Mohamed Amine Khelif
email: mohamed-amine.khelif@ensea.fr

Jordane Lorandel

Olivier Romain

Matthieu Regnery

Denis Baheux

Guillaume Barbu

Toward a hardware Man-in-the-Middle attack on PCIe bus

Keywords: Hardware, Man-in-the-Middle, Security, Smartphones, Forensic, PCIe

The growing need for high rate communication of recent embedded systems is leading to the adoption of the PCIe protocol (Peripheral Component Interconnect express) as an internal data bus. This technology is used in some recent smartphones, and will probably be adopted globally in the next few years. The communication between the processor (in the SoC) and its memory through the PCIe bus represents an important source of information for criminal investigations. In this paper, we present a new attack vector on PCIe based on a hardware Man-in-the-Middle. This system allows real-time data analysis, data-replay, and a copy technique inspired by the shadow-copy principle. Through this one, it is possible to locate, duplicate, and replay sensitive data. The main challenge here is to develop an architecture compliant with PCIe protocol constraints, such as response time, frequency, and throughput, in order to be non-detectable to the communication parts. We designed a proof of concept of an emulator based on a computer with PCIe 3.0 bus and a Stratix 5 FPGA with an endpoint PCIe port as a development target.

Introduction

With the emerging of Internet of Things (IoT), Internet of Everything (IoE), and the proliferation of communicating objects that store and share data with their environment, new issues, and opportunities are created in many fields of application, such as industries, health care, smart homes, and so on. Moreover, with the recent technological advances, these objects have become more and more complex, by continuously integrating sophisticated functionalities, which are implemented either in hardware or in software.

Most of these devices are now smart, connected and store personal or sensitive data which must be strongly protected. These devices could represent the new backdoor towards information systems and a third party could benefit from these data without user consent. These backdoors are a security vulnerability, and their numbers have greatly increased in the last years [START_REF]CVE Details the ultimate security vulnerability datasource[END_REF].

Nowadays, from the point of view of forensic experts, accessing encrypted personal data in a smartphone has become one of the main challenging parts of investigations, to retrieve information from pieces of evidence. In order to better specify their properties and the positioning of our approach, a taxonomy of attacks is given. This paper deliberately focuses on attacks targeting smartphones. For forensic investigation domain, these attacks can be categorized into three types, depending on the operating range, advantages, and complexity of countermeasures:

Software Level Attacks (SLA) are realized by exploiting vulnerabilities in operating systems or applications to get a privilege escalation, or by confusing the user about the nature of the software to get more privileges. Both approaches aim to leak secret data or even to take control of the infected device. The main advantage here is the unlimited distance between the attacker and the victim. However, the attacker has little or no precision on the targeted device. This constraint makes this kind of attack unattractive for forensic experts, except for specific cases where the target is clearly identifiable and can be precisely attacked. Countermeasures are easily deployable, usually, a simple upto-date antivirus program can solve the problem.

Hardware Level Attacks (HLA) create vulnerabilities on devices by modifying the hardware and realizing unexpected interactions with its components. Historically, chips like CPU, GPU, hardware crypto engine, RAM, cache memory, NAND and baseband are the most affected by these attacks. Now, they are more laborious due to physical countermeasures like E.M. shields and sensors implemented directly into the chips, making them more robust. Countermeasures against hardware attacks are less flexible as they could only be integrated and effective for the next generation of devices.

Protocol Level Attacks (PLA) target both wired and wireless communication protocols. For wireless protocols, it could be applied to NFC, Bluetooth, WiFi, and RF communications. These attacks require to be within the range of the device protocol, i.e. going from 10cm for NFC to 30m for WiFi. No hardware modification of the targeted device is needed, but a minimum of equipment is required to interact at the protocol level. Depending on the used vulnerability and protocol, countermeasures may be more or less difficult to implement through a software update.

Another alternative consists of performing attacks on wired protocols, like USB through the smartphone's connector. These attacks can be more intrusive if targeting internal communication buses of smartphones such as I2C or PCIe. The latter has been introduced since the last generation of smartphone. The most challenging part of an attack on internal data buses consists of interfacing, while satisfying protocol requirements in terms of throughput and limited response time. These attacks can be considered as hardware and protocol attacks at the same time because they involve both hardware modification of the smartphone and deep knowledge of the wired communication protocol to be effective.

Finally, a good strategy could be the development of a combination of attacks, allowing a third-party to control and to enable features in order to exploit or create vulnerabilities.

In this article, we present the design of an FPGA-based platform that will be used to perform a hardware Man-in-the-Middle (MitM) attack on the PCIe bus of a computer, which emulates the behavior of the SoC of a smartphone. This MitM attack is able to log, modify and copy the data online into a shadow memory in order to be replayed to the host. The main challenge of our architecture is to perform this attack in real time and without being detected by the host. For this purpose, we must imperatively respect PCIe protocol constraints such as response time, frequency and throughput. The architecture and the attack are conceived with the intent of applying it to the context of a smartphone, but still compatible with all devices using PCIe bus.

This paper is organized as following: section 2 gives a state of the art related to the main known attacks on smartphones and Man-in-the-Middle techniques. Then, section 3 describes the challenges and the proposed approach. Finally, experimental results are presented in section 4, then perspectives and conclusion are given.

