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Abstract—The increasing design and manufacturing costs are
leading to globalize the semiconductor supply chain. However, a
malicious attacker can resell a stolen Intellectual Property (IP)
core, demanding methods to identify a relationship between a
given IP and a potentially fraudulent copy.

We propose a method to protect IP cores created with high-
level synthesis (HLS): our method inserts a discrete birthmark in
the HLS-generated designs that uses only intrinsic characteristics
of the final RTL. The core of our process leverages the side
effects of HLS due to specific source-code manipulations, although
the method is HLS-tool agnostic. We propose two independent
validation metrics, showing that our solution introduces minimal
resource and delay overheads (< 6% and < 2%, respectively) and
the accuracy in detecting illegal copies is above 96 %.

I. INTRODUCTION

Semiconductor design houses are increasingly relying on
pre-designed Intellectual Property (IP) blocks, often designed
by specialized companies with methods based on high-level
synthesis (HLS). HLS starts from a high-level description and
automatically creates the corresponding Register-Transfer Level
(RTL) description [1]. The IP re-use paradigm, however, intro-
duces security concerns. A rogue employee in the integration
company can copy or resell illegal copies, undermining the
market of the company designing the IP [2]. IP designers
are forced to modify their design with proprietary information
to claim IP ownership during litigation. IP watermarking is
a popular protection method that can be applied in different
design stages [3]. Low-level watermarking methods can create
issues during physical design [4], while additional functions
added for IP watermarking can be detected and removed
with re-synthesis attacks [5], nullifying the function of the
IP watermark. Reusing part of the IP logic to implement the
watermark “signature” incurs high overhead [6].

Another approach uses intrinsic design properties (called
birthmarks) to detect if two designs share the same source.
While birthmarks have been used to detect software theft [7],
we investigate how to extend this approach to hardware for
semiconductor companies using commercial HLS tools.

We propose to integrate IP birthmarking during HLS. After
analyzing the effects of compiler and HLS transformations [8],
we observe that reverting transient HLS transformations is
never perfect in practice [9]. A transient transformation is a
modification of the C code (i.e., before HLS) that is reverted
on the resulting RTL design (i.e., after HLS). Our process
is shown in Fig. 1. We apply a set of transformations to
the input C code so that performing HLS on the modified
C code produces an RTL design that is affected by these
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Fig. 1: IP protection with birthmarking based on transient
transformations on the input C code.

transformations. For example, we introduce additional fake
operations controlled by additional inputs that can affect the
resource binding. Even if we remove the extra operations
after HLS, the resulting RTL contains slight modifications that
are impossible to match without replicating exactly the same
sequence of transient transformations. These minimal changes
constitute the birthmark for the IP design. We also propose two
metrics to analyze the relationship between two designs. Our
birthmarks are based on intrinsic properties of the circuit. So,
it cannot be removed with re-synthesis attacks [6], [10]. Also,
it is compatible with commercial HLS tools as it operates only
on the IP descriptions before and after HLS.

II. BACKGROUND

We assume the attacker aims at stealing, replicating, and
reselling an IP description. The attacker has access to the RTL
design (soft IP) or can reverse the gate-level netlist (firm IP)
to extract the corresponding RTL description [11]. The design
house, instead, aims at protecting its IP by claiming ownership
of a potentially stolen design. To create the IPs, the design
house uses commercial HLS without security enhancements.

IP birthmarking can suggest whether an IP has been poten-
tially stolen: if two designs have the same birthmark, one has
to be a copy of the other. Designers already used to identify the
illegal copies of software programs [12]. A hardware birthmark
must include both functional and structural information about
the circuit. Let IP; and IP5 be two circuits, and hbm a hardware
birthmark extraction function. The function hbm is a valid
hardware birthmark if hbm(IP;) = hbm(IP2) only when 1Py and
1P, are copies of each other with a high degree of confidence.
This definition refers to circuit similarity and containment to
differentiate the origin and the copy.



We aim at creating a hardware birthmark by exploiting
HLS effects. Indeed, even slight changes in the source code
can introduce considerable differences in the RTL design: the
HLS process is notably sensitive to syntactic variance [13].
This effect is still largely visible even with canonical repre-
sentations like static single assignment (SSA) and symbolic
techniques [14]. Compiler optimizations and their ordering
can significantly affect the area and latency of the HLS-
generated circuits [8]. Also, the impact of optimization passes is
application dependent. Software obfuscation techniques applied
to source code can negatively affect HLS quality of results [15].

