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Abstract : Peirce-evanescent baric identities are polynomial identities verified by baric
algebras such that their Peirce polynomials are the null polynomial. In this paper procedures
for constructing such homogeneous and non homogeneous identities are given. For this we define
an algebraic system structure on the free commutative nonassociative algebra generated by a set
T which provides for classes of baric algebras satisfying a given set of identities similar properties
to those of the varieties of algebras. Rooted binary trees with labeled leaves are used to explain
the Peirce polynomials. It is shown that the mutation algebras satisfy all Peirce-evanescent
identities, it results from this that any part of the field K can be the Peirce spectrum of a K-
algebra satisfying a Peirce-evanescent identity. We end by giving methods to obtain generators
of homogeneous and non-homogeneous Peirce-evanescent identities that are applied in several
univariate and multivariate cases.
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1. Introduction

Non-associative algebras are not necessarily associative algebras in which the associa-
tive identity (xy) z−x (yz) = 0 is replaced by one or more polynomial identities 1. These
polynomial identities can be univariate or multivariate, with constant or variable coef-
ficients. In cases where these algebras admit an idempotent, the Peirce decomposition,
a fundamental tool for their study, is obtained from the Peirce polynomial which is an
annihilator polynomial of the left multiplication operator Le : x 7→ ex, where e 6= 0 is an
idempotent.

However, there are algebras defined by polynomial identities for which the Peirce
polynomial is the null polynomial. Let us illustrate this situation by an example, let A
be a commutative K-algebra on a field K of characteristic 6= 2 verifying the identity

(1.1) x2x2 − αω (x)x3 − (1− α)ω (x)
2
x2 = 0

where ω : A → K is a nonzero algebra morphism. It is assumed that there is in A
an idempotent element e 6= 0, from e2 = e we deduce that ω (e)

2
= ω (e) from where

ω (x) ∈ {0, 1}, we can assert that ω (e) 6= 0 otherwise by setting x = e in the identity 1.1
we would have e = 0. First linearization of (1.1) gives:

4x2 (xy)−α
[
ω (y)x3 + ω (x)

(
x2y + 2x (xy)

)]
−2 (1− α)

[
ω (x)ω (y)x2 + ω (x)

2
xy
]

= 0

1«Without associativity, rings and algebras are not in general well enough behaved to have much of
a structure theory. For this reason, the nonassociative algebraists normally studies the class of rings
which satisfy some particular identity or set of identities.» M. Osborn [15].
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taking y ∈ kerω this relation becomes

4x2 (xy)− αω (x)
(
x2y + 2x (xy)

)
− 2 (1− α)ω (x)

2
xy = 0

specializing this identity for x = e we get

(2− α) (2e (ey)− ey) = 0.

Therefore, if α 6= 2 the Peirce polynomial is P (X) = 2X2 −X, the spectrum of Le is{
0, 1

2

}
and we have A = Ke ⊕ A (0) ⊕ A

(
1
2

)
where A (λ) = ker (Le − λid). The second

linearization of (1.1) gives

4 (ey) (ez) + (2− α) e (yz)− α ((ey) z + y (ez))− (1− α) yz = 0

with y, z ∈ kerω which establishes that A
(

1
2

)2 ⊂ A (0), A (0)A
(

1
2

)
⊂ A

(
1
2

)
and A (0)

2
=

{0} if α 6= 0, 1 or A (0)
2 ⊂ A

(
1
2

)
if α = 0 and A (0)

2 ⊂ A (0) if α = 1.

On the other hand if α = 2, the identity (1.1) is therefor written

(1.2) x2x2 − 2ω (x)x3 + ω (x)
2
x2 = 0

Algebras which verify the identity (1.2) are called backcrossing algebras because of
their genetic interpretation (cf. [12]), they appeared for the first time in [11] and subse-
quently in several other articles (see references in [13]). The linearization and specializa-
tion for x = e of 1.2 results in a null Peirce polynomial and therefore does not provide
any information on the spectrum of Le.

In [16], V. Tkachev called degenerate those identities whose Peirce polynomials are
null, in this work we prefer to name them evanescent2.

This paper is organized as follows. In section 2 we provide the commutative groupoid
M (T ) generated by a set at most countable T with an algebraic system structure, this
induces on the commutative free nonassociative algebra generated by T an algebraic
structure which allows to obtain for the classes of baric algebras satisfying a given set of
identities, similar properties to those of the varieties of algebras. In section 3 we define
the linearizations of the identities defined from the elements of the free algebra obtained
in section 2 and the Peirce polynomials of these identities, we show how to calculate
the Peirce polynomials by using rooted binary trees with labeled leaves. We define the
notions of evanescent polynomials and identities, we show that the mutation algebras
verify all evanescent identities and we draw consequences for the Peirce spectrum. We
end in section 4 by exposing methods to obtain the generators of the homogeneous and
non homogeneous evanescent polynomials, we apply these methods in several cases, we
thus obtain a little more than 250 evanescent identities.

2. Varieties for baric algebras.

Throughout this paper, K is a commutative field of characteristic 6= 2 and K-algebras
are assumed commutative.

2Evanescent comes from the present participle evanescens of the Latin verb evanescere meaning
"disappear, vanish". Indeed it is observed during the calculation that the terms of Peirce polynomials
disappear gradually.
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Let T = {tn;n ≥ 1} be a countable set of symbols, we denote by M (T ) the com-
mutative groupoid generated by T equipped with the binary operation, denoted ·, and
defined for all ti, tj ∈ T and u, v ∈M (T ) by:

ti · tj = titj , ti · u = ti (u) , v · ti = (v) ti, u · v = (u) (v) .

The elements of M (T ) are called nonassociative words (or monomials).
For a monomial w ∈M (T ), the degree of w in ti ∈ T , denoted by |w|ti or |w|i, is the

number of occurrences of ti in the monomial w, the degree of w denoted |w| is the length of
the monomial w in other words |w| =

∑
i≥1 |w|i and the type w is [|w|1 , . . . , |w|n , . . .]. Let

M (T )d be the set of monomials of degree d and M (T )[n1,...,nm,...]
the set of monomials

of type [n1, . . . , nm, . . .], we get:

M (T ) =
∐
d≥1

M (T )d ,(2.1)

and

(2.2) M (T )d =
∐

n1+···+nm+···=d

M (T )[n1,...,nm,...]
.

We also have the following result which will often be used later.

Proposition 1. [Proposition 2 in [18]] Every nonassociative word w with |w| ≥ 2 has
a unique representation in the form of a product of two nonassociative words of lesser
length.

For what follows, we provide the commutative groupoid (M (T ) , ·) with an algebraic
system structure ([2], chap 1) by defining on M (T ) a non commutative multiplication
law noted ? (this law is used in [1] to define generalized baric algebras) such that for any
u, v, u′, v′, w ∈M (T ) we have:

(u ? v) ? w = u ? (v ? w) = (u · v) ? w;(2.3)
(u ? v) · w = u ? (v · w) = v · (u ? w) ;(2.4)

(u ? v) · (u′ ? v′) = (u · u′) ? (v · v′) ;(2.5)

(u ? v) ? (u′ ? v′) = (u · v′) ? (u′ ? v′) .(2.6)

We note (M (T ) , ·, ?) this algebraic system and to reduce the notation we will write
M (T ) for (M (T ) , ·) when there is no risk of confusion. For all u, v ∈ (M (T ) , ·, ?) and
i ≥ 1, we inductively define the degrees of the elements of (M (T ) , ·, ?) by |u · v|i =
|u ? v|i = |u|i + |v|i.

We have the analogous statement of Proposition 1 for the elements of (M (T ) , ·, ?).

Proposition 2. Every element w of (M (T ) , ·, ?) admits an unique decomposition in the
form of w = w1w2 or w = w1 ? w2 with w1, w2 ∈ (M (T ) , ·, ?) such that |w1| , |w2| < |w|.

Proof. This is a consequence of Proposition 1. Indeed, we can consider that every element
of (M (T ) , ·, ?) is obtained from an element of M (T ) by replacing some · operations with
? operations. �

Proposition 3. We have (M (T ) , ·, ?) = M (T ) ∪ (M (T ) ?M (T )).
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Proof. Let us show that for every monomial w ∈ (M (T ) , ·, ?) such that w /∈M (T ) with
|w| ≥ 2, there are u, v ∈ M (T ) such that w = u ? v. By recurrence on the degree |w|.
If |w| = 2, there are ti, tj ∈ T such that w = ti ? tj . If |w| ≥ 3, it is assumed that
the property is true for any monomial of length < |w|. Let w ∈ (M (T ) , ·, ?) \M (T ) a
monomial of degree n, according to proposition 2, w is written in a unique way in the
form of w = w1w2 or w = w1 ? w2 with w1 or w2 in (M (T ) , ·, ?).

In the case of w = w1w2 there are three possible situations:
a) w1 ∈M (T ) and w2 ∈ (M (T ) , ·, ?)\M (T ), by hypothesis there are u2, v2 ∈M (T )

with w2 = u2 ? v2, then according to the relation (2.4) we get w = w1 (u2 ? v2) =
u2 ? (w1v2) where w1v2 ∈M (T );

b) w1 ∈ (M (T ) , ·, ?) \M (T ) and w2 ∈ M (T ), with w1w2 = w2w1, we refer to the
previous case a);

c) w1, w2 ∈ (M (T ) , ·, ?) \M (T ), by hypothesis there are u1, u2, v1, v2 ∈M (T ) such
that w1 = u1 ? v1 and w2 = u2 ? v2, then according to the relation (2.5) we get w =
(u1 ? v1) (u2 ? v2) = (u1u2) ? (v1v2) where u1u2, v1v2 ∈M (T ).

In the case of w = w1 ? w2 we have four possible situations:
a) w1, w2 ∈M (T ), the result is immediate;
b) w1 ∈ M (T ) and w2 ∈ (M (T ) , ·, ?) \M (T ), we have w2 = u2 ? v2 with u2, v2 ∈

M (T ), using relation (2.3) we find w = w1 ? w2 = w1 ? (u2 ? v2) = (w1u2) ? v2;
c) w1 ∈ (M (T ) , ·, ?) \M (T ) and w2 ∈ M (T ), we have w1 = u1 ? v1 where u1, v1 ∈

M (T ) then it follows immediately from (2.3) that w = (u1 ? v1) ? w2 = (u1v1) ? w2;
d) w1, w2 ∈ (M (T ) , ·, ?)\M (T ), it is assumed that w1 = u1?v1 and w2 = u2?v2 with

u1, u2, v1, v2 ∈M (T ) , then by successively applying the relations (2.6) and (2.4) we get
w = (u1 ? v1) ? (u2 ? v2) = (u1v1) ? (u2 ? v2) = ((u1v1) ? u2) ? v2 = ((u1v1)u2) ? v2. �

Let K (T ) be the commutative and nonassociative free K-algebra generated by M (T )
(see [18]). The elements of K 〈T 〉 are nonassociative polynomials, they are of the
form f =

∑
k≥1 αkwk with wk ∈ M (T ), αk ∈ K, then the degree of f , noted |f |,

is |f | = max {|wk| ;αk 6= 0} and for all ti ∈ T , the degree of f in ti is defined by
|f |i = max {|wk|i ;αk 6= 0}. We say that f is homogeneous if for all ti ∈ T and k ≥ 1
we have |wk|i = |f |i in other words, if all the monomials in f are of the same type.

We denote (K (T ) , ·, ?) (resp. K (T )
?) the free algebra generated by (M (T ) , ·, ?)

(resp. (M (T ) , ·) ? (M (T ) , ·)). It follows from the previous proposition that we have:

(K (T ) , ·, ?) = K (T )⊕K (T )
?

and so the elements of (K (T ) , ·, ?) have the form:∑
i

αiwi +
∑
j

βjuj ? vj , (αi, βj ∈ K;wi, uj , vj ∈M (T )) .