Related works

The growing interest of law enforcement agencies (LEA) to access information and personal data in connected objects is notable, particularly for criminal investigations. Smartphones represent an important source of personal information (SMS, phone calls, GPS positions, contacts, photos, etc.) that can be used to solve criminal cases or cold cases. Figure 1 illustrates the architecture of a smartphone, allowing the identification of the generic components that can be targeted by either protocol, software, or hardware attacks.

Attacks on smartphones

As seen below, the attacks can be resumed in these categories:

Attack on Smartphones

SLA

Viruses Spywares

Trojans

Rootkits

Backdoors Keylogger

HLA

Side channel Fault injection and instruction skipping

Physical tampering

HLA/PLA

MitM

PLA

WiFi

Bluetooth NFC USB I2C Fig. 2. Taxonomy of attacks on smartphones.

Software Level Attacks

Malwares are the fastest attacks to implement as they only require a computer to be realized. They have the advantage of being achievable at a long distance with more or less efficiency and accuracy, depending on the type of malware used. Malwares for smartphones work in the same way as for computers. Several types exist and the most relevant for forensic purposes are: Viruses: Hummingbad [START_REF]A whale of a tale: Hummingbad returns[END_REF], FalseGuide [START_REF]Falseguide misleads users on googleplay[END_REF] and Shedun family [START_REF] Bentley | Lookout discovers new trojanized adware; 20k popular apps caught in the crossfire[END_REF] malwares are the most famous examples. They are used to modify, corrupt or delete data and/or files on the device.

Spywares: are malicious softwares secretly installed on a device, in order to collect and transfer private information without the user's knowledge. A well-known example is Pegasus [START_REF] Lab | Sophisticated, persistent mobile attack against high-value targets on ios, Online[END_REF] which is capable of collecting passwords, gathering information from other apps, tracking location, phone calls, and text messages.

Trojans: are malicious programs disguised as normal applications, such as Swearing [START_REF]Check Point Software Technologies LTD, Swearing trojan continues to rage, even after authors' arrest[END_REF], which is a bank trojan operating in China which collects personal data, bank account information and bypasses the two-factor bank authentication.

Rootkits: are specific malwares allowing to take full control of an infected device by automatically install the necessary tools. The Gooligan [START_REF]Check Point Software Technologies LTD, More than 1 million google accounts breached by gooligan, Online[END_REF] rootkit is a famous example that breaches over one million Google accounts by rooting the infected device and accessing data from various Google applications.

Backdoors: are hidden features unknown to the legitimate user, which gives secret access to the software. It can be implemented in the operating system directly or in an application. They are often used to install malicious softwares among those seen above.

Keyloggers: are softwares that record the actions of the user on an infected device. For example, they can capture inputs from the touchscreen, take screenshots, or list user actions and active applications. This information can be used to acquire personal information from the user.

Other malwares: includes all other malwares that do not lead to data extraction or privilege escalation from smartphones:

• Botnets: are malwares that use a smartphone without the user's consent to perform specific tasks, usually for cryptocurrency mining or DDoS attack.

• Worms: are softwares that do not interact with smartphone's data, but have the only task to multiply themselves in the mass storage by exploiting OS vulnerabilities. • Ransomwares or cryptoviral malwares: are softwares that encrypt all personal data stored in a smartphone in order to block access to the user unless he pays the ransom to get the encryption key. • Logic Bombs: are malicious code portions developed to perform a specific task like removing data or files when particular setup conditions are met.

In general, malwares combine several of these types in order to be more efficient and to cover all possible scenarios. In addition, they exploit the user's credulity as well as software vulnerabilities or even other malwares already installed to attack the device.

Hardware Level Attacks

As previously defined, HLA attacks focus on the information leaks, by interacting with device's hardware. Such attacks require a deep understanding of the target (reverse engineering, etc.) and a physical access to the device. Hardware attacks mainly target the SoC (processor, cryptocore, cache memories, etc.), the NAND memory, clocks or PMU. For HLA attacks, several types are known from the state of the art and are described as follows.

Side channel: is performed by analyzing different physical parameters of the system in order to reveal secret information like encryption keys. The most relevant parameters to be analyzed are power consumption, execution timings and electromagnetic signals. Examples of recent exploits target the integrated AES cryptocore of the ARM Trust Zone cache [START_REF] Lapid | Cache-attacks on the arm trustzone implementations of aes-256 and aes-256-gcm via gpu-based analysis[END_REF] or the extraction of encryption keys from iOS and Android devices by electromagnetic analysis [START_REF] Genkin | Ecdsa key extraction from mobile devices via nonintrusive physical side channels[END_REF].

Fault injection and instruction skipping: is performed using different methods like: UV beams, laser, radiation, overheating, incorrect power supply voltage, noisy clock or power signals. This attack can lead to processing errors by introducing faults or skipping instructions to the benefit of the attacker.

Two of the recent practical examples are: attack against the instruction cache of an ARMv7-M using electromagnetic fault injection [START_REF] Riviere | High precision fault injections on the instruction cache of armv7-m architectures[END_REF], and fault injection using laser to bypass the secure boot [START_REF] Vasselle | Laser-induced fault injection on smartphone bypassing the secure boot[END_REF].