III. PROPOSED APPROACH

Fig. 1 shows our IP birthmarking method. Let C' be the input
C code to synthesize. To create unique features unknown to the
attacker, we borrow the idea of C-based obfuscation [9], [16].
We identify a set T" of C-level transformations with parameters
known only to the design house. After applying 7', we obtain
the transformed code Ct that is fed into commercial HLS to
obtain the corresponding RTL design RT L. After HLS, we
obtain the final design RT Lp-1 by reverting T with a corre-
sponding set of RTL transformations 7'~ !. Designs RT Ly -1
and RTL (obtained by directly applying HLS to the code
C) have the same functionality but the micro-architecture of
RT Ly -1 contains unique features due to the combined effects
of code transformations, their parameters, and HLS. We use
these micro-architectural differences as hardware birthmark.

In case of IP copy, the attacker accesses only RT Lr-1 (i.e.,
the sold IP), while the design house can compare this poten-
tially stolen IP with its library of designs obtained before ap-
plying the reverse transformations. Verifying the birthmark can
be reduced to the following problem: proving that RT L1
originates from RT L1 allows the design house to claim IP
ownership since no one else has access to RT L.

IV. TP BIRTHMARKING CREATION

We create our birthmarking by applying transformations on
the input C code, using commercial HLS to generate the RTL,
and reverting the transformations on the output RTL.

We transform the input C code with key-based control flow
splitting, already used for obfuscating software code [17] and
logic locking [16]. After parsing, we list all eligible basic
blocks, excluding the ones with multiple exit branches. For
each basic block to transform, we introduce mutually-exclusive
variants preceded by an if/else statement having a key-
dependent condition. The “bogus blocks” have minor changes
in the operators, operands, or instructions order. These mod-
ifications aim at uniquely impacting HLS resource binding
and scheduling. The transformed C code (C'7) is rebuilt from
the modified CFG representation. We use commercial HLS
to obtain the corresponding RTL (RTLr). Its interface has
additional inputs for carrying the predicate keys, so HLS will
not remove them. After HLS, we revert the transient trans-
formations to 1) get a functionally equivalent design without
specifying the predicate keys, and 2) minimize the overhead
by removing the extra resources. With an RTL post-processing
step, we apply the key values as constants to the extra inputs,
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Fig. 2: Birthmark Extraction Flow

propagating the values to existing signals. For example, we
remove a multiplexer with a constant selector by connecting
the output directly to the proper input. As the values are
propagated, we also remove the parts that are no longer used.
For example, the other input of the multiplexer previously
removed becomes unconnected and we can remove the logic
generating this value if it is unused in other parts of the circuit.
Differently from [9], we apply RTL simplifications instead of
leveraging logic synthesis to remove the extra logic. So, we can
analyze the birthmark directly on the RTL design (RT Lp-1).

V. IP BIRTHMARKING EXTRACTION AND EVALUATION

A given IP design 7 has been allegedly copied from a
proprietary design with HLS-based birthmark (R7T'Lp-1) when
7 and RT Ly-1 both derive from the same design RT L (i.e.,
same C code, transformations and HLS optimizations) with
high structural similarity. Moreover, since the transformations
from RT Ly to RT Ly-1 only simplify the design, 7 is a copy
of RT Lp-1 if they are both contained into RT L.

We propose two birthmarking metrics to prove this relation-
ship (see Fig. 2). Each metric has specific definitions of simi-
larity (SIM) and containment (CNT). Let X and Y be two
designs and hbm a birthmark metric. Containment is defined
as I'(X,Y) = CNT(hbm(X), hbm(Y')) while similarity ¥ is
defined as X(X,Y) = SIM(hbm(X),hbm(Y)). So, 7 is a
copy of RT Lr-1 if and only if

['(r, RTL") = 100%
Vi e N:S(r, RTLT) > %(r, RTLY)

i.e. 7 is completely contained into R7T Ly and is much more
similar to RT Ly than to any other candidate design RTL}.
We should detect only direct IP copies (Credibility property),
and not designs that originate from the same original C code
but were transformed or synthesized differently. Our technique
should match the two designs even if the attackers adds their
own modifications (Resilience property).

A. Dataflow-based Birthmark

The dataflow graph (DFG) of RT Ly contains extra nodes
and edges due to the “bogus code”. After reversing the trans-
formations, the DFG of RT Lp-: is different from the RTL
generated directly from the input code. Let DFG = (V, E) be
the DFG of an RTL design, where V is set of circuit elements
and F the set of connections. Let DF'Gr, be the DFG of
the design transformed with key parameters i, and DF Gil
the DFG of the design after reverting the transformations.
Reverting the transformations does not add vertices. However,
HLS choices may impact the edges because of changes in the
interconnections. So, DF Gil should be similar to but also
contained into DFGr,. '



Since comparing two graphs is NP-complete, we approxi-
mate similarity and containment metrics on the two DFGs. We
focus on individual paths from inputs to outputs. We assign a
specific letter to each operator, register, and signal to convert
each input/output path into a string [18]. So, we compute string
similarity, which is a well-known problem in bioinformatics
and natural language processing.