We apply the algebra system (K (T ) , ·, ?) to identities verified by baric algebras.
A K-algebra A is baric if there is a nonzero algebra homomorphism ω : A → K

called a weight function of A, we note this (A,ω), the image ω (x) of an element x of
A is called the weight of x, we note H(A,ω) or more simply Hω, the affine hyperplane
{x ∈ A : ω (x) = 1} (cf. [3], [17]). For the baric algebras we have the analog of the
substitution homomorphism of elements of an algebra for elements of T ([14], prop.
1.1).
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Proposition 4. Let (A,ω) be a baric K-algebra and let % : T → A be a map. Then
there exists a unique algebra homomorphism %̂ from (K (T ) , ·, ?) to (A,ω) such that

%̂ (ti) = % (ti) , %̂ (titj) = % (ti) % (tj) , %̂ (ti ? tj) = ω (% (ti)) % (tj) .

Proof. According to the hypothesis the map %̂ is defined for all monomials of degree
2 of (M (T ) , ·, ?). It is assumed that it is defined for all monomials of (M (T ) , ·, ?)
of degree < n, let w ∈ (M (T ) , ·, ?) be a monomial of degree n, we have w = w1w2

or w = w1 ? w2 with w1, w2 ∈ M (T ) of degree < n, by hypothesis %̂ (w1) and %̂ (w2)
are defined and we set %̂ (w) = %̂ (w1) %̂ (w2) if w = w1w2 and %̂ (w) = ω (%̂ (w1)) %̂ (w2)
if w = w1 ? w2, with this and by uniqueness of the decomposition of w, the map %̂
is well defined on (M (T ) , ·, ?), it is extended by linearity on (K (T ) , ·, ?) by setting:
%̂
(∑

k≥1 αkwk

)
=
∑
k≥1 αk%̂ (wk). �

Definition 5. Given f an element of (K (T ) , ·, ?) such as f 6= 0. We say that a baric
K-algebra (A,ω) verify the identity f if we have:

(2.7) %̂ (f) = 0,

for all substitution map % : T → A.

Remark 6. More generally, the algebraic system (K (T ) , ·, ?) allows to define the notion
of weighted identity introduced in [16]. Let A be a commutative K-algebra and let
% : T → A be a substitution map. A map φ : A→ K is said to be polynomial if for any
element a and b of A the map t 7→ φ (a+ tb) is polynomial. Let {φw;w ∈M (T )} be a
given family of polynomial maps, there exists a unique algebra homomorphism %̂ from
(K (T ) , ·, ?) to A such that %̂ (u · v) = %̂ (u) %̂ (v) and %̂ (u ? v) = φu (%̂ (u)) %̂ (v) for all
u, v ∈M (T ), so we say that the algebra A verify a weighted identity f ∈ (K (T ) , ·, ?) if
%̂ (f) = 0.

Under certain conditions, to show that a baric algebra (A,ω) verify an identity f it is
enough to show that A verify f for elements of weight 1.

Proposition 7. Let be f ∈ (K (T ) , ·, ?). If the field K verify cardK∗ > max {|f |i ; i ≥ 1},
then a baric K-algebra (A,ω) verify the identity f if and only if we have:

%̂ (f) = 0,

for all substitution map % : T → Hω.

Proof. The necessary condition is immediate. Let us show that the condition is sufficient.
Let be f ∈ K (T ) with f =

∑
r≥1 αrwr+

∑
s≥1 βsus?vs where αr, βs ∈ K and wr, us, vs ∈

M (T ) verifying %̂ (f) = 0 for all map % : T → Hω.
For 1 ≤ i ≤ n we set

Ri = {r; |wr|i = |f |i} and Si = {s; |us ? vs|i = |f |i} .

For all a1 ∈ A, ω (a1) 6= 0 we have ω (a1)
−1
a1 ∈ Hω , let be (xn)n≥2 where xn ∈ Hω,

taking % (t1) = ω (a1)
−1
a1 and % (ti) = xi for i ≥ 2, the condition %̂ (f) = 0 is written:∑

r∈R1

αrwr (a1, x2, . . .) +
∑
r/∈R1

αrω (a1)
|f |1−|wr|1 wr (a1, x2, . . .) +
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s∈S1

βsvs (a1, x2, . . .) +
∑
s/∈S1

βsω (a1)
|f |1−|us?vs|1 vs (a1, x2, . . .) = 0.(2.8)

We note f1 =
∑
r∈R1

αrwr +
∑
s∈S1

βsvs, we get |f1|1 = |f |1 and (2.8) is written:

f1 (a1, x2, . . .) +
∑
r/∈R1

αrω (a1)
|f |1−|wr|1 wr (a1, x2, . . .) +

∑
s/∈S1

βsω (a1)
|f |1−|us?vs|1 vs (a1, x2, . . .) = 0,(2.9)

in other words, we got %̂
(
f1 +

∑
r/∈R1

αrwr +
∑
s/∈S1

βsus ? vs
)

= 0 where %̂ (f) = 0 for
% (t1) = a1 and % (ti) = xi (2 ≤ i).

Next, for all (xn)n≥1 where xn ∈ Hω, all z ∈ kerω and λ ∈ K, as x1 +λz ∈ Hω taking
% (t1) = x1 + λz and % (ti) = xi for i ≥ 2, according to (2.9) the identity %̂ (f) = 0 is
written:

λ|f |1f1 (z, x2, . . .) +

|f |1−1∑
k=0

λkg1,k (z, x1, . . .) = 0

where g1,k ∈ K (T ) with |g1,k|1 = k. By hypothesis we have cardK > |f |1, then replacing
λ with pairwise distinct elements λ0, . . . , λ|f |1 of K we get a homogeneous linear system
with |f |1 +1 equations for unknowns f1, g1,0, . . . , g1,|f |1−1 whose determinant is non-zero,
it follows that f1 (z, x2, . . .) = 0, this according to (2.8) or (2.9) is the same as %̂ (f) = 0
for % (t1) = z and % (ti) = xi (2 ≤ i). We have therefore established that %̂ (f) = 0 for
% (t1) = a1 and % (ti) = xi (2 ≤ i) for any a1 ∈ A and x2, . . . , xn ∈ Hω.

Taking % (t1) = a1, % (t2) = ω (a2)
−1
a2 and % (ti) = xi (3 ≤ i) where a1 ∈ A, a2 ∈ A,

ω (a2) 6= 0, xn ∈ Hω for n ≥ 3, the condition %̂ (f) = 0 leads to

∑
r∈R2

αrω (a1)
|f |1−|wr|1 wr (x) +

∑
r/∈R2

αrω (a1)
|f |1−|wr|1 ω (a2)

|f |2−|wr|2 wr (x) +

(2.10)

∑
s∈S2

βsω (a1)
|f |1−|us?vs|1 vs (x) +

∑
s/∈S2

βsω (a1)
|f |1−|us?vs|1 ω (a2)

|f |2−|us?vs|2 vs (x) = 0

where we put x = (a1, a2, x3, . . . , xn, . . .).
Then with % (t1) = a1, % (t2) = x2 + λjz (0 ≤ j ≤ |f |2) and % (ti) = xi where a1 ∈ A,

xi ∈ Hω (i ≥ 3), z ∈ kerω and λ0, . . . , λ|f |2 ∈ K pairwise distinct, we get
(2.11)∑
r∈R2

αiω (a1)
|f |1−|wr|1 wr (a1, z, x3, . . .) +

∑
s∈S2

βsω (a1)
|f |1−|us?vs|1 vs (a1, z, x3, . . .) = 0.

From (2.10) and (2.11) we deduce that %̂ (f) = 0 for % (t1) = a1, % (t2) = a2 and % (ti) = xi
(3 ≤ i), for all a1, a2 ∈ A, xi ∈ Hω.

Continuing thus one obtains by induction (2.7). �

The introduction of the multiplicative law ? in M (T ) allows for identities verified by
baric algebras to obtain a known result for the varieties of algebras (cf. [18] Theorem 3).
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Proposition 8. Let f ∈ (K (T ) , ·, ?) be an identity verified by a baric K-algebra (A,ω).
If the field K verify the condition cardK∗ > max {|f |i ; i ≥ 1} then each homogeneous
component of f is an identity verified by A.

Proof. Let f ∈ (K (T ) , ·, ?) be an identity verified by (A,ω). For all d ≥ 0 we denote
by f1,d the sum in f of monomial terms of degree d in t1, so we have f =

∑|f |1
d=0 f1,d.

To any map % : T → Hω is associated the map %1 : T → A such that %1 (tj) = % (tj)
if j 6= 1 and %1 (t1) = λ% (t1) where λ ∈ K, λ 6= 0. Then from %̂1 (f) = 0 it results∑|f |1
d=0 λ

d%̂ (f1,d) = 0 for all λ ∈ K, especially taking λ as pairwise distinct non-zero
values λ0, . . . λ|f |1 we get a system of |f |1 +1 linear equations of unknowns %̂ (f1,d) which
has a non-zero Vandermonde determinant, therefore we have %̂ (f1,d) = 0 for all d ≥ 0,
in other words the polynomials f1,0, . . . , f1,|f |1 are identities verified by A.

Applying the same procedure for indeterminate t2 to the polynomials f1,0, . . . , f1,|f |1
we obtain homogeneous polynomials in t1 and t2 which are identities of A. And thus, by
continuing for all variables t3, . . . , tn, . . . the result is established. �

Remark 9. Given the importance of the results obtained in the propositions 7 and 8, it
will now be assumed that the field K satisfies the condition stated in these propositions.

Let (K (T ) , ·, ?)[n1,...,nm,...]
be the linear subspace of homogeneous polynomials of type

[n1, . . . , nm, . . .], it follows from the proposition 8 that

(K (T ) , ·, ?) =
⊕

(n1,...,nm,...)

(K (T ) , ·, ?)[n1,...,nm,...]
.

From the proposition 8 we immediately deduce the form of the identities verified by
baric algebras.

Corollary 10. The identities verified by a baric algebra (A,ω) are of the form:
m∑
k=1

αkω (a1)
|f |1−|wk|1 . . . ω (an)

|f |n−|wk|n wk (a1, . . . , an) = 0, ∀a1, . . . , an ∈ A;

where αk ∈ K, αk 6= 0 and wk ∈M (T ) for all 1 ≤ k ≤ m.

Proof. Let f ∈ (K (T ) , ·, ?) be an identity verified by (A,ω). The set I = {i; |f |i 6= 0}
is finite, indeed for i > |f | we have |f |i = 0. Let n be the cardinal number of the set
I, we re-index the elements of T so that I = {1, . . . , n}. Then we notice that for each
monomial in f of type u ? v with u, v ∈ M (T ) such that |u ? v|i = |f |i, if % (tk) = ak

(1 ≤ k ≤ n) we have %̂ (u ? v) = ω (%̂ (u)) %̂ (v) with ω (%̂ (u)) = ω (a1)
|u|1 · · ·ω (an)

|u|n ,
however we have |u ? v|i = |u|i + |v|i from where |u|i = |f |i − |v|i. �

The point of view of the identities considered in the algebraic system (K (T ) , ·, ?)
makes it possible to obtain for the class of baric algebras similar results to those varieties
of algebras, what the point of view restricted to the algebra K (T ) does not allow to do,
for example the proposition 8 is not true in K (T ). Nevertheless, the use of the K (T )
algebra is very useful for writing more conveniently and manipulating identities. Indeed,
in (K (T ) , ·, ?) the writing of an identity verified by an algebra (A,ω) is not unique,
for example, the polynomials (t1t2) (t1t2) − (t1t2) t1 ? t2 and (t1t2) (t1t2) − (t1t1) t2 ? t2
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correspond in an algebra (A,ω) to the identity (xy)
2 − ω (x)

2
ω (y) y = 0, (x, y ∈ A),

which is written (t1t2) (t1t2)− t2. in K (T ).

Definition 11. Given f ∈ K (T ), f =
∑
k≥1 αkwk, we call homogenization of f , a

polynomial f? ∈ (K (T ) , ·, ?) defined by:

f? =
∑
k≥1

αkw̃k ? wk,

where for all k, i ≥ 1 we have w̃k ∈M (T ) with |w̃k|i = |f |i − |wk|i .

Proposition 12. Let (A,ω) be a K-algebra and let f ∈ K (T ) be a polynomial, the
following statements are equivalent

i) A verifies all homogenization f? of f ,
ii) A verifies one homogenization f? of f ,
iii) we have %̂ (f) = 0 for any map % : T → Hω.