Physical tampering: this type of hardware attack is more invasive than the previous ones. Indeed, a deep hardware modification of the mother-board or the chip is required in order to perform the attack. An illustrative example is presented in [START_REF] Skorobogatov | The bumpy road towards iphone 5c nand mirroring[END_REF] dealing with the NAND mirroring of the iPhone 5C. The attack consists of desoldering the memory chip in order to have an unlimited number of password attempts. For this attack, all the NAND memory image is re-writed at every attempt to lock the value of the password attempts counter.

Protocol Level Attacks

Another kind of attack targets wireless and wired communication protocols used by smartphones, by exploiting implementation vulnerabilities. From the most used protocols in smartphones and the most affected by attacks are:

WiFi: it is a well known wireless communication protocol and one of the most attacked. A recent exploit on WiFi is the key re-installation attack [START_REF] Vanhoef | Key reinstallation attacks: Forcing nonce reuse in WPA2[END_REF], which consists in forcing WiFi cryptography protocol implementation to re-install the encryption key through a MitM. Several types of Wifi handshake protocols were concerned and critical issues were demonstrated on smartphones. This attack is particularly devastating on smartphones running Android 6.0 OS since it replaces the encryption key by an all-zero key.

Bluetooth: the most recent attack and at the same time one of the major threats on Bluetooth, was carried out in September 2017 by Armis Labs company after the discovery of eight zero-day vulnerabilities known as BlueBorn [START_REF] Seri | Blueborne: The dangers of bluetooth implementations: Unveiling zero day vulnerabilities and security flaws in modern bluetooth stacks[END_REF]. These vulnerabilities are the result of defects in the implementation of the Bluetooth protocol stack, affecting all devices under Linux, Windows, Android, tvOS and iOS. A proof of concept was realized on Android [START_REF] Seri | Blueborne on android: Exploiting an rce over the air[END_REF] and Linux [START_REF] Seri | Exploiting blueborne in linux-based iot devices[END_REF] devices.

NFC: an attack against this protocol has already been performed in 2012 [START_REF] Miller | Exploring the nfc attack surface[END_REF] revealing vulnerabilities in the Android NFC stack. The attack, also known as fuzzing, consists in generating NFC-compliant random data and performing data injection. This attack is often used for robustness tests and vulnerability identification in algorithm and protocol implementations. In [START_REF] Miller | Exploring the nfc attack surface[END_REF], a contactless NFC mobile reader is used to take control of a Galaxy Nexus running Android 4.0.1. A malicious web page is sent through NFC to further exploit another vulnerability and take control of the device.

USB: by injecting a malicious application through the USB port, an iPhone running on iOS 6 was attacked, allowing a hacker to take control of the device [START_REF] Lau | Mactans: Injecting malware into ios devices via malicious chargers[END_REF]. However, to make Mactans possible, the user must unlock its phone at least once while it is connected to the attacker device disguised as a charging station.

Internal data buses: are a potential target of attack in smartphones that are not deeply exploited while they represent a major source of sensitive data. However, a recent attack [START_REF] Shwartz | Shattered trust: when replacement smartphone components attack[END_REF] was performed on the I2C bus using a malicious touchscreen, allowing a touch injection attack combined with a buffer overflow attack on the touchscreen controller to inject malware to an Android phone. More recently, with the growing need for fast and massive memory accesses and the democratization of highspeed flash memories such as NVMe, it is critical to switch to high-performance buses, providing higher transfer rates such as PCIe. This bus was historically used in computers as a data bus for GPUs and expansion cards. No hardware attack was found in the state of the art, targeting PCIe protocol. Such attacks on internal communication buses can be considered as both physical tampering attack to access and interface with the bus, and protocol attack as we exploit the data exchanged between peripheral without being detected, in the case of a Man-in-the-Middle.

Table 1 gives a list of the most recent attacks inventoried and realized on smartphones, targeting protocol, hardware or software. Attacks targeting high speed communication buses have not been deeply investigated and remain a potential source of vulnerability with a direct access to sensitive data. Hardware Man-in-the-Middle on a communication bus used in smartphones has been chosen here due to the wide vector of different attacks that can be done with the same system.

The Man in the Middle

The Man in the Middle -MitM -is an attack which consists of introducing a third device into an end-to-end communication. This device works as an undetectable router between the two peripherals. In this position, the attacker can compromise the confidentiality and the integrity of the communication by recording and interfering with the exchanged data in real-time. This attack has been widely used [START_REF] Conti | A survey of man in the middle attacks[END_REF], especially in network communications for wireless protocols like WiFi [START_REF] Vondráček | Automated man-in-the-middle attack against wi-fi networks[END_REF], NFC [START_REF] Akter | Can you get into the middle of near field communication?[END_REF], Bluetooth [START_REF] Haataja | Two practical man-in-the-middle attacks on bluetooth secure simple pairing and countermeasures[END_REF], and few wired protocols like Ethernet [START_REF] Kiravuo | A survey of ethernet lan security[END_REF].

So far, performing a hardware MitM attack on a communication bus remains an under-exploited approach, particularly for internal buses of smartphones like PCIe or I2C. This type of attack does not require the exploitation of any vulnerability but uses the normal behavior of bus protocol by interfering between communication (SoC/NAND, SoC/baseband or SoC/WLAN) and operating as an invisible router. MitM is also a vector towards more evolved attacks such as data replay, traffic analysis or data corruption, which are particularly interesting, especially in the context of encrypted communications as for smartphones.