1) Similarity: Given two RTL designs X and Y, we com-
pute the corresponding DFGs and in turn the set of strings SX
and SY. For every pair of strings, we compute the similarity
metric STM (s%,sY), obtaining |SX| x |SY| values. For the
similarity of two strings, we use Levenshtein distance and
Longest Common Subsequence (LCS). We select the T" values
with highest scores, where T' = min(|S¥|,|SY|), and we
average them to obtain the final similarity score X (X,Y).

2) Containment: The containment score is computed with
the same procedure, except for the containment metric between
two strings CNT(s%,s¥). We compute the metric as the
number of letters in s” that are present (in the same order)
also in sY. This metric is not commutative: CNT'(s%, s¥) ==
CNT(sY,s") only when the two strings are identical.

B. Scheduling-based Birthmark

We also evaluate the HLS effects on operation scheduling.
The transformations 7" force the HLS tool to change binding or
execution order to optimize the corresponding RT Ly, poten-
tially leading to different schedules. The final RTL reflects these
differences since reverting the transformations removes extra
logic without adding operation or modifying the scheduling.
Let RT L7 and RTLY be two designs obtained from the same
code C but with different transformations TX and T). Any
changes in the scheduling lead to different b1rthmarks

1) Similarity: Given two designs RTLX and RTLY, we
average the similarity scores between each pair of states:

Z: SIM (s, sY)
SIM(SX,8Y) =171 i
where R = max(R*, RY) (1)

where R' is the number of RTL states. If one design has less
states, we pad it out with empty states. We use operation types
for comparing the states instead of RTL names. We use Jaccard
coefficient on the operation sets to compute similarity [19]:

|OP(s*)NOP(sY)|
|OP(sX)UOP(sY)]
where OP(s") contains the operation types in state s*. OP(s")
is a multiset since it can contain multiple instances of the same
operation type. Similarity of two states/designs is symmetric.
2) Containment: We compute the containment score by
averaging the containment metric of the states. However, this
metric aims at determining whether one state (schedule) is
contained into another (i.e., it has equal or less operations).
So, the containment metric of two states is defined as:
|OP(s*) N OP(sY)|
|OP(s”)]

s¥) and the containment property are not symmetric.

SIM(s",sY) = (2)

CNT(s%,sY) = 3)

CNT(s*

VI. EXPERIMENTAL EVALUATION

We tested our method with five randomly-generated C de-
signs and two real benchmarks. We used Crokus! to generate
the random programs, while the real benchmarks are from CH-
Stone and MachSuite. We used Python tools to transform the C
code based on input parameters and revert the transformations
with the same key values. HLS is performed with Xilinx Vivado
HLS. We used Yosys to extract the DFG of an RTL design,
and the Networkx Python library to extract the shortest path
from each input-output pair. We used a pre-defined alphabet
to represent them and a combination of Python libraries and
custom scripts to compute the metrics on them.

We composed the dataset by applying C' (i.e., combinations
of transformation and parameters) to D designs. We obtained
M = D-C designs that we synthesized and reverted. The pairs
of designs before and after reverting the transformations are
positive pairs (P) because our birthmarking extraction process
should confirm the relationship. Our metrics are expected to
show no relationships for any other pair (negative pairs). We
used 15 configurations for each random program and 3 for each
real benchmark. So, we obtain 75 positive and 5,550 negative
pairs for the synthetic benchmarks, along with 15 positive and
210 negative pairs for each real benchmark. In all cases, we
apply transformations to at least 50% of the basic blocks.

Classification Accuracy. We use the similarity and contain-
ment scores as binary classifiers with two thresholds ks and
k., respectively. Above the threshold, the pair is classified as
positive. To evaluate prediction accuracy, we use traditional
classification metrics: recall, precision, and balanced accuracy.

Fig. 2a and Fig. 2b show the results for the metric scores
in dataflow- and scheduling-based birthmarking, respectively.
In all cases, the average score for positive pairs (blue bars)
is significantly higher than the average for negative pairs (red
bars). However, only for the scheduling scores there is a clear
distinction between the values for positive and negative pairs.
So, a threshold value in between allows us to correctly classify
the pairs. Conversely, dataflow scores are partially overlapping,
leading to incorrect classifications depending on the threshold.