Proof. The implication i)⇒ ii) is immediate.
For the rest we notice that for any map % : T → Hω and all w ∈ M (T ) we have

%̂ (w) = 1, from this we deduce that %̂ (f?) = %̂ (f) for all f ∈ K (T ) and all % : T → Hω.
ii) ⇒ iii) Therefore if f? is an identity of A, we have %̂ (f?) = 0 and so %̂ (f) =

%̂ (f?) = 0 for any % : T → Hω. .
iii) ⇒ i) Reciprocally if we have %̂ (f) = 0 for any map % : T → Hω then for any

homogenization f? of f we have %̂ (f?) = %̂ (f) = 0 this implies from the proposition 7
that the algebra A verifies the identity f?. �

This result naturally leads to the following definition.

Definition 13. Let (A,ω) be a K-algebra and let f ∈ K (T ), we say that f is an identity
verified by A if the algebra A satisfies any homogenization of f .

Baric algebras do not necessarily verify an identity, but in some cases the existence of
an identity is assured.

Proposition 14. If (A,ω) is a finite-dimensional algebra then A verifies an identity.

Proof. Let d+ 1 be the dimension of (A,ω). The result is true for d = 0 because in this
case A ' Ke with e2 = e and ω (e) = 1. Suppose d ≥ 1, let (e1, . . . , ed) be a basis of
kerω. For z ∈ kerω let Lz : x 7→ zx, the map Lz is an endomorphism of kerω and the set
L = {Lz; z ∈ kerω} is a subspace of End (kerω) generated by {Le1 , . . . , Led} therefore
([18], lemma 5, p. 103) L verifies the identity

P (t1, . . . , td) =
∑
s∈Sd

(−1)
sgnσ

tσ(1) · · · tσ(d).

From P (Lz1 , . . . , Lzd) y = 0 for any z1, . . . , zd ∈ kerω and y ∈ A we deduce that for all
a1, . . . , ad ∈ Hω we have P

(
La21−a1 , . . . , La2d−ad

)
y = 0 for any y ∈ A, in other words A

verifies the identity:∑
s∈Sd

(−1)
sgnσ

(
t2σ(1) − tσ(1)

)
· · ·
(
t2σ(d) − tσ(d)

)
td+1,

which finishes the proof. �
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The following example shows that in general this result is not true in infinite dimension.

Example 15. Let T = {tn;n ≥ 1} and let M (T )n be the set of monomials of degree n.
We have M (T ) =

⋃
n≥1 M (T )n and M (T )n ⊂

⋃
p+q=nM (T )p ×M (T )q thus the set

M (T ) is countable. Let ϕ : M (T )→ N be a bijective enumeration. We consider the alge-
bra A with basis

(
eϕ(w)

)
w∈M(T )

such that eϕ(u)eϕ(v) = eϕ(v)eϕ(u) = eϕ(uv) for any u, v ∈
M (T ). The algebra A is commutative, non associative because

(
eϕ(t1)eϕ(t2)

)
eϕ(t3) =

eϕ((t1t2)t3) and eϕ(t1)

(
eϕ(t2)eϕ(t3)

)
= eϕ(t1(t2t3)) with (t1t2) t3 6= t1 (t2t3), it is weighted

by ω
(
eϕ(w)

)
= 1. Suppose A verifies an identity f ∈ K (T ) where f =

∑
k≥1 αkwk, then

for % : T → A such that % (ti) = eϕ(ti) we get %̂ (f) =
∑
k≥1 αkeϕ(wk) therefore %̂ (f) 6= 0,

contradiction. Thus the algebra (A,ω) does not verify any identity.

Let (A,ω) be a baric K-algebra, we denote Id (A) (resp. (Id (A) , ·, ?)) the subset
of K (T ) (resp. (K (T ) , ·, ?)) whose elements are identities vérified by A. According
to the proposition 12 the set Id (A) is not empty if and only if it is the same with
(Id (A) , ·, ?). It is clear that Id (A) (resp. (Id (A) , ·, ?)) is a K-algebra and a two-sided
ideal of K (T ) (resp. (K (T ) , ·, ?)). We have seen in the proposition 8 that the elements
of (Id (A) , ·, ?) are homogeneous. On the other hand, according to the definition 13,
the ideal Id (A) can contain both homogeneous and non-homogeneous polynomials, but
contrary to what we showed for the lideal (Id (A) , ·, ?), homogeneous components of
a non-homogeneous element of Id (A) are not always identities of A. If H (T ) and
H (T ) denote respectively the set of homogeneous and non-homogeneous polynomials,
the partition K (T ) = H (T ) tH (T ) induces the partition of Id (A) into two subsets:
Id (A) = H (A)tH (A) where H (A) = Id (A)∩H (T ) and H (A) = Id (A)∩H (T ).
In what follows we study the properties of Id (A) and (Id (A) , ·, ?).

Proposition 16. Let (A,ω) be a K-algebra.
a) For any f ∈ Id (A) and any f ∈ (Id (A) , ·, ?) we have: f (1) = 0, where 1 =

(1, . . . , 1, . . .).
b) If Id (A) 6= Ø then we have H (A) 6= Ø.
c) Given f ∈ H (A) then for all i ≥ 1 such that |f |i 6= 0 there are g, h ∈ K (T )

verifying the conditions : f = g − h, |g|i = |f |i, |g|i > |h|i and g (1) = h (1).

Proof. a) Let f ∈ Id (A), f =
∑
k≥1 αkwk where αk ∈ K and wk ∈M (T ), from wk (1) =

1 it follows f (1) =
∑
k≥1 αkwk (1) =

∑
k≥1 αk. But according to the proposition 7 we

have
∑
k≥1 αk%̂ (wk) = 0 for any % : T → Hω, or ω (%̂ (wk)) = 1 and applying the weight

function ω to the relation %̂ (f) = 0 we get
∑
k≥1 αk = 0.

Let f ∈ (Id (A) , ·, ?), we have f =
∑
k≥1 αkwk +

∑
l≥1 βlul ? vl where αk, βl ∈ K and

wk, ul, vl ∈M (T ), then f (1) =
∑
k≥1 αk +

∑
l≥1 βl. For any map % : T → Hω we have

ω (%̂ (wk)) = 1 and ω (%̂ (ul ? vl)) = ω (%̂ (ul))ω (%̂ (vl)) = 1, then by applying the weight
function ω to the relation %̂ (f) = 0 we get

∑
k≥1 αk +

∑
l≥1 βl = 0.

b) The result is immediate if H (A) = Ø. If H (A) 6= Ø, let f ∈ H (A) and i ≥ 1 such
that |f |i 6= 0, we have f

(
t1, . . . , t

2
i . . . , tn, . . .

)
∈ Id (A) with

∣∣f (t1, . . . , t2i . . . , tn, . . .)∣∣1 >
|f (t1, . . . , ti . . . , tn, . . .)|, thus f

(
t1, . . . , t

2
i . . . , tn, . . .

)
− f (t1, . . . , ti . . . , tn, . . .) ∈ H (A).

c) Given f ∈ H (A), f =
∑
k≥1 αkwk where αk ∈ K, wk ∈M (T ). Let i ≥ 1 such that

|f |i 6= 0 we note Ii = {k; |wk|i = |f |i} then f =
∑
k∈Ii αkwk +

∑
k/∈Ii αkwk so taking
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g =
∑
k∈Ii αkwk and h = g − f we have |g|i = |f |i, |g|i > |h|i and from f (1) = 0 it

comes g (1)− h (1) = 0. �

Another difference between ideals (Id (A) , ·, ?) and Id (A) concerns the property of
T -ideal. A T -ideal of K (T ) is a two-sided ideal of K (T ) which is stable by substi-
tuting indeterminate ti by any element of K (T ) or, which is equivalent, stable by any
endomorphism of K (T ).

Proposition 17. Let A be a baric algebra such that Id (A) 6= {0}, then
a) The ideal (Id (A) , ·, ?) is a T -ideal of (K (T ) , ·, ?).
b) If cardK > 2µ where µ = min ({|f |i ; f ∈ Id (A) , i ≥ 1} \ {0}), the ideal Id (A) is

not a T -ideal of K (T ).

Proof. a) Let f ∈ (Id (A) , ·, ?), to any family (fn)n≥1 elements of (K (T ) , ·, ?) and
(an)n≥1 elements of A we associate the map % : T → A, % (ti) = fi (a1, . . . , an, . . .) then
from %̂(f) = 0 we deduce f (f1, . . . , fn, . . .) ∈ (Id (A) , ·, ?).

b) Suppose, by absurd, that Id (A) is a T -ideal. Let f∈H (A), f =
∑
k≥1 αkwk and

i ≥ 1 such that |f |i = µ. We note I = {k; |wk|i = |f |i}, so we have |wk|i < |f |i if k /∈ I
and f =

∑
k∈I αkwk +

∑
k/∈I αkwk. From cardK > 2µ we deduce that it exists α ∈ K

such that
∑
k∈I αkα

2µ +
∑
k/∈I αkα

2|wk|i 6= 0, then by taking a family (xn)n≥1 elements
of Hω and % : T → A verifying % (tk) = xk if k 6= i and % (ti) = αxi we have by hypothesis
%̂ (f) = 0, but ω ◦ %̂ (f) =

∑
k∈I αkα

2µ +
∑
k/∈I αkα

2|wk|i we have a contradiction, it has
been shown that f

(
t1, . . . , αt

2
i , . . . , tn, . . .

)
/∈ Id (A). �

The ideal Id (A) verifies a weakened notion of T -ideal.

Remark 18. Note ∆K (T ) the set of all polynomials h ∈ K (T ) such that h (1) = 1. An
ideal I of K (T ) is a stochastic T -idéal (cf. [1], p. 388) if I is invariant by replacing the
symbols ti by any element h of ∆K (T ). Let (A,ω) be aK-algebra, as for all (xn)n≥1 such
that xn ∈ Hω and all h ∈ ∆K (T ) we have ω

(
h (x1, . . . , xn, . . .)

)
= h (1) = 1, it follows

that %̂h (t1, . . . , tn, . . .) ∈ Hω therefore if f ∈ Id (A) according to the definition 13 and the
proposition 12, for any family (hn)n≥1 elements of ∆K (T ) we have %̂f (h1, . . . , hn, . . .) =

0 in other words f (h1, . . . , hn, . . .) ∈ Id (A) and Id (A) is a stochastic T -ideal.

3. Peirce polynomials - Peirce-evanescent identities.

In the rest of this paper, the symbol t is a letter that does not belong to the set T .

Let f ∈ (K (T ) , ·, ?), for any i ≥ 1, we have f (t1, . . . , ti + t, . . .) ∈ (K (T ∪ {t}) , ·, ?)
and the development of the polynomial f (t1, . . . , ti + t, . . .) can be written in the form

f (t1, . . . , ti + t, . . .) =
∑

0≤k≤|f |i

Li,k (f) (t, t1, . . . , ti, . . .)

where for all 0 ≤ k ≤ |f |i we have Li,k (f) ∈ (K (T ∪ {t}) , ·, ?) and |Li,k (f)|t = k.
The polynomial Li,k (f) is called the linearization of f of order k in ti. In particular,

we have Li,0 (f) = f .