Traffic analysis: is an eavesdropping type attack that consists of deducing information from patterns. Typical information that can be obtained are the size of data in packets, the reading/writing addresses and the number of access to particular data, etc.. Data corruption: consists of modifying random data on the flow of communication, by switching bits for example. This attack can be used to discover potential implementation vulnerabilities by fuzzing the protocol.

Replay data: is another type of MitM attack, consisting in replaying encrypted or clear messages, previously recorded from legitimate communications between two devices. The final objective is to gain privileges by confusing the communication master. This attack works well, even on some encrypted communications making it a very interesting and efficient approach.

Problem statement and approach

In smartphones, the non-volatile memory contains all the user's personal data as well as critical security data such as encryption keys or the password attempts counter. Usually, the stored data is encrypted by a dedicated cryptocore in the SoC. In addition, another version of the password attempts counter can also be stored in a dedicated memory, usually an EEPROM, to improve security. If the counter values are different at a particular moment, the smartphone is automatically locked, preventing any access to the smartphone's content.

All this information including user and security data are exchanged through communication buses making access to such sensitive data a real threat, even if the the communication is encrypted. Thus, our approach consists of implementing a hardware MitM attack on these communication buses. This type of hardware attack is one of the less exploited attacks in the state of the art, while it is very promising as it is the only one that allows direct access to data and, in addition, offers a wide attack vector possibilities including data replay, traffic analysis and data corruption.

The goal behind using a hardware MitM attack is to reduce the amount of time between two password attempts by preventing the effect of the counter over time, as illustrated in Figure 4. This is very useful when trying to unlock a smartphone using a brute-force attack, as the time between two attempts evolves exponentially in a normal behaviour [START_REF] Gulati | Security enclave processor for a system on a chip[END_REF]. Using our approach, the attacker will have an unlimited number of password attempts. This represents a clear advantage if the attacker wants to try a large number of passwords without triggering any security mechanism. In fact, existing smartphones generally erase critical encryption files after a low number of tries, preventing the attacker to access sensitive data. An- other advantage is the time spent for testing a large number of passwords. As illustrated in Figure 4, our approach tends to significantly reduce the time needed to perform an exhaustive number of attempts. For example, if we consider a time window of 24 hours, the attacker could achieve near 10 attempts in a normal case, while using our approach, the attacker could try more than 1 million of passwords, representing approximately the number of combinations for a 6-digit password.

We also chose the high-performance PCIe communication bus as the target for our attack. Indeed, it is becoming widely used in embedded systems, particularly in smartphones. For example, PCIe is now used in the recent smartphones as a data bus between the SoC and NVMe (Non-Volatile Memory express), as related in [28]. Moreover, PCIe is also massively used in computers which will be very helpful to validate the approach before performing the attack onto a real smartphone.

To realize a hardware MitM on PCIe, the protocol imposes very strict constraints in terms of bus frequency, data rate and response time. The architecture must imperatively satisfy all these constraints in order to guarantee MitM's invisibility. In addition, several PCIe configurations exist, requiring the proposed approach to be compatible with the maximum of devices, if not all.

In the rest of the paper, we describe our architecture implemented onto an FPGA board and the smartphone emulator developed at a computer scale, that will demonstrate the effectiveness of the approach.

MITM attack on PCIe

Objectives and Challenges

The PCI express [29] is a serial local bus and the evolution of the parallel buses PCI and PCI-X. It was developed and introduced by Intel in 2004, with the aim of replacing all computer buses (PCI and AGP) for expansion boards. The bus is composed of serial links named lanes that connect the devices directly to each other. Each lane is composed of 4 wires, two differential pairs, one for transmission and one for reception, all in full-duplex. There are six possible interfaces for PCIe, depending on the number of lanes (x1, x2, x4, x8, x16, and x32). It has also five generations, and at each new one, the throughput is doubled, as indicated by Table 3. Historically used for GPU boards, PCIe technology has been extended for fast massive data transfers. Recently, a faster generation of SSD (Solid-State Drive) using an overlay called NVMe was proposed to overcome the throughput limitations of the SATA bus and the need for higher speed. For now, NVMe technology relies on multiple parallel memory accesses allowing to fully exploit the capabilities offered by PCIe. SSD based on NVMe are compatible with PCIe 3.0 and later. Transaction Layer (TL): uses header and payload, provided by Device Core, to generate a digest (optional) and to transfer the packet to the Data Link Layer. The header is made of 3 or 4 Data Words (1 DW = 32bits) depending on its format and type. The first DW has a fixed format and is composed of the main information needed to decode the rest of the header i.e. size of the header, presence of payload, type of packet, presence of digest, length of the payload, etc. When this information is known, the whole header can be decoded. The packets provided by the TL are called TLP (Transaction Layer Packets) and are divided into 4 categories: memory, Io, configuration, and messages.

Data Link Layer (DLL): has two principal purposes. Firstly, to transfer incoming packets from the TL to the Physical Layer, to add a sequence number and, a CRC that is checked by the receiver. Secondly, to transmit packets called DLLP (Data Link Layer Packets) used for flow control, power management, and acknowledgment, or negative acknowledgment of packets after checking sequence number and CRC.

Physical Layer (PL): adds 8-bit start and end-characters to make easier the detection of the packet boundaries at the receiver.