Table I reports more details on correct/incorrect classifica-
tions and the corresponding metrics. While scheduling scores
lead to perfect classifications in all cases, the balanced accu-
racy for dataflow-based containment is the lowest (75.21%),
while LCS similarity outperforms Levenshtein distance. In all
three cases, however, we have high false positives.

Credibility. We compare designs with the same input C
code but different transformations. All metrics have signifi-
cantly lower average scores (below 50%) and the pairs are
correctly classified as negatives. The classification improves
when increasing the number of transformations.

Resilience. We tested our metrics against design modifica-
tions by randomly adding a 5% of random “noise” operators in
the final RTL designs. We tested only the scheduling metrics
as they perform better. Scores and classification results are

Uhttps://github.com/JC-LL/crokus



@ Positive Pairs @ Negative Pairs

TABLE I: Results with dataflow containment and similarities as classifiers. T: 100%- i 3 I
threshold, Lev: Levenshtein distance, LCS: Longest Common Subsequence. sov ]
Dataflow-based birthmark Scheduling-based birthmark ]
Similarit Contain. Similarit; Contain. 0%
(Lev.;ml arl(]}:cs) ontamn i an(r?oise) on a]?noise) Similarity (Lev) Similarity (LCS) Containment
T =0.81 T =0.82 T =094 T=036 T=0.36 T=092 T=0.75 (a) Dataflow-based birthmark.
True Positive (TP) 50 55 44 75 75 75 74 100% [ ] Posi;ve Pairs @ Negative Pairs ® 'RTLT-w < RTLr1+noise
False Negative (FN) 6 1 12 0 0 0 1 } f
True Negative (TN) | 2,507 2252 | 2213 5550 5550 | 5550 5248 50%7
False Positive (FP) 573 828 867 0 0 0 302 ] I
0% — -
Precision 8.00%  620% | 4.80% | 100.00% 100.00%| 100.00% 19.70% Similarity Containment
Recall 89.30% 98.20% | 78.60% | 100.00% 100.00%| 100.00% 98.70% (b Scheduling-based birthmark and noise.
Balanced accuracy | 85.34%  85.67% | 75.21% 100.00% 100.00% | 100.00% 96.61%

reported in Fig. 2a, Fig. 2b, and Table I (label noise). Final
RTL designs (RT Lr-1) are no longer completely contained
into transformed RTL designs (RT'Lz) but metric scores for
positive pairs are still higher than the ones for negative pairs,
allowing a correct classification of most designs.

Real Benchmarks and Overhead. We tested our approach
on ADPCM and AES only for the scheduling-based birthmark-
ing. For both benchmarks, average scores are above 90% for
positive pairs_and below 45% for negative pairs. Similarity
metrics outperform containment ones. The balanced accuracy
is around 93% for ADPCM (with some false positives but no
false negatives) and above 99% for AES. Comparing the RTL
designs with and without our birthmarks, resource overhead
was below 6%, while delay overhead was under 2%.

VII. RELATED WORK

Obfuscation thwarts reverse engineering by locking the IP
functionality with a proper key. It can be performed at logic
[20] and behavioral levels [21]. HLS-based locking requires
custom EDA flows [16]. Watermarking aims at certifying the
ownership of an IP after chip fabrication [3]. Circuit water-
marking can be achieved by embedding secret information into
the IP test circuit [22], the input and output signals [4], or
in the finite state machines. They can be invalidated with re-
synthesis or removal attacks [5]. Birthmarks don’t use any extra
functionality, nullifying such attacks. Identifying illegal copies
at behavioral RTL is similar to determine if two programs share
a common origin [12]. Software birthmarking principles were
first used to detect the theft of Java programs [7]. Hardware
birthmarking was introduced to suggest similar designs for
reusability [18]. We borrow the key idea to identify whether
an IP has been illegally copied. High-level security techniques
can bring significant advantages [23] but may require custom
tools [6]. Our approach is compatible with commercial HLS.

VIII. CONCLUDING REMARKS

This paper aims at identifying illegal IP copies for HLS-
generated designs. It leverages the side effects of transient
transformations on the HLS input code. Our method is com-
patible with commercial HLS tools and creates IP birthmarks
that are hard to replicate without knowing the sequence of
optimizations and parameters. Extensive analysis on synthetic

Fig. 3: Average-Max-Min graphs.

and real benchmarks confirm we can identify IP relationships
with an accuracy above 96% (100% for similarity metrics) with
less than 6% resource overhead.
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