Proposition 19. Let (A,ω) be a K-algebra verifying an identity f ∈ (Id (A) , ·, ?), then
for any i ≥ 1, the linearizations of f in ti are identities vérified by A.
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Proof. Let t /∈ T and f ∈ (Id (A) , ·, ?). For all i ≥ 1, all (ak)k≥1, a elements of A
and λ ∈ K∗, we consider the maps %, %λ : T ∪ {t} → A such that % (ti) = %λ (ti) =
ai, % (t) = a and %λ (t) = λa, by noticing that %̂λ (Li,k (f)) = λk%̂ (Li,k (f)), from
%̂λ (f (t1, . . . , ti + t, . . .)) = 0 we deduce

∑
0≤k≤|f |i

λk%̂ (Li,k (f)) = 0. So considering
the hypothesis made about the field K (cf. remark 9), by giving λ a non-zero values
λ0, . . . λ|f |i pairwise distinct, we obtain a linear system consisting of |f |i + 1 equations of
unknowns %̂ (Li,k (f)) whose determinant is not zero, therefore we have %̂ (Li,k (f)) = 0,
in other words polynomials Li,0 (f) , . . . ,Li,|f |i (f) are identities verified by A. �

For any i ≥ 1 and h ∈ (K (T ) , ·, ?), we introduce analogs of derivation operators ([8],
[10], [18]) ∆i,h : (K (T ) , ·, ?)→ (K (T ) , ·, ?) which are linear maps defined by:

∆i,h (tj) =

{
0 if tj 6= ti,

h if tj = ti,

∆i,h (u · v) = ∆i,h (u) · v + u ·∆i,h (v) ,(3.1)
∆i,h (u ? v) = ∆i,h (u) ? v + u ?∆i,h (v) , (u, v ∈M (T )) .(3.2)

Proposition 20. Given f ∈ (K (T ) , ·, ?), f =
∑
k≥1 αkwk where wk ∈ (M (T ) , ·, ?),

the linearization of f of order d in ti is obtained by

Li,d (f) =
∑
k≥1

αk∆d
i,t (wk) .

Proof. It is clear that Li,d (f) =
∑
k≥1 αkLi,d (wk), therefore it is sufficient to show that

Li,d (wk) = ∆d
i,t (wk), which we will do by recurrence on the degree of the monomial wk.

At degree 1 the result follows from the definition of the map ∆i,t. Suppose the result
true for all monomials of degree ≤ n. Let w be a monomial of degree n + 1, according
to the proposition 2 we have w = u · v or w = u ? v.

For the w = u ·v case we have Li,d (w) =
∑
p+q=d Li,p (u) Li,q (v) and with the induc-

tion hypothesis we get Li,d (w) =
∑
p+q=d ∆p

i,t (u) ∆q
i,t (v), from the relation (3.1) we de-

duce inductively that for any integer d ≥ 1 we have ∆d
i,t (u · v) =

∑
p+q=d ∆p

i,h (u) ∆q
i,h (v)

therefore we got Li,d (w) = ∆d
i,t (u · v) = ∆d

i,t (w).
In the case of w = u ? v we have Li,d (w) =

∑
p+q=d Li,p (u) ?Li,q (v) and with the

induction hypothesis we deduce that Li,d (w) =
∑
p+q=d ∆p

i,t (u) ?∆q
i,t (v), but with the

relation (3.2) we deduce inductively that ∆d
i,t (u ? v) =

∑
p+q=d ∆p

i,t (u) ? ∆q
i,t (v) and

therefore Li,d (u ? v) = ∆d
i,t (u ? v). �

Proposition 21. Let (A,ω) be a K-algebra and let f ∈ (K (T ) , ·, ?) be a homogeneous
polynomial such that f =

∑
p≥1 αpwp+

∑
q≥1 βquq ?vq where αk, βl ∈ K and wp, uq, vq ∈

M (T ) with |wp|i = |uq ? vq|i = |f |i for any i ≥ 1. Then for t /∈ T , for any integer i ≥ 1
and any map % : T ∪ {t} → A we have:

(3.3) %̂Li,1 (f) =
∑
p≥1

αp%̂∆i,t (wp) +
∑
q≥1

βq%̂∆i,t (uq ? vq) ,

where for all q ≥ 1 we have:
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%̂∆i,t (uq ? vq) =
( ∏
r≥1,r 6=i

ω (% (tr))
|uq|r

)
ω (% (ti))

|uq|i−1×(3.4)

[
|uq|i ω (% (t)) %̂ (vq) + ω (% (ti)) %̂∆i,t (vq)

]
.

Proof. According to the proposition 20 and by linearity of %̂ we have:

ρ̂Li,1 (f) =
∑
p≥1

αp%̂∆i,t (wp) +
∑
q≥1

βq%̂∆i,t (uq ? vq) .

Then by definition of the maps %̂ and ∆i,t we have for any integer q ≥ 1:

%̂∆i,t (uq ? vq) = ω (%̂∆i,t (uq)) %̂ (vq) + ω (%̂ (uq)) %̂∆i,t (vq) .

The maps ω and %̂ being linear, we have

ω (%̂ (uq)) =
∏
r≥1

ω (% (tr))
|uq|r .

Let us show that for any monomial u we have

ω (%̂∆i,t (u)) = |u|i
( ∏
r≥1,r 6=i

ω (% (tr))
|u|r
)
ω (% (ti))

|u|i−1
ω (% (t)) .

This result is true for any monomial u of degree 1, because ∆i,t (tj) = t if j = i and 0 if
not, thus ω (%̂∆i,t (tj)) = |tj |i ω (% (t)). Assuming this property verified for any monomial
of degree ≤ n, let u be a of degree n+ 1, we have u = u1u2 with |u1| , |u2| ≤ n,
ω (%̂∆i,t (u)) = ω (%̂∆i,t (u1))ω (%̂ (u2)) + ω (%̂ (u1))ω (%̂∆i,t (u2))

= |u1|i
(∏
r 6=i

ω (% (tr))
|u1|r

)
ω (% (ti))

|u1|i−1
ω (% (t))×

∏
r≥1,

ω (% (tr))
|u2|r +

∏
r≥1

ω (% (tr))
|u1|r × |u2|i

(∏
r 6=i

ω (% (tr))
|u2|r

)
ω (% (ti))

|u2|i−1
ω (% (t))

=
(∏
r 6=i

ω (% (tr))
|u1|r+|u2|r

)
(|u1|i + |u2|i)ω (% (ti))

|u1|i+|u2|i−1
ω (% (t))

and the result comes from |u1|i + |u2|i = |u|i. �

An element e of a K-algebra A is an idempotent if e 6= 0 and e2 = e. If the algebra A
has a weight function ω, from e2 = e we deduce that ω (e) (ω (e)− 1) = 0 thus ω (e) = 0
or 1.

Let (A,ω) be a K-algebra admitting an idempotent e such that ω (e) = 1, taking in
(3.4) the maps %(e,y) defined for any y ∈ kerω by

%(e,y) : T ∪ {t} → A,

%(e,y) (ti) = e (i ≥ 1) ,

%(e,y) (t) = y.

we get %̂(e,y) (uq ? vq) = %̂(e,y)∆i,t (vq) and with this (3.3) becomes:

(3.5) %̂(e,y)Li,1 (f) =
∑
p≥1

αp%̂(e,y)∆i,t (wp) +
∑
q≥1

βq%̂(e,y)∆i,t (vq) .
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We can deduce

Corollary 22. Let (A,ω) be a K-algebra admitting an idempotent e of weight 1 and let
f ∈ K (T ). For any homogenization f∗ of f we have:

%̂(e,y)Li,1 (f∗) = %̂(e,y)∆i,t (f) , (∀y ∈ kerω) .

Proof. Let i be an integer, we write f ∈ K (T ) in the form f =
∑
p≥1 αpwp +

∑
q≥1 βqvq

with wp, vq ∈M (T ) such that |wp|i = |f |i for all p ≥ 1 and |vq|i < |f |i for all q ≥ 1. Let
f∗ =

∑
p≥1 αpwp +

∑
q≥1 βquq ? vq be a homogenization of f , where for any q ≥ 1 such

that βq 6= 0 we have uq ∈M (T ) with |uq|i = |f |i − |vq|i. From (3.5) we get

%̂(e,y)∆i,t (f) =
∑
p≥1

αp%̂(e,y)∆i,t (wp) +
∑
q≥1

βq%̂(e,y)∆i,t (vq) = %̂(e,y)Li,1 (f∗) ,

which completes the proof. �

In the following we noteK 〈t〉 the subalgebra ofK ({t}) generated by the set {tn;n ≥ 1}
where for any integer n ≥ 1 we have: tn+1 = ttn = tnt with t1 = t. For each i ≥ 1 we
define the linear map ∂i by

∂i : K (T )→ K 〈t〉

∂i (tj) =

{
1 if j = i

0 if j 6= i,
(3.6)

∂i (uv) = t (∂i (u) + ∂i (v)) , (∀u, v ∈M (T )) .

To simplify the notation we will write ∂if instead of ∂i (f) for f ∈ K (T ).

Example 23. Let w =
(
((t1t2) t2) t23

) ((
t21t3

)
t1
)
we have:

∂1w = t
(
∂1

(
((t1t2) t2) t23

)
+ ∂1

((
t21t3

)
t1
))

= t
(
t3 + t

(
∂1

(
t21t3

)
+ 1
))

= t
(
t3 + t2∂1

(
t21
)

+ t
)

= 3t4 + t2.

∂2w = t (t∂2 ((t1t2) t2)) = t
(
t2 (∂2 (t1t2) + 1)

)
= t4 + t3.

∂3w = t
(
t
(
∂3 ((t1t2) t2) + ∂3

(
t23
))

+ t∂3

(
t21t3

))
= t2 (2t+ t) = 3t3.

A more convenient way to calculate polynomials ∂if uses the representation of the
elements of M (T ) by rooted binary trees with labeled leaves. The rooted binary trees
formalism comes back to Etherington’s papers [5, 7] for the study of the combinatorial
structure of non-associative monomials, applications of this formalism were originally
developed by Tkachev [16] to the Peirce decompositions of algebra identities.

A tree is a graph T =
(
T 0, T 1

)
non oriented, connected, without cycle, where T 0 6= Ø

(resp. T 1) is the set of vertices (resp. edges).
A tree T is rooted if a vertex, noted ρ

T
and called the root, is distinguished.

Two vertices s1, s2 ∈ T 0 are incident if s1 and s2 are the vertices of the same edge.
The valence of a vertex s is the number of incident vertices to s. A tree T is binary if
the valence of ρ

T
is 0 or 2 and if the valence of s ∈ T 0, s 6= ρ

T
is equal to 1 or 3.

Univalent vertices of a rooted binary tree T are called leaves, we note L (T ) the set of
leaves of T .

A rooted binary tree T is said T -labeled if there is a map Λ : L (T ) → T , we write
(T,Λ) such a tree.
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Two rooted binary trees T1 and T2 are isomorphic if there is a graph isomorphism
ϕ : T1 → T2 such that ϕ

(
ρ

T1

)
= ρ

T2
. The rooted trees isomorphism ϕ : T1 → T2 remove

the leaves: ϕ (L (T1)) = L (T2).
Two rooted binary trees T -labeled (T1,Λ1) and (T2,Λ2) are isomorphic if there is a

rooted tree isomorphism ϕ : T1 → T2 such that Λ2 ◦ ϕ|L(T1) = Λ1.
We denote TT the set of isomorphism classes of rooted binary trees T -labeled, we

provide TT with the grafting law: let T1, T2 ∈ TT , we associate with (T1, T2) the tree
T1 · T2 such that the graph of T1 · T2 without its root ρ

T1·T2
and two vertices adjacent to

ρ
T1·T2

has two connected components T1 and T2. With the grafting law TT is a magma
isomorphic to non-commutative magma Mag (T ), with this isomorphism Ψ : Mag (T )→
TT , the degree of w ∈ Mag (T ) on ti ∈ T is equal to the number of leaves labeled ti in
the tree Ψ (w).

With these notions on rooted and labeled binary trees, we have the following result
which provides a convenient and quick way to calculate polynomials ∂iw.

Let (T,Λ) be a rooted binary tree T -labeled, the altitude of a vertex s ∈ T 0, noted
} (s), is the minimum number of edges connecting s to the root ρ

T
(cf. [6]).

Proposition 24. For any w ∈M (T ) and any i ≥ 1, we have:

∂iw (t) =
∑

s∈Λ−1
w (ti)

t}(s),(3.7)

where Λ−1
w (ti) is the set of leaves labeled ti in the tree Ψ (w), in other words, Λ−1

w (ti) =
{s ∈ L (Ψ (w)) ; Λ (s) = ti}.