Regarding the chosen attack and the target communication bus, the architecture in our case of study must fulfill the following requirements:

• PCIe 3rd generation with transfer rates up to 8GT/s (0.985GB/s per lane).

• Maximal response time of 1ms.

• Physical interfacing to keep signal integrity.

• Invisibility to the communicating devices, without triggering any security mechanism. • Access to the exchanged packets.

To the best of our knowledge, there is no work dealing with a hardware MitM attack targeting PCIe gen 3.0 protocol.

Hardware MitM attacks for smartphones

Based on the previous requirements, three incremental scenarios were developed:

Traffic analysis: consists of analyzing bus communications to locate sensitive data. The main target in smartphones is the password attempts counter. Our goal is to identify at which address is stored the counter in the memory. This information could be obtained by triggering memory read/write accesses during a password unlock attempt.

Shadow Copy: when the secret data is located, the next step is to store a copy of it in an external memory (shadow memory). For smartphones, we can try again a password, and when the counter is read from memory by the host, we duplicate its value in the shadow memory.

Replay data: this will allow us to replay the recorded data to the host when needed. For a smartphone, we will be able to perform a brute force attack against the user password and at each time the SoC wants to read the value of the counter, we will replay the one stored in our shadow memory. This will provide an unlimited number of password attempts.

Typically, these attacks are the most used in the forensic domain since it will ultimately allow targeting the critical data. In this work, three scenarios are proposed but many other attacks could be investigated like statistical attacks for example. It can also be performed on other peripherals based on PCIe like baseband or WLAN.

A PC-based Emulator for MITM attacks on PCIe

For our proof of concept, we chose to develop a smartphone emulator at PC scale. This emulator [START_REF] Khelif | A versatile emulator of mitm for the identification of vulnerabilities of iot devices, a case of study: smartphones[END_REF] must be PCIe 3rd generation compliant to be as close as possible to smartphone SoC/NAND behavior. The MitM has to support transfer rates up to 8GT/s, meaning a throughput of 1GB/s per lane with a maximal response time tolerance of 1ms. To this purpose, an Intel Stratix V FPGA development board and a host computer are used to build the emulator. The considered FPGA owns a PCIe endpoint port 3.0 x8 and physical blocks compliant with the transfer rates and throughput requirements of the bus. Regarding the response time, the way of implementing the architecture will make the MitM respecting or not this constraint and this will be detailed later. Developing and performing this MitM on a computer allows us to validate the approach, and will also work on any device using the PCIe like smartphones after an adaptation of the setup to the proprietary physical interface requirements.

A schematic of the emulator is illustrated in Figure 6. It is composed of an ST-Avalon IP for interfacing with the host's PCIe port, our MitM IP for intercepting, filtering, and modifying PCIe packets, Xillybus IP which emulates the memory accessible from the host, and a softcore NIOS II to report information to the attacker computer.

ST-Avalon IP for PCIe

To physically interface with the PCIe bus, our architecture is based on Intel ST-Avalon interface [START_REF]Stratix V Avalon-ST Interface for PCIe Solutions, User Guide[END_REF] which is based itself on the PIPE IP [START_REF]Intel, V-Series Transceiver PHY IP Core, User Guide[END_REF] and specially built for PCIe. This IP is fully compliant with different generations and number of lanes, and supports all DLLP and TLP types. The DLLPs are handled internally by ST-Avalon and TLPs, which contain data from the host, are transmitted to Xillybus.

PCIe peripheral emulation with Xillybus IP

Xillybus [START_REF]Xillybus, Xillybus IP core product brief[END_REF] is a proprietary IP that is designed to easily interface FPGA with a host computer through PCIe Bus. Drivers are provided, which greatly simplifies communication. It also includes an ST-Avalon IP to interface with the bus. Xillybus IP is designed to process the TLP packets of the communication as a peripheral would do. The IP is available for several FPGA families, which makes it flexible to adapt to a specific model. In our case, it was also necessary to update the architecture of the PCIe interface from the first generation x8 lanes that is provided by default to the third generation x2 lanes in order to be closer to the interface used by most of the smartphones. Our design must also satisfy the data size constraints of the ST-Avalon IP.

NIOS II

The Stratix V development board doesn't own a hardware processor, this is why we integrate a NIOS II softcore. In our architecture, the NIOS II is mainly used to send information to the attacker computer after the analysis of the packets. It also helps to control the MitM and quickly switch between scenarios without modifying the IP and synthesizing it again.

MitM IP

This element, designed in the FPGA logic fabric, is able to analyze, filter, and modify PCIe packets on-the-fly. The analysis of the packets will permit the identification of sensitive data by determining access times and frequencies of memory read/write, and correlate them to particular events such as unlock attempts of the smartphone. This password attempts counter can be incremented and updated in the memory if the password is wrong, or reset to zero if the password is correct. Once the sensitive partition is identified, it will be duplicated into a shadow memory, in order to replayed at each time it is read again, which will freeze the counter value from the SoC's perspective.

Thus, the host can always update the value of the sensitive data in memory (Xillybus), but when it sends a read data request packet, it will be the MitM that will serve the initial recorded value of the data.

