with a seven-level grid refinement
was used in the simulation. To capture the geometry of the
airfoil with high accuracy, the minimum grid size �xmin =
0.0015625 was used near the solid wall. In this unsteady

FIG. 15. Pressure coefficients on the NACA0012 airfoil at
t = 16.36.

FIG. 16. Sketch of grid refinement for inviscid flows past
ONERA-M6. There are approximately 800 nodes in chord length at
the finest level.

test case, the complex flow field is formed by the shear
layer development (boundary layers, wake), vortex shedding
(wake), and sound waves radiation and boundary layer/shock
wave interaction. Figure 14 shows the instantaneous Mach
number and vorticity fields at time t = 16.36. As can be seen
from the figure, there is no nonphysical oscillation rising at
the coarse-fine grid interfaces. For a quantitative comparison,
the instantaneous pressure distribution along the surface of the
airfoil at time t = 16.36 is compared with reference DNS data
[59] in Fig. 15. A very good agreement can be found, showing
the accuracy of the grid refinement technique.

D. Inviscid transonic flow over ONERA M6 wing

At last, we validated the grid refinement technique on a
three-dimensional aerodynamic flow, namely, the transonic
inviscid flow around the ONERA M6 wing. The free-stream
Mach number was taken equal to Ma = 0.8397 and the angle
of attack was set to 3.06◦. In the simulation, the computational
domain was [−12.0, 22.0]× [0.0, 12.0] × [−5.0, 5.0]. The
sketch and set up of the grid refinement are displayed in
Fig. 16 and Table I. At the inflow boundary the variables
(u, v,w, p) were given by freestream values (u∞, v∞, p∞),
at the outflow boundary condition with prescribed outlet pres-
sure p∞ was implemented. On the wall, a free-slip adiabatic
condition was enforced to recover the inviscid flow solution.

TABLE I. Setup of grid refinement for transonic flow over ON-
ERA M6 wing.

L Start position End position �x �t

0 (−12.0, 0.0, −5.0) (22.0, 12.0, 5.0) 0.1 0.03333333

1 (−3.0, 0.0, −1.0) (5.0, 5.0, 1.0) 0.05 0.01666667

2 (−2.0, 0.0, −0.5) (3.0, 3.0, 0.5) 0.025 0.00833333

3 (−1.0, 0.0, −0.2) (2.0, 2.0, 0.2) 0.0125 0.00416667

4 (−0.3, 0.0, −0.1) (1.5, 1.5, 0.1) 0.00625 0.00208333

5 (−0.1, 0.0, −0.07) (1.3, 1.3, 0.07) 0.003125 0.00104167

6 (−0.05, 0.0, −0.05) (1.25, 1.25, 0.05) 0.0015625 0.00052083



FIG. 17. Pressure coefficient obtained by the present LB with
grid refinement for inviscid flows past ONERA-M6.

Figure 17 shows the pressure coefficient obtained by the
present LB with grid refinement. It can be observed that the
typical λ-shock topology is very well captured. The contours
of pressure coefficient on symmetry wall is also presented in
Fig. 17. It can observed that the pressure contours obtained
smoothly cross the interface of grid refinement.

To further validate the accuracy of the LBM with 3D
grid refinement, the values of pressure coefficient at different
locations of the wing are plotted in Fig. 18. The excellent
agreement between the present results and reference results
can be found. The reference solution is calculated by DG
method for inviscid compressible flows in Ref. [60]. The
experimental results were data obtained by wind tunnel for
turbulent viscous flows in Ref. [61]. In addition, the drag and
lift coefficients obtained by the present method is respectively
Cd = 0.014 and Cl = 0.279 which are very close to the refer-
ence data Cd = 0.013 ∼ 0.0136 and Cl = 0.278 ∼ 0.29 given
in Refs. [60,62].

V. CONCLUSIONS

A three-dimensional grid refinement method within the
framework of hybrid recursive regularized lattice Boltzmann
method was developed in this paper. The numerical tests
including isentropic vortex propagating through transition
interface, shock-vortex interaction with intersection between
grid refinement interface and shock corrugation, and transonic
flows over 3D ONERA M6 wing with seven embedded grid
levels were performed to assess the proposed implementation.
The numerical validation shows the excellent performance of
the proposed implementation for 3D grid refinement in the
applications of compressible aerodynamics with and without
shocks.

Expt.

Expt.

Expt.

Expt.

FIG. 18. Pressure coefficient at y = 20% span, y = 44% span,
y = 65% span, and y = 90% span (from top to bottom) obtained
by the present LB with grid refinement for inviscid flows past
ONERA-M6.
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