Proof. Let us show the result by induction on the degree of w. The result is true if w has
degree 1, indeed if w = ti on the tree Ψ (w) the leaf labeled ti is at altitude 0 because
it is confused with the root, so ∂iw = 1 = t0, if w = tj with j 6= i therefore we get
Λ−1 (ti) = Ø and by convention the sum is zero. Suppose the result (3.7) true for any
monomials of degree n, let w of degree n + 1, we have w = uv with u, v ∈ M (T ) of
degree at least 1. According to (3.6) we have

∂iw = t (∂iu+ ∂iv) =
∑

s∈Λ−1
u (ti)

t}(s)+1 +
∑

s∈Λ−1
v (ti)

t}(s)+1 =
∑

s∈Λ−1
u (ti)∪Λ−1

v (ti)

t}(s)+1,

where Λ−1
u (ti) and Λ−1

v (ti) denote respectively the set of leaves labeled ti in the trees
Ψ (u) and Ψ (v). But the tree Ψ (w) being the result of the grafting of trees Ψ (u)
and Ψ (v), it follows that the set of leaves of the tree Ψ (w) labeled ti is the union
of sets Λ−1

u (ti) and Λ−1
v (ti), and by definition of grafting the altitudes of the leaves

of Λ−1
u (ti) and Λ−1

v (ti) in the tree Ψ (w) are increased by one unit in relation to their
values in thre trees Ψ (u) and Ψ (v), we deduce from this that

∑
s∈Λ−1

u (ti)∪Λ−1
v (ti)

t}(s)+1 =∑
s∈Λ−1

w (ti)
t}(s). �

Example 25. To illustrate this result, we use the example 23 with the monomial w =(
((t1t2) t2) t23

) ((
t21t3

)
t1
)
. The labeled rooted binary tree associated with w is given below

(we only mentioned the indices of the labels).
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1 2
2

113 3

1
3

This tree has 4 leaves labeled t1 including three of altitude 4 and one of altitude 2,
so according to (3.7) we have ∂1w = 3t4 + t2. It has 2 leaves with the label t2, one of
altitude 4, the other of altitude 3 so ∂2w = t4 + t3. Finally the label t3 is carried by
three leaves all located at altitude 3 therefore ∂3w = 3t3.

Corollary 26. For any w ∈M (T ) and any i ≥ 1, concerning ∂iw we have:
a) The coefficients of the polynomial ∂iw are natural numbers.
b) The polynomial degree of ∂iw is equal to the maximum altitude of the leaves labeled

ti in the tree Ψ (w), in other words,

deg (∂iw) = max {} (s) ; s ∈ L (Ψ (w)) ,Λ (s) = ti} .

c) |∂iw| ≤ |w| − 1.
d) ∂iw (1) = |w|i.
e) If w = uv with u, v ∈ M (T ) such that |u|i , |v|i ≥ 1, the polynomial valuation of

∂iw is:

val (∂iw) =

{
min {val (∂iu) , val (∂iv)}+ 1 si |u|i |v|i 6= 0,
max {val (∂iu) , val (∂iv)}+ 1 si |u|i |v|i = 0.

Proof. a) and b) are immediate consequences of (3.7).
c) Inductively on the degree of w. If |w| = 1 the result is immediate because we have

∂iw = 0, 1. If the result is true for any monomial of degree ≤ n, let w ∈M (T ) of degree
n+1, there are u, v ∈M (T ) such that w = uv, we have ∂iw = t (∂iu+ ∂iv), in view of a)
we have |∂iw| = max {|∂iu| , |∂iv|}+1, we deduce from this with the induction hypothesis
that |∂iw| ≤ max {|u| , |v|}, as u 6= w and v 6= w we have |u| < |w| and |v| < |w| therefore
|∂iw| < |w|.

d) According to (3.7) we have ∂iw (1) = card
(
Λ−1
w (ti)

)
and by the magma isomor-

phism Ψ : Mag (T ) → TT , the number of leaves of the tree Ψ (w) labeled ti is equal to
the degree of w in ti.

e) This is an immediate consequence of (3.7) and the grafting law of rooted binary
trees. �

Let e ∈ A, we denote Le the K-algebra endomorphism on A defined by Le : x 7→ ex.

Proposition 27. Let (A,ω) be a K-algebra admitting an idempotent e ∈ Hω and let
f ∈ K (T ). For any integer i ≥ 1 we have

(∂if) (Le) (y) = %̂(e,y)∆i,t (f) (∀y ∈ kerω) .

Moreover, if f ∈ K (T ) is an identity verified by A we have: (∂if) (Le) (y) = 0 for
any y ∈ kerω.
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Proof. By linearity of maps ∂if and %̂(e,y)∆i,t it suffices to show that for any w ∈M (T )
we have %̂(e,y)∆i,t (w) = (∂iw) (Le) (y). Let us show this by induction on the degree of
w. If the degree of w is 1 we have %̂(e,y)∆i,t (tj) = 0, (∂itj) (Le) (y) = 0 if j 6= i, and
%̂(e,y)∆i,t (ti) = y = (∂iti) (Le) (y). Suppose the result true for all monomials of degrees
≤ n, let w ∈M (T ) of degree n+ 1, the monomial ω writes w = uv with u, v ∈M (T ) of
degrees ≤ n, and according to (3.1) and the inductive hypothesis we have

%̂(e,y)∆i,t (w) = %̂(e,y) (∆i,t (u) v) + %̂(e,y) (u∆i,t (v)) = Le∂i (u) (Le) y + Le∂i (v) (Le) y,

because %̂(e,y) (u) = %̂(e,y) (v) = e. Finally we have

Le∂i (u) (Le) y + Le∂i (v) (Le) y = Le (∂iu+ ∂iv) (Le) (y) = ∂i (uv) (Le) (y) .

If f is an identity verified by A, according to the proposition 19 we have %̂(e,y)∆i,t (f) =
0 for any y ∈ kerω. �

It follows from this proposition that for allf ∈ Id (A), polynomials ∂if are annihilator
of the operator Le whatever idempotent e of weight 1 of A.

Definition 28. Let f ∈ K (T ), for i ≥ 1, the polynomial ∂if is called the Peirce
polynomial in ti of f .

Polynomial f is said Peirce-evanescent if f 6= 0 and if all its Peirce polynomials ∂if ,
(i ≥ 1) are the null polynomial.

Polynomial f is a Peirce-evanescent identity (in short, an evanescent identity) if
f (1) = 0 and if f is Peirce-evanescent.

A K-algebra (A,ω) admitting an idempotent e ∈ Hω and verifying an identity f ∈
K (T ) is said Peirce-evanescent for f if the polynomial f is an evanescent identity.

Example 29. Let (A,ω) be an algebra verifying the identity

f (x, y) = x2
(
xy2
)
− x

(
xy2
)
− x2y + xy.

If we assume that there exists an idempotent in A, relative to this idempotent we find
∂xf (t) = 3t2 −

(
t2 + t

)
− 2t2 + t = 0 and ∂yf (t) = 2t3 − 2t3 − t + t = 0, so A is

Peirce-evanescent.

We denote by Ev (T ) the subset of K (T ) whose elements are evanescent polynomials,
so for all K-algebra (A,ω) admitting an idempotent e of weight 1, the set Ev (A) =
Ev (T ) ∩ Id (A) refers to the set of evanescent identities relative to e verified by A.

Proposition 30. The set Ev (T ) is an ideal of K (T ).

Proof. It is immediate thatEv (T ) is a linear subspace of K (T ). Let us show that for
any f, g ∈ K (T ) and for all i ≥ 1 we have

(3.8) ∂i (fg) = t (f (1) ∂ig + g (1) ∂if) .

Let f =
∑
p≥1 αpup and g =

∑
q≥1 βqvq where αp, βq ∈ K and up, vq ∈M (T ), we get

∂i (fg) =
∑
p,q≥1

αpβq∂i (upvq) = t

((∑
p≥1

αp

)
∂ig +

(∑
q≥1

βq

)
∂iu

)
,

but
∑
p≥1 αp = f (1) and

∑
q≥1 βq = g (1).

In particular, if we take f ∈ Ev (T ) and g ∈ K (T ) we get ∂if = 0 and according to
the proposition 16 we have f (1) = 0 from where ∂i (fg) = 0. �
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On the other hand, the ideal Ev (A) is neither a T -ideal of (K (T ) , ·, ?) nor a stochastic
T -ideal (cf. remark 18) as we can see in the following example.

Example 31. Starting from the evanescent identity characterizing backcrossing algebras
f (x) = x2x2 − 2x3 + x2, we consider the identity g (x) = f

(
1
2

(
x2 + x

))
.

We have g (x) = 1
16

[(
x2 + x

)2 (
x2 + x

)2 − 4
(
x2 + x

)3
+ 4

(
x2 + x

)2].
From ∂x

((
x2 + x

)2)
= 4t (2t+ 1) we deduce:

∂x
((
x2 + x

)2 (
x2 + x

)2)
= 2t∂x

((
x2 + x

)2)
= 8t2 (2t+ 1)

∂x
((
x2 + x

)3)
= t
(
∂x
((
x2 + x

)2)
+ ∂x

(
x2 + x

))
= t (2t+ 1) (4t+ 1)

finally we get ∂xg (x) = 1
16 (2t− (4t+ 1) + 4) 4t (2t+ 1) = 1

4 t (2t+ 1) (3− 2t) 6= 0.

Relation (3.8) gives a simple method for constructing evanescent identities.

Proposition 32. Let (A,ω) be an algebra admitting an idempotent e ∈ Hω and verifying
an identity of the type fg where f, g ∈ K (T ). If we have f (1) = g (1) = 0 then the
identity fg is evanescent.

Given (A,ω) a K-algebra verifying an identity f , the Peirce spectum is the set of roots
of Peirce polynomials ∂if , relative to an idempotent e ∈ Hω, these are the eigenvalues of
the operator Le which are involved in the Peirce decomposition of the K-algebra (A,ω)
verifying f . It is obvious that if the algebra (A,ω) verifies an evanescent identity, in
the absence of Peirce polynomials, the spectrum of the operator Le is undetermined. In
the following we specify this by showing that the spectrum of Le can be any part of K
containing 1, for this we use mutation algebras.

A mutation algebra (A,M,ω) is a K-algebra defined by a vector space A over K, a
linear map M : A → A, a linear form ω : A → K such that ω 6= 0, ω ◦M = ω and by
the multiplicative law xy = 1

2 (ω (y)M (x) + ω (x)M (y)) where x, y ∈ A. It follows from
the definition that ω (xy) = ω (x)ω (y) therefore ω is a weight function.

Example 33. Mutation algebras verify a multitude of identities. The construction of
these identities is based on the following property: in a mutation algebra (A,M,ω)

we have (kerω)
2

= 0, then taking x, y, x′, y′ in Hω such that x − y 6= 0 and x′ −
y′ 6= 0 we have (x− y) (x′ − y′) = 0. With this process we build ad libitum identities
verified by all mutation algebras, for example (t1 − t2)

2,
(
t21 − t2

)2, (t21 − t1) (t22 − t2),
(t1 + t2 − t3 − t4) (t1 − t2 + t3 − t4), t21t22 − (t1t2)

2 et cetera . . .

Mutation algebras verify all evanescent identities.

Proposition 34. Let (A,M,ω) be a mutation algebra, for any f ∈ Ev (T ) the algebra
A verifies the identity f .

Proof. Let f ∈ Ev (T ) be an evanescent identity, f =
∑
k≥1 αkwk where αk ∈ K and

wk ∈ M (T ). Let (A,M,ω) be a mutation algebra, for any family (xn)n≥1 of elements
of Hω we define the map % : T → Hω by % (ti) = xi, (i ≥ 1) and the algebra morphisms
ϕi : K 〈t〉 → A by:

ϕi (tn) =
1

2n
Mn (xi) .
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Let us show by induction on the degree that for all w ∈M (T ) we have:

%̂ (w) =
∑
i≥1

ϕi (∂iw) .