The proposed architecture [START_REF] Khelif | Toward a hardware man-in-the-middle attack on pcie bus for smart data replay[END_REF] for the hardware MitM attack on PCIe was gradually modified to satisfy the defined scenarios. It can perform:

1) Analysis and filtering of packets that may contain encrypted data. However, packet headers are always not encrypted and can be used to retrieve the metadata of the packet, including packet size and write/read addresses, to then analyze the number of accesses and their frequency to a particular memory location. 2) Data corruption by modifying/replacing partially or all the packets on-the-fly without triggering security countermeasures.

ST Avalon MitM IP Xillybus

3) Duplication of the data sent by the host to the NAND in the shadow memory, and replay it at each time the host wants MitM IP is now physically inserted between Xillybus and ST-Avalon, which means that all communications go through the MitM and could be modified by injecting errors or modifying their contents. The principle and the corresponding communications are presented in Figure 13. To illustrate the data injection capability of the architecture, we decided to modify the content of the WMR packet sent by the host to the memory. Results are presented in Figure 14. As it can be seen, the packet sent by the host is transmitted through several signals and filtered on-the-fly. Then the packet is modified during a single clock cycle between the arrival of the packet to its re-transmission from our MitM to Xillybus. We also generate new start/end of packet and packet valid signals, in order to be coherent with the modified packet and its timings.

SoC
In this example, our architecture only modifies data in the packet but other filtering options could be applied to modify any field of the packets such as packet type, write address, etc. Table 4 gives an overview of the resource utilization of the MitM design for the considered FPGA. The design uses less than 1% of the FPGA which permits to implement much more functionalities, such as shadow copy or more complex processing.

Shadow Copy

An interesting feature for an attacker is to bypass security mechanisms (which are not activated) by allowing only write access to memory while the read access is under control of the attacker. For this attack, we took inspiration from the shadow copy technology of Microsoft [START_REF] Gerend | Volume Shadow Copy Service[END_REF], which makes an instant snapshot of the volume. Figure 15 illustrates the shadow copy principle and the corresponding communications between the host, and the memory, and the role of our MitM architecture. To perform and test our shadow copy architecture, we used StreamWrite drivers of Xillybus with a custom C code to send random data with different PCIe packet payload size, between 1DW to 1024DW. The architecture stores a copy of all the data sent from the host to Xillybus by filtering and decoding the packets on-the-fly. When the communication is done, we use the StreamRead driver to recover the data sent by our shadow copy memory that took the place of Xillybus memory in the communication. We finally compare the original data sent with the data sent back from the architecture. Our solution does not generate any error and does not miss any data for these tests, up to PCIe gen3 x2. Our architecture achieves also better performance for decoding and recording data than Xillybus. On-the-fly packet decoding and data recording, allows to store all the data transmitted by a packet, 4 cycles before Xillybus begin to store the first DW, as it can be seen in Figure 16. The latency of 9 cycles of the shadow copy is due to the double FIFO design developed to convert the 64bits of data to 32bits in order to have the same output as for Xillybus IP.

Analysis

A summary of resources used by the hardware design is given in Table 4, allowing to evaluate the low footprint of the 3 MITM architectures. Another point with PCIe is the variety of possible configurations that could be implemented according to a given genera- tion, impacting the number of lanes, and the clock frequency. Table 5 illustrates the evolution of the number of hardware resources required by the MitM and ST-Avalon IPs for different PCIe configurations. It can be noticed that the number of hardware resources used by the MitM and ST-Avalon IPs is less than 1% of the total resources of the considered FPGA. In addition, in our case, Xillybus uses only 2% of the FPGA, but must not be taken into account as we used it as a test IP. As a summary, the proposed MitM architecture uses very few resources, giving us the possibility to implement new attack scenarios and much more complex real-time processing, including new analysis and decoding algorithms.

Perspectives and future works

We are currently working on the implementation of this attack on a smartphone that uses a PCIe bus. We started by reverse-engineering the smartphone motherboard, in particular, the SoC and the NAND chips, to find the best way to interpose. To realize a MitM between the NAND and the motherboard, we developed a protocol to extract the memory without damaging it, or loss the data. We also design an interposer allowing us to log all the signals using an active differential probe. The first results are presented in Figure 17. The recorded signals need to be improved by using a higher frequency probe. The next step is to develop a board that will interpose our MitM FPGA architecture between SoC and NAND.

For the architecture, we also need to upgrade the FPGA board to one that has a dual-port PCIe like the Intel Alaric Arria 10 board which owns 2 PCIe gen 3.0 x4 ports, one endpoint, and one root. The ports will be connected to both smartphone's motherboard from the endpoint port and the memory from the root port. Depending on the targeted smartphone for our attack, we possibly need to make our architecture NVMe compliant by implementing an overlay to decode this type of packets, which will potentially increase the latency of our MitM.

We are also looking to develop a daughter-board that will interface between the SoC/NAND of a smartphone, see Figure 18. The first version will be a sniffer in order to refine our architecture and analyze the communications to locate the sensitive information in encrypted communication. The second version will be then a MitM by redirecting PCIe lanes to make the communications between the memory and the SoC routed through the FPGA, using both of the endpoint and the root ports of the

board.

The countermeasures for our attack will also be investigated, implemented and tested in a real situation with the setup that will be realized based on the FPGA and the daughter-board.