The result is immediate if w is of degree 1. Suppose the result true for all monomials of
degrees ≤ n. Let w be a monomial of degree n + 1, there are u, v ∈ M (T ) of degrees
≤ n such that w = uv, then %̂ (w) = %̂ (uv) = %̂ (u) %̂ (v), using the mutation algebra
structure of A we get %̂ (u) %̂ (v) = 1

2M (%̂ (u))+ 1
2M (%̂ (v)), with the induction hypothesis

this becomes 1
2M (%̂ (u)) + 1

2M (%̂ (v)) = 1
2M

(∑
i≥1 ϕi (∂iu) + ϕi (∂iv)

)
, but we have

ϕi (t∂iu) = 1
2Mϕi (∂iu), therefore %̂ (u) %̂ (v) =

∑
i≥1 ϕi (t (∂iu+ ∂iv)) =

∑
i≥1 ϕi (∂iuv)

from which the result. We deduce that

%̂ (f) =
∑
k≥1

αk%̂ (wk) =
∑
k≥1

αk
∑
i≥1

ϕi (∂iwk) =
∑
i≥1

ϕi

(∑
k≥1

αk∂iwk

)
=
∑
i≥1

ϕi (∂if) ,

and since f is evanescent we have ∂if = 0 for all i ≥ 1 therefore %̂ (f) = 0, and according
to the proposition 7 we have shown that algebra (A,M,ω) verifies the identity f . �

Proposition 35. For any subset P of K such that 1 ∈ P , there is a mutation algebra
(A,M,ω) having an idempotent e whose spectrum of the operator Le is P .

Proof. Consider the K-space A with basis (en)n∈N, equipped with the mutation algebra
structure defined by M : A → A, M (e0) = e0, M (ei) = 2ei+1 for all i ≥ 1 and with
ω : A → K such that ω (e0) = 1, ω (ei) = 0 for any i ≥ 1, then we get e2

0 = e0 and
e0ei = ei+1 therefore the element e0 is an idempotent and the spectrum of Le0 is P = {1}.

Let I be a non empty set and let P = {1} ∪ {λi; i ∈ I} be a subset of K. We consider
the vector space A over K with basis {e}∪{ei; i ∈ I} equipped with the mutation algebra
structure by the maps M : A→ A, M (e) = e, M (ei) = 2λiei and ω : A→ K such that
ω (e) = 1, ω (ei) = 0. This algebra (A,M,ω) admits e for idempotent element and for
all i ∈ I we have eei = 1

2M (ei) = λiei therefore the spectrum of Le is P . �

4. Evanescent identities of type [n], [n, 1], [n, 2], [n, 1, 1].

4.1. Method of obtaining generators for homogeneous and non-homogeneous
evanescent polynomials. ‌

Generators of evanescent identities are searched among non-homogeneous polynomials
defined as follows.

Definition 36. A non-homogeneous polynomial f ∈ K (t1, . . . , tn) is called a train
polynomial of degree (d1, . . . , dn) if f = g −

∑r
i=1 hi, with g, h1, . . . , hr ∈ K (t1, . . . , tn)

satisfying the following conditions:
a) f (1) = 0,
b) polynomial g is homogeneous of type [d1, . . . , dn],
c) for all 1 ≤ i ≤ r, polynomial hi is homogeneous of type [δi, d2, . . . , dn],
d) we have 0 ≤ δ1 < . . . < δr < d1.

Remark 37. For n = 1, if we take polynomials gi and hj in the set
{
xk; k ≥ 1

}
, we

find the definition of principal train polynomials introduced by Etherington [4] and with
gi and hj in

{
x[k]; k ≥ 1

}
where x[n+1] = x[n]x[n], x[1] = x we obtain plenary train

polynomials studied in [9].
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In the cases studied below, the following method is used to obtain the generators of
the evanescent polynomials in the form of train polynomial.

For a given n-tuple (d1, . . . , dn) and for w ∈M (t1, . . . , tn) of type [d1, . . . , dn], we are
looking for a polynomial Pw ∈ K (t1, . . . , tn) such that w − Pw is a train polynomial of
degree (d1, . . . , dn) verifying ∂i (w − Pw) = 0 for every 1 ≤ i ≤ n. For that we choose a
set F = {w1,k, . . . , wm,k; k ≥ 0} where

• for all 1 ≤ j ≤ m and all k ≥ 0 we have wj,k ∈M (t1, . . . , tn) and wj,k is of type
[k, d2, . . . , dn] or [k + 1, d2, . . . , dn],
• for all 1 ≤ i ≤ n there is 1 ≤ j ≤ m such that the integer sequence

(∣∣∂i (wj,k)
∣∣)
k≥0

is strictly increasing and the set of integers
{∣∣∂i (wj,k)

∣∣; k ≥ 0
}
is N or N∗.

Then for w ∈ M (t1, . . . , tn), w /∈ F , we put Pw =
∑m
j=1

(∑δj
k=0 αj,kwj,k

)
where δj =∣∣∂iw∣∣, for each 1 ≤ i ≤ n we have ∂i (w − Pw) ∈ K 〈t〉, therefore the search for the

polynomial Pw verifying ∂i (w − Pw) = 0 (1 ≤ i ≤ n) is equivalent to solving a system of
linear equations of unknowns (αj,k)1≤j≤m

0≤k≤δj
.

With regard to the generators of homogeneous evanescent polynomials of type [d1, . . . , dn].
We note by N the cardinality of M (t1, . . . , tn)[d1,...,dn] and by (wk)1≤k≤N the elements
of this set. Let be f =

∑N
k=1 αkwk, we search (αk)1≤k≤N such that ∂if = 0 for any

1 ≤ i ≤ n and
∑N
k=1 αk = 0, we have ∂if ∈ K 〈t〉 and according to the corollary 26,

|∂if | ≤
∑n
j=1 dj − 1, therefore the conditions

∑N
k=1 αk (∂iwk) = 0 and

∑N
k=1 αk = 0 give

a system of at most k
(∑n

j=1 dj − 1
)

+ 1 linear equations of unknowns (αk)1≤k≤N .

4.2. Evanescent train identities of degree (n) and evanescent homogeneous
identities of type [n]. ‌

In this section to simplify the notations we will write M (x) instead of M ({x}) and
K (x) instead of K ({x}).

For any n ≥ 1 we denoteM (x)[n] the subset ofM (x) whose elements are monomials of
type [n]. The numbers W[n] = card M (x)[n] are the Wedderburn-Etherington numbers,
they satisty to the following recursive relations depending on the parity of n. Starting
from W[1] = 1, we get:

W[2p] =

p−1∑
i=1

W[i]W[2p−i] +

(
W[p] + 1

2

)
, W[2p+1] =

p∑
i=1

W[i]W[2p+1−i], (p ≥ 1) .

The first values of W[n] are:

n 0 1 2 3 4 5 6 7 8 9 10
W[n] 0 1 1 1 2 3 6 11 23 46 98

4.2.1. Evanescent train identities of degree (n). ‌

In the following we note Q 〈x〉 the vector space over Q generated by {xn;n ≥ 1}.
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Proposition 38. There is no train evanescent identity of degrees (2) and (3).
For any n ≥ 4 and all w ∈ M (x)[n] verifying w 6= xn, there is an unique polynomial

Pw ∈ Q 〈x〉 of degree < n such that the polynomial w−Pw is an evanescent train identity
of degree (n).

Proof. Let be f (x) = αx2 + βx, we have ∂xf (t) = 2αt + β thus ∂xf = 0 if α = β = 0.
Let be f (x) = αx3 +βx2 +γx, we have ∂xf (t) = 2αt2 + (α+ 2β) t+γ and consequently
∂xf = 0 only if f = 0.

Let be w ∈ M (x)[n] such that w 6= xn, according to the result c) of corollary 26 we
have |∂xw| ≤ n− 1 and for any k ≥ 3 we have

(4.1) ∂x
(
xk
)

= 2tk−1 +

k−2∑
i=1

ti.

Let be p = |∂xw|, we have ∂xw (t) =
∑p
k=0 αkt

k and we are looking for Pw (x) =∑p+1
k=1 βkx

k such that ∂x (w − Pw) = 0 and Pw (1) = w (1) = 1. A simple calculation
gives ∂xPw (t) = 2βp+1t

p+
∑p−1
k=1

(
2βk+1 +

∑p+1
i=k+2 βi

)
tk+2β1 and we have ∂xw = ∂xPw

if and only if (βi)1≤i≤p+1 is solution of the linear system:

2βp+1 = αp, 2βk+1 +

p+1∑
i=k+2

βi = αk, (1 ≤ k ≤ p− 1), 2β1 = α0,

p+1∑
k=1

βk = 1,

which is equivalent to the triangular linear system: 2β1 = α0, βk −
∑k−1
i=1 βi = αk − 1

(2 ≤ k ≤ p + 1) as according to corollary 26 we have αk ∈ N for any 0 ≤ k ≤ p, the
solution (βi)1≤i≤p+1 of this system verify βi ∈ Q for all 1 ≤ i ≤ p+ 1. �

From this, the following corollary is immediately deduced.

Corollary 39. For any n ≥ 4, the vector space of evanescent train identities of degree
(n) has dimension W[n] − 1.

The proof of proposition 38 gives a method based on the resolution of triangular linear
systems to obtain evanescent polynomials, unfortunately it is difficult to apply for large
values of n, fortunately the following result gives an algorithm easier to implement.

Theorem 40. For any integers p, q ≥ 1 we put:

Ep,q (x) = xpxq − xp+1 − xq+1 + x2.

Let E be the ideal generated by the family {Ep,q; p, q ≥ 1} and π : K (x) → K(x)/E the
canonical surjection. So for all n ≥ 4 and w ∈ M (x)[n], w 6= xn we have π (w) = Pw
and for any f ∈ K (x) of degree ≥ 4, the polynomial f − π (f) is an evanescent train
identity of degree (n).

Proof. Using the relation (4.1) we show by a simple calculation that the polynomials
Ep,q are evanescent. Let us show by induction on the degree n ≥ 4 that w − π (w) is
evanescent and that π (w) ∈ Z 〈x〉 for any w ∈ M (x)[n], w 6= xn. We have π

(
x2x2

)
=

2x3 − x2 and we know that the polynomial x2x2 −
(
2x3 − x2

)
is evanescent. If the

result is true for any u ∈ M (x)[k], u 6= xk where 4 ≤ k ≤ n, let be w ∈ M (x)[n+1],
w 6= xn+1, there is u ∈ M (x)[p] and v ∈ M (x)[q] such that w = uv where 1 ≤ p ≤ q
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and p + q = n + 1. If u = xp or v = xq we have π (u) = u ou π (v) = v so we have
∂x (w − π (w)) = ∂x (uv − π (u)π (v)) = t (∂x (u− π (u)) + ∂x (v − π (v))) = 0. Moreover
if π (u) , π (v) ∈ Z 〈x〉 then π (w) = π (u)π (v) ∈ Z 〈x〉.

For all w ∈M (x)[n] we have π (w) ∈ Z 〈x〉 and w−π (w) is evanescent, then according
to the proposition 4.1, by uniqueness of the polynomial Pw we have π (w) = Pw. Finally
for any f ∈ K (x), f =

∑
k≥1 αkwk we have f − π (f) =

∑
k≥1 αk (wk − π (wk)) thus

f − π (f) ∈ E in other words, the polynomial f − π (f) is evanescent. �

Remark 41. This theorem makes it possible to specify a property stated in the proposition
38: for all w ∈M (x)[n] such that w 6= xn, the polynomial Pw verify Pw ∈ Z 〈x〉.

Theorem 40 gives a very practical and very fast way to obtain evanescent polynomials.

Example 42. Let be w =
((
x3x3

)
x2
) ((

x2x4
)
x3
)
, we have:

π (w) =
(
x2
(
2x4 − x2

)) (
x3
(
x3 + x5 − x2

))
=
(
2x5 − x2

) (
x6 + 2x4 − x3 − x2

)
= x7 + 2x6 + 2x5 − x4 − 2x3 − x2

we thus obtain the evanescent identity train of degree (17):((
x3x3

)
x2
) ((

x2x4
)
x3
)
− x7 − 2x6 − 2x5 + x4 + 2x3 + x.

Using this method we obtain the following generators of evanescent train identities:

– of degree (4):

x2x2 − 2x3 + x2.

– of degree (5):(
x2x2

)
x− 2x4 + x3; x3x2 − x4 − x3 + x2.