Conclusion

In this paper, we present a versatile hardware MitM architecture capable of interfacing with PCIe bus communications. This low-footprint architecture proves that an invisible MitM can be performed on a high-performance data bus like PCIe with respect to its constraints. We also present an emulator used to evaluate this architecture, which aims to mimic the typical smartphone communications between the SoC and its memory through the internal PCIe data bus. To test our architecture, we performed three practical scenarios of attack: log and filter packets, log and corruption, and shadow copy of all the data transmitted through the PCIe bus in real-time. The architecture is able to process the packet in the flow, duplicate and store all the data 4 clock cycles before Xillybus begins its processing. It uses less than 1% resources of the FPGA board which is useful when implementing more complex algorithms. Our future work will focus on the evolution of the PCIe MitM architecture and the emulator to be NVMe compliant. We will investigate also the possibility of physical interposition between the SoC and the memory of a smartphone. This will require the development of a custom board to interface with its PCIe communication bus and to perform the MitM attack.

Moreover, once the interface will be designed, an investigation regarding how to analyze and extract useful information from PCIe communications will be done. Even if the content of the data stored into the smartphone's memory is encrypted, we are interested in the analysis of the number of access to particular locations of the memory, to then try to correlate them to security mechanisms such as the password attempts counter.

Fig. 1 .

 1 Fig. 1. Simplified smartphone architecture.

Fig. 3 .

 3 Fig. 3. Man in the Middle principle.

Fig. 4 .

 4 Fig. 4. Time evolution versus password attempts.

Fig. 6 .

 6 Fig. 6. Emulator of smartphone MitM on PCIe developed at PC scale.

Fig. 7 .

 7 Fig. 7. MitM architecture in sniffer mode.

Fig. 12 .

 12 Fig. 12. Chronogram data logging and packet filtering scenario test (recorded with SignalTap 2 logic analyzer).

Fig. 13 .

 13 Fig. 13. Communications during data logging and injection mode.

Fig. 15 .

 15 Fig. 15. Communications in the shadow copy mode.

Fig. 14 .

 14 Fig. 14. Chronogram of data logging and corruption scenario test (recorded with SignalTap 2 logic analyzer).

Fig. 16 .

 16 Fig. 16. Real communications during the Shadow Copy attack (recorded with SignalTap 2 logic analyzer).

Fig. 17 .

 17 Fig. 17. Clock and data signals recorded from a real smartphone.

Fig. 18 .

 18 Fig. 18. Illustration of the MitM prototype on smartphone.

Table 1 .

 1 State-of-the-art of attacks on smartphones.

	Attack	Type	Date	Target	Device	Results	Countermeasure
	Hummingbad [2]	SLA	2017	Virus	Android	Data corruption	Antivirus update
	FalseGuide [3]	SLA	2017	Virus	Android	Data corruption	Antivirus update
	Shedun [4]	SLA	2015	Virus	Android	Data corruption	Antivirus update
	Pegasus [5]	SLA	2016	Spyware	iOS	Stealing data	Antivirus update
	Swearing [6]	SLA	2017	Trojan	Android	Stealing data	Antivirus update
	Gooligan [7]	SLA	2016	Rootkit	Android	Control device	Antivirus update
	Nand mirroring [8]	HLA	2016	NAND	Apple iPhone 5c NAND	Unlock iPhones	From iPhone 6 counter redundancy in EEPROM
	EM attack [9]	HLA	2015	Cache	ARMv7-M	Fault injection	Ad-hoc protections designe and Algorithm protection
	Side channel [10]	HLA	2018	Cache	ARM TrustZone	Key extraction	bit-sliced AES implementation in ARMv7
	key extraction [11]	HLA	2016	CryptoCore	Android and iOS crypto lib	Key extraction	iOS 9: new library implementation
	I2C attack [12]	HLA	2017	I2C bus	Android 6.0	Inject malware	I2C encryption or device authentication
	Blueborne [13]	PLA	2017	Bluetooth	Windows, Linux, Android, iOS	Stealing data	Correction of the implementation protocol
	MitM Bluetooth [14]	PLA	2010	Bluetooth	Bluetooth Secure Simple Pairing	Data interception	Improve Secure Simple Pairing protocol
	Mactans [15]	PLA	2013	USB	Apple iPhone iOS	Inject malware	iOS 7: Ask user for trust host
	NFC Fuzzing [16]	PLA	2012	NFC	Android	Inject malware	Correction of NFC implementation protocol
	MitM NFC [17]	PLA	2017	NFC	NFC Tags	Data interception	Atmospheric and temperature sensors
	Key Reinstallation [18]	PLA	2017	WiFi	Android 6.0	Stealing data	Protocol update: One time key installation
	MitM Wifi [19]	PLA	2018	WiFi	Windows, Linux, Android, iOS	Data interception	DHCP snooping, dynamic ARP inspection and NDI
	Cellebrite [20]	PLA	2018	USB	Apple iPhone iOS	Unlock iPhones	iOS 12: Disable USB protocol after 1h
	GreyKey [21]	PLA	2018	USB	Apple iPhone iOS	Unlock iPhones	iOS 12: Disable USB protocol after 1h
	Our MitM Attack	HLA/PLA	2019	PCIe bus	All devices using PCIe bus	Log and modify data	No countermeasure known

Table 2 .