– of degree (6):(
x2x2

)
x2 − 2x4 + x2;

(
x3x2

)
x− x5 − x4 + x3;

x3x3 − 2x4 + x2; x4x2 − x5 − x3 + x2.((
x2x2

)
x
)
x− 2x5 + x4;

– of degree (7):(
x2x2

)
x3 − 3x4 + x3 + x2; x5x2 − x6 − x3 + x2;(

x3x3
)
x− 2x5 + x3;

(
x4x2

)
x− x6 − x4 + x3;

x4x3 − x5 − x4 + x2;
((
x3x2

)
x
)
x− x6 − x5 + x4;(

x3x2
)
x2 − x5 − x4 + x2;

(((
x2x2

)
x
)
x
)
x− 2x6 + x5.((

x2x2
)
x
)
x2 − 2x5 + x4 − x3 + x2;

– of degree (8):

x4x4 − 2x5 + x2;
(((

x2x2
)
x2
)
x
)
x− 2x6 + x4;(

x3x3
)
x2 − 2x5 + x2;

(
x4x3

)
x− x6 − x5 + x3;
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x2x2

)
x2
)
x2 − 2x5 + x2;

((
x3x2

)
x
)
x2 − x6 − x5 + x4 − x3 + x2;((

x2x2
)
x
)
x3 − 2x5 + x2;

(((
x2x2

)
x
)
x
)
x2 − 2x6 + x5 − x3 + x2;(

x3x2
)
x3 − x5 − 2x4 + x3 + x2;

(((
x2x2

)
x
)
x2
)
x− 2x6 + x5 − x4 + x3;((

x2x2
)
x3
)
x− 3x5 + x4 + x3;

(
x5x2

)
x− x7 − x4 + x3;(

x2x2
)
x4 − x5 − 2x4 + x3 + x2;

((
x3x2

)
x2
)
x− x6 − x5 + x3;(

x2x2
) (
x2x2

)
− 4x4 + 2x3 + x2;

(((
x2x2

)
x
)
x2
)
x− 2x6 + x5 − x4 + x3;

x5x3 − x6 − x4 + x2; x6x2 − x7 − x3 + x2;((
x3x3

)
x
)
x− 2x6 + x4;

((
x4x2

)
x
)
x− x7 − x5 + x4;(

x4x2
)
x2 − x6 − x4 + x2;

(((
x3x2

)
x
)
x
)
x− x7 − x6 + x5.

4.2.2. Evanescent homogeneous identities of type [n].

Proposition 43. There is no evanescent homogeneous identity of type [n] for all n ≤ 5.
For n ≥ 6, the vector space of evanescent homogeneous identities of type [n] is generated
by at least W[n] − n+ 2 evanescent homogeneous polynomials.

Proof. The result is immediate for types [2] and [3] because according to proposition
38 there are no evanescent polynomials. For the type [4] there is only a unique evanes-
cent polynomial that is not homogeneous. Let be n ≥ 5, to simplify the notation we
put N = W[n], we note w1, . . . , wN the elements of M (x)[n]. Say that there exists an
evanescent homogeneous polynomial of type [n] is equivalent to saying that there ex-
ists non-zero elements α1, . . . , αN in K such that

∑N
k=1 αkwk = 0,

∑N
k=1 αk = 0 and∑N

k=1 αk∂x (wk) = 0. However, with result c) of corollary 26 we have |∂xw| ≤ n − 1

for any w ∈ M[n] (x), thus for all 1 ≤ k ≤ N we have ∂x (wk) =
∑n−1
i=1 λk,it

i with

λk,i = 0 for i > |∂xwk| and
∑N
k=1 αk∂x (wk) =

∑n−1
i=1

(∑N
k=1 λk,iαk

)
ti, which amounts

to solving the n − 1 linear equations S :
∑N
k=1 λk,iαk = 0, (1 ≤ i ≤ n − 1) of unknowns

α1, . . . , αN . Considering the fact
∑N
k=1 αk = 0, the rank of the linear system (S) is

≤ n − 2 and its solutions form a vector space of dimension ≥ N − (n− 2). If n = 5,
we have ∂x

(
x5
)

= 2t4 + t3 + t2 + t, ∂x
((
x2x2

)
x
)

= 4t3 + t, ∂x
(
x3x2

)
= 2t3 + 3t2, the

system (S) is of rank 3 and it has (0, 0, 0) for unique solution. �

Using the method described in the proof we obtain the generators of evanescent ho-
mogeneous identities:

– of type [6]

x3x3 +
((
x2x2

)
x
)
x− x4x2 −

(
x3x2

)
x;(

x2x2
)
x2 +

((
x2x2

)
x
)
x− x4x2 −

(
x3x2

)
x.

– of type [7]

x4x3 −
(
x3x2

)
x2;(

x2x2
)
x3 +

((
x2x2

)
x
)
x2 − 2x4x3;

x4x3 +
(
x4x2

)
x−

((
x3x2

)
x
)
x−

(
x2x2

)
x3;
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x5x2 +
(
x2x2

)
x3 +

((
x3x2

)
x
)
x−

(((
x2x2

)
x
)
x
)
x− 2x4x3;

x4x3 +
(
x3x3

)
t+
(((

x2x2
)
x
)
x
)
x− 2

((
x3x2

)
x
)
x−

(
x2x2

)
x3;

x4x3 +
((
x2x2

)
x2
)
t+
(((

x2x2
)
x
)
x
)
x− 2

((
x3x2

)
x
)
x−

(
x2x2

)
x3.

– of type [8]

x5x3 −
(
x4x2

)
x2;(

x2x2
)
x4 −

(
x3x2

)
x3;((

x3x2
)
x2
)
x−

(
x4x3

)
x;(

x4x2
)
x2 +

((
x4x2

)
x
)
x−

(
x4x3

)
x− x6x2;(

x3x2
)
x3 +

(((
x2x2

)
x
)
x
)
x2 − 2

(
x4x2

)
x2;((

x2x2
)
x3
)
x+

(((
x2x2

)
x
)
x2
)
x− 2

(
x4x3

)
x;

x4x4 +
(
x4x3

)
x−

((
x2x2

)
x3
)
x−

(
x4x2

)
x2;(

x3x2
)
x3 +

((
x3x3

)
x
)
x−

(
x4x3

)
x−

(
x4x2

)
x2;(

x3x3
)
x2 +

(
x4x3

)
x−

((
x2x2

)
x3
)
x−

(
x4x2

)
x2;(

x4x3
)
x+

((
x2x2

)
x
)
x3 −

((
x2x2

)
x3
)
x−

(
x4x2

)
x2;(

x3x2
)
x3 +

(((
x2x2

)
x2
)
x
)
x−

(
x4x3

)
x−

(
x4x2

)
x2;((

x2x2
)
x2
)
x2 +

(
x4x3

)
x−

((
x2x2

)
x3
)
x−

(
x4x2

)
x2;(

x4x2
)
x2 +

((
x2x2

)
x3
)
x+

(((
x3x2

)
x
)
x
)
x− 2

(
x4x3

)
x− x6x2;(

x3x2
)
x3 +

(
x4x3

)
x+

((
x3x2

)
x
)
x2 −

((
x2x2

)
x3
)
x− 2

(
x4x2

)
x2;(

x2x2
) (
x2x2

)
+
((
x2x2

)
x3
)
x+

(
x4x2

)
x2 −

(
x4x3

)
x− 2

(
x3x2

)
x3;(

x5x2
)
x+

((
x2x2

)
x3
)
x+ 2

(
x4x2

)
x2 − 2

(
x4x3

)
x− x6x2 −

(
x3x2

)
x3;((

x2x2
)
x3
)
x+

((((
x2x2

)
x
)
x
)
x
)
x+ 3

(
x4x2

)
x2 − 2

(
x4x3

)
x− 2x6x2 −

(
x3x2

)
x3.

4.3. Evanescent train identities of degree (n, 1) and evanescent homogeneous
identities of type [n, 1]. ‌

LetW[n,1] be the cardinality of M (x, y)[n,1] the set of monomials of type [n, 1], because
we can write any w ∈ M (x, y)[n,1] in the form w = w1w2 with w1 ∈ M (x, y)[n−i] and
w2 ∈M (x, y)[i,1] where 0 ≤ i ≤ n− 1 we immediately deduce that

W[n,1] =

n−1∑
i=0

W[n−i]W[i,1], W[0,1] = 1.

And the first values of W[n,1] are:

n 0 1 2 3 4 5 6 7 8 9 10
W[n,1] 1 1 2 4 9 20 46 106 248 582 1376
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4.3.1. Evanescent train identities of degree (n, 1). ‌
For any integer r ≥ 1, we define x{r}y = x

(
x{r−1}y

)
where x{0}y = y, we put

F =
{
xn+1y, x{n}y;n ≥ 0

}
and Q 〈F 〉 denote the vector space over Q generated by the

set F .

Lemma 44. For any integer p ≥ 2 and r ≥ 0 we have:

∂x (xpy) = 2tp +

p−1∑
i=2

ti, ∂y (xpy) = t;(4.2)

∂x
(
x{r}y

)
=

r∑
i=1

ti, ∂y
(
x{r}y

)
= tr.(4.3)

Proof. We have ∂x (xpy) = t (∂x (xp) + ∂x (y)) = t∂x (xp) and using the relation (4.1) we
deduce the result, we also have ∂y (xpy) = t (∂y (xp) + ∂y (y)) = t. For r ≥ 1 we get
∂x
(
x{r}y

)
= t

(
1 + ∂x

(
x{r−1}y

))
and ∂y

(
x{r}y

)
= t∂y

(
x{r−1}y

)
, we deduce the results

by recursivity. �

Proposition 45. There is no evanescent train identity of degree (2, 1).
For any n ≥ 3 and any w ∈ M (x, y)[n,1] verifying w 6= xny and w 6= x{n}y, there is

an unique polynomial Pw ∈ Q 〈F 〉 with |Pw|x < n such that the polynomial w−Pw is an
evanescent train identity of degree (n, 1).

Proof. We have ∂x
(
x2y
)

= 2t2, ∂y
(
x2y
)

= t, ∂x (x (xy)) = t2 + t and ∂y (x (xy)) = t2,
but ∂x (xy) = ∂y (xy) = t, ∂x (y) = 0 and ∂y (y) = 1, with this we easily show that we can
not find (α, β, γ, δ) 6= (0, 0, 0, 0) such as the polynomial f = αx2y + βx (xy) + γxy + δy
verify ∂xf = ∂yf = 0.

Given w ∈ M (x, y)[n,1] such that w 6= xny and w 6= x{n}y with n ≥ 3. Let be
p = |∂xw| and q = |∂yw|, with result c) of corollary 26 it comes p, q ≤ n. From result d)
of corollary 26 we deduce that ∂xw (0) = ∂yw (0) = 0 and thus the valuations of ∂xw and
∂yw are greater than 1, we put ∂xw =

∑n
k=1 αkt

k and ∂yw =
∑n
k=1 βkt

k with αk = 0 if
k > p and βk = 0 as soon as k > q. We are locking for Pw =

∑n
k=1 λkx

ky+
∑n
k=1 µkx

{k}y
verifying ∂xPw = ∂xw, ∂yPw = ∂yw and Pw (1, 1) = 1. Using lemma 44 we get

∂xPw = (2λn + µn) tn +

n−1∑
i=1

(
2λi +

n∑
k=i+1

λk +

n∑
k=i

µk

)
ti

∂yPw =

n∑
i=2

µit
i +
( n∑
k=1

λk + µ1

)
t.

From the equation ∂yPw = ∂yw it results µi = βi for 2 ≤ i ≤ n and
∑n
k=1 λk+µ1 = β1.