 2 Time for N password attempts.

	Nb of attempts	Time	Our method
	4	320 ms	320 ms
	5	1mn	400 ms
	6	6mn	480 ms
	8	36mn	640 ms
	9	1h36mn	720 ms
	10	25h36mn	800 ms
	11	data lost	880 ms
	10 6	data lost	22h 5mn 16.8s

Table 3 .

 3 PCIe evolution.

		PCIe	Date	Data	Transfer	Throughput
	Generation	Encoding	Rate	per lane
		1.0		2003	8b/10b	2.5GT/s	0.25GB/s
		2.0		2007	8b/10b	5GT/s	0.5GB/s
		3.0		2010	128b/130b	8GT/s	0.985GB/s
		4.0		2017	128b/130b	16GT/s	1.969GB/s
		5.0		2019	128b/130b	32GT/s	3.938GB/s
	As illustrated by Figure 5, PCIe protocol is based on three
	layers [29]:			
				TLP				Device
				Physical Layer		
				Data Link Layer			Device Core
				Transaction Layer		
	STP	Seq Num	Device Core HDR Payload	Digest	CRC	End	Transaction Layer
	1B	2B		3-4DW 0-1024 DW 1DW 1DW 1B
				DLLP			Data Link Layer
				Physical Layer		
				Data Link Layer		Physical Layer
		STP	DLLP Type Misc CRC	End	
		1B		1DW	2B	1B		RX TX
				Fig. 5. PCIe Layers and packet types.

Table 4 .

 4 MitM Architecture performances and resources.

	Tests	ALUT	Registers	Frequency	Latency	Throughput
	Logger	25 (<1%)	137	250 MHz	1 cycle	16Gb/s
	MitM	56 (<1%)	138	250 MHz	1 cycle	16Gb/s
	Shadow Copy	187 (<1%)	276	250 MHz	9 cycles	16Gb/s

Table 5 .

 5 MitM and ST-Avalon resources for several PCIe configurations.

	Tests	ALUT	Registers	Utilization	Frequency	Interface
	Gen1 x1	601	584	<1%	125 MHz	64 bits
	Gen1 x2	642	688	<1%	125 MHz	64 bits
	Gen1 x4	725	673	<1%	125 MHz	64 bits
	Gen1 x8	948	771	<1%	250 MHz	64 bits
	Gen2 x1	739	783	<1%	125 MHz	64 bits
	Gen2 x2	794	822	<1%	125 MHz	64 bits
	Gen2 x4	914	900	<1%	250 MHz	64 bits
	Gen3 x1	761	796	<1%	125 MHz	64 bits
	Gen3 x2	821	835	<1%	250 MHz	64 bits

Acknowledgement

The authors would like to thank the Paris Seine Initiative and IDEMIA for their financial support, and the members of PJGN for their constructive contribution to this work.

ST Avalon MitM IP Xillybus

to read at a specific memory address. Even if the data have been updated in memory, the MitM will continue to replay the initial value. We can notice that one of the main advantages of our architecture is that can be used with any device communicating over a PCIe bus with only a few modifications to adapt to the proprietary interface.

ST Avalon MitM IP Xillybus

Experimental results

Experimental setup

To validate our architecture, we emulate a smartphone architecture on a dedicated setup. For the host (SoC) we choose to use a dedicated computer, a DELL T7910 with double Intel Xeon Processor E5-2600 v4 (22 cores per processor) and 40 lanes PCIe split into 6 slots PCIe 3.0 x16. The proposed MitM architecture, described previously, was implemented into an Intel FPGA Stratix V DSP development board [START_REF] Intel | DSP Development Kit, Stratix V Edition[END_REF] which is equipped with a compatible gen 3.0 x8 lanes endpoint PCIe slot, 1GB DDR3 SDRAM, 939k registers and 622k logic elements. This FPGA will allows us to implement complex designs requiring real-time data analysis and modification. A second computer is used to switch between the different scenarios through the NIOS. It is also used to display results of filtering like packet headers.

The experimental setup is shown in Figure 10. All the figures in the following sections, showing the effectiveness of the approach, were obtained from real measurements on PCIe using SignalTap II Logic Analyzer from Quartus Software. We also have used an integrated logic analyzer (ILA) IP in order to physically access specific signals of our MitM architecture, e.g. control and data signals indicated in Figure 6.

Data logging and packet filtering

A first test was to perform packet filtering during host/memory or memory/host communication. This set-up will validate the possibility of being invisible from the two communicating elements, i.e. the computer and Xillybus. In our case, we deliberately filter three types of packets, by directly looking at the headers, which correspond to read memory request (RMR), write memory request (WMR), and completion with data (Cpl). The communication with the memory is done in the following way: if the host (master) wants to write data in memory, it sends a WMR packet, with the write address and the data, to be written into memory. Then, the memory responds with a DLLP acknowledge. In the case of RMR, if the host wants to read from the memory, it sends a RMR packet with the read address and the data size. Then, the memory responds with a Cpl packet which contains the requested data. These operations are described in Figure 11. As indicated by Figure 12, the architecture is able to successfully log the appropriate communications by filtering and decoding the packets.

Figure 12 represents a completion with data packet that contains a test message. This message is correctly sent by the host, then filtered by our architecture from the information available in the packet header, in order to only extract the data from it.

Data logging and packet corruption

To go further, the previous architecture was improved, by enabling on-the-fly modification of the content of packets. This