From the equation ∂xPw = ∂xw we deduce 2λn + µn = αn and 2λi +
∑n
k=i+1 λk +∑n

k=i µk = αi for 1 ≤ i ≤ n−1, so we have λn = 1
2 (αn − βn) and for any 2 ≤ i ≤ n−1 we

find λi = 1
2 (αi − βi)+

∑n
k=i+1

1
2k−i+1 (αk + βk), finally by writing α1 = 2λ1 +

∑n
k=2 λk+∑n

k=1 µk in the form α1 = λ1 +(
∑n
k=1 λk + µ1)+

∑n
k=2 βk, we get λ1 = α1−

∑n
k=1 βk =

α1 − 1, all this makes it possible to determine µ1 = β1 −
∑n
k=1 λk. And we can verify

that Pw (1, 1) =
∑n
i=1 λi +

∑n
i=1 µi =

∑n
i=1 λi +

∑n
i=2 βi + (β1 −

∑n
k=1 λk) =

∑n
i=1 βi =

∂yw (1) = 1 according to the result d) of corollary 26. It has been shown that the system
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of equations ∂xPw = ∂xw, ∂yPw = ∂yw, Pw (1, 1) = 1 admits an unique solution Pw,
moreover according to corollary 26 we have αk, βk ∈ N and the above makes it possible
to affirm that λk, µk ∈ Q for any 1 ≤ k ≤ n and therefore Pw ∈ Q 〈F 〉. �

Corollary 46. For any n ≥ 3, the vector space of evanescent train polynomials lof degree
(n, 1) has dimension W[n,1] − 2.

Proof. According to the previous proposition the space of the evanescent polynomials
of type [n, 1] is generated by polynomials w − Pw for any w ∈ M (x, y)[n,1] such that
w /∈ F . �

Theorem 47. For any integers p, q ≥ 2 and r ≥ 0 we put:

Ep,q (x) = xpxq − xp+1 − xq+1 + x2,

Fp,q (x, y) = xp (xqy)− x (xy)− xpy − xq+1y + x2y + xy,

Fp,{r} (x, y) = xp
(
x{r}y

)
− xpy − x{r+1}y + xy,

F{r},p (x, y) = x{r} (xpy)− x{r+1}y − xp+ry + xr+1y.

Let I be the ideal generated by the family of polynomials
(
Ep,q, Fp,q, Fp,{r}, F{r},p

)
p,q≥2
r≥0

and π : K (x) → K(x)/I the canonical surjection. Then for any n ≥ 3 and any
monomial w ∈ M (x, y)[n,1] such that w /∈ F we have π (w) = Pw and for any f ∈⊕

n≥3K (x, y)[n,1], the polynomial f − π (f) is an evanescent train identity of degree
(n, 1).

Proof. We saw for theorem 40 that polynomials Ep,q are evanescent, let us show that the
same is true for polynomials Fp,q, Fp,{r} and F{r},q.

For p, q ≥ 2, we have ∂x (xp (xqy)) = t (∂x (xp) + ∂x (xqy)) = t∂x (xp) + t2∂x (xq) and
∂y (xp (xqy)) = t∂y (xqy), with relation (4.1) and lemma 44 we get:

∂x (xp (xqy)) = 2tp + 2tq+1 +

p−1∑
i=2

ti +

q∑
i=3

ti, ∂y (xp (xqy)) = t2.(4.4)

For any p ≥ 2 and r ≥ 0 we have ∂x
(
xp
(
x{r}y

))
= t

(
∂x (xp) + ∂x

(
x{r}y

))
and

∂y
(
xp
(
x{r}y

))
= t∂y

(
x{r}y

)
, from relation (4.1) and lemma 44 we deduce

∂x

(
xp
(
x{r}y

))
= 2tp +

p−1∑
i=2

ti +

r+1∑
i=2

ti, ∂y

(
xp
(
x{r}y

))
= tr+1.(4.5)

For any r ≥ 1 we have ∂x
(
x{r} (xpy)

)
= t
(
1 + ∂x

(
x{r−1} (xpy)

))
therefore we deduce

that ∂x
(
x{r} (xpy)

)
=
∑r
i=1 t

i+tr∂x (xpy) and from ∂y
(
x{r} (xpy)

)
= t∂y

(
x{r−1} (xpy)

)
it results ∂y

(
x{r} (xpy)

)
= tr∂y (xpy), and with lemma 44 we have

∂x

(
x{r} (xpy)

)
= 2tr+p +

r+p−1∑
i=r+1

ti +

r∑
i=1

ti, ∂y

(
x{r} (xpy)

)
= tr+1.(4.6)

A simple calculation using the relations obtained above and those of the lemma 44
shows that polynomials Fp,q, Fp,{r} and F{r},q are evanescent.
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Let us show that for any w ∈ M (x, y)[n,1] such that w /∈ F , polynomial w − π (w)

is evanescent. According to the relation (4.4), it is immediate for any w ∈ M (x, y)[3,1]

such that w 6= x3y and w 6= x{3}y. Assume the property true for all monomials of
M (x, y)[p,1] \

{
xpy, x{p}y

}
where 3 ≤ p ≤ n, let be w ∈ M (x, y)[n+1,1] verifying w 6=

xn+1y and w 6= x{n+1}y. We have two cases:
– there are u ∈ M (x, y)[p] and v ∈ M (x, y)[q,1] such that w = uv with u 6= x,

1 ≤ p, q and p + q = n + 1, then we have ∂x (w − π (w)) = ∂x (uv − π (u)π (v)) =
t (∂x (u− π (u)) + ∂x (v − π (v))) = 0 and likewise ∂y (w − π (w)) = 0;

– there are u ∈ M (x, y)[p] and v ∈ M (x, y)[q] such that w = (uv) y with uv 6=
xn+1, 1 ≤ p, q and p + q = n + 1, so ∂x (w − π (w)) = ∂x (((uv)− π (u)π (v)) y), it
results ∂x (w − π (w)) = t2 (∂x (u− π (u)) + ∂x (v − π (v))) = 0, in a similar way we have
∂y (w − π (w)) = 0.

It is easy to show by induction that for all w ∈ M (x, y)[n,1] such that w 6= xny and
w 6= x{n}y we have |π (w)|x < n and π (w) ∈ Z 〈F 〉, then by uniqueness of the polynomial
Pw such that w − Pw is evanescent, we get π (w) = Pw. �

This theorem gives an efficient algorithm for constructing evanescent train identities
train of degree (n, 1), as illustrated by an example.

Example 48. Let be w = x5
(
x
(
x
(
x
(
x4
((
x2x3

)
y
)))))

, in the algebra K(x)/F we find
modulo Ep,q:

(
x2x3

)
y = x4y + x3y − x2y, next modulo Fp,q we have: x4

((
x2x3

)
y
)

=

x (xy) + x5y + 2x4y − x3y − x2y − xy. Modulo F{r},p we get x{3}
(
x4
((
x2x3

)
y
))

=

x{5}y + x8y + 2x7y − x6y − x5y − x4y, at last modulo Fp,{r} and Fp,q we get π (w) =

x{6}y + x9y + 2x8y − x7y − x6y − xy, we can therefore say that the polynomial of type
[17, 1]:

x5
(
x
(
x
(
x
(
x4
((
x2x3

)
y
)))))

− x (x (x (x (x (xy)))))− x9y − 2x8y + x7y + x6y + xy

is an evanescent identity.

By applying this algorithm we easily obtain the generators of evanescent train identi-
ties

– of degree (3, 1):

x2 (xy)− x (xy)− x2y + xy; x
(
x2y

)
− x (xy)− x3y + x2y.

– of degree (4, 1):(
x2x2

)
y − 2x3y + x2y; x2 (x (xy))− x (x (xy))− x2y + xy;

x2
(
x2y

)
− x (xy)− x3y + xy; x

(
x2 (xy)

)
− x (x (xy))− x3y + x2y;

x3 (xy)− x (xy)− x3y + xy; x
(
x
(
x2y

))
− x (x (xy))− x4y + x3y.

x
(
x3y

)
− x (xy)− x4y + x2y;

– of degree (5, 1):

x2
(
x2 (xy)

)
− x (x (xy))− x3y + xy; x3

(
x2y

)
− x (xy)− 2x3y + x2y + xy;

x
(
x
(
x3y

))
− x (x (xy))− x5y + x3y; x

(
x2

(
x2y

))
− x (x (xy))− x4y + x2y;
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x3 (x (xy))− x (x (xy))− x3y + xy;
(
x2x2

)
(xy)− x (xy)− 2x3y + x2y + xy;

x
(
x3 (xy)

)
− x (x (xy))− x4y + x2y; x

((
x2x2

)
y
)
− x (xy)− 2x4y + x3y + x2y;

x2
(
x3y

)
− x (xy)− x4y + xy; x2 (x (x (xy)))− x (x (x (xy)))− x2y + xy;(

x3x2
)
y − x4y − x3y + x2y; x

(
x2 (x (xy))

)
− x (x (x (xy)))− x3y + x2y;

x4 (xy)− x (xy)− x4y + xy; x
(
x
(
x2 (xy)

))
− x (x (x (xy)))− x4y + x3y;

x
(
x4y

)
− x (xy)− x5y + x2y; x

(
x
(
x
(
x2y

)))
− x (x (x (xy)))− x5y + x4y;((

x2x2
)
x
)
y − 2x4y + x3y; x2

(
x
(
x2y

))
− x (x (xy))− x4y + x3y − x2y + xy.

4.3.2. Evanescent homogeneous identities of type [n, 1].

Proposition 49. There is no evanescent homogeneous identity of type [n, 1] for n ≤ 3.
For any n ≥ 4, the vector space of evanescent homogeneous identities of type [n, 1] is
generated by at least W[n,1] − 2 (n− 1) evanescent homogeneous identities.

Proof. Let be M (x, y)[n,1] = {wk; 1 ≤ k ≤ N} where N = W[n,1] and f =
∑N
i=1 αiwi,

we search (αi)1≤i≤N ∈ KN such that ∂xf = ∂yf = 0. with ∂xf =
∑N
i=1 αi∂xwi and

∂yf =
∑N
i=1 αi∂ywi. For any 1 ≤ i ≤ N we have ∂xwi, ∂ywi ∈ K [t] with |∂xwi| ≤ n

and |∂ywi| ≤ n therefore equations ∂xf = 0 and ∂yf = 0 give two linear systems of n
equations with N unknowns.

So if n = 2, with f (x, y) = αx2y + βx (xy), from ∂y (f) = αt + βt2 we deduce
α = β = 0, so there is no evanescent homogeneous identity of type [2, 2].

If n = 3, taking f (x, y) = αx3y + βx2 (xy) + γx
(
x2y
)

+ δx (x (xy)), we get ∂y (f) =

αt+βt2 + γt2 + δt3, from ∂yf = 0 we deduce α = δ = 0 and β+γ = 0, with this ∂xf = 0
gives ∂x

(
βx2 (xy) + γx

(
x2y
))

= β
(
3t2
)

+ γ
(
2t3 + t

)
= 0 therefore β = γ = 0, there is

no evanescent homogeneous identity of type [3, 2].
Suppose n ≥ 4, from f (1, 1) = 0 we deduce

∑N
i=1 αi = 0, therefore the rank of the

linear system ∂xf = 0 is ≤ n− 1, the same is true for ∂yf = 0, so the rank of the linear
system ∂xf = ∂yf = 0 is ≤ 2 (n− 1) therefore the dimension of the solution space is
≥W[n,1] − 2 (n− 1). �

The method used in the proof allows to give the generators of evanescent homogeneous
identities:

– of type [4, 1](
x2x2

)
y − x3 (xy) ;

x4y + x
(
x2 (xy)

)
−
(
x2x2

)
y − x

(
x
(
x2y
))

;

x
(
x3y
)

+ x2 (x (xy))− x3 (xy)− x
(
x
(
x2y
))
.

– of type [5, 1]

x
(
x2
(
x2y
))
− x

(
x3 (xy)

)
;(

x3x2
)
y + x

(
x
(
x3y
))
− x5y − x

(
x3 (xy)

)
;((

x2x2
)
x
)
y + x

(
x4y
)
− x5y − x

((
x2x2

)
y
)

;
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x4 (xy) + x
(
x
(
x3y
))
− x2

(
x
(
x2y
))
− x

(
x4y
)

;

x2
(
x3y
)

+ x
(
x
(
x3y
))
− x2

(
x
(
x2y
))
− x

(
x4y
)

;

x2
(
x
(
x2y
))

+ x
(
x2 (x (xy))

)
− x

(
x3 (xy)

)
− x2 (x (x (xy))) ;

x2
(
x
(
x2y
))

+ x
(
x
(
x
(
x2y
)))
− x2 (x (x (xy)))− x

(
x
(
x3y
))

;

x3
(
x2y
)

+ x
((
x2x2

)
y
)

+ 2x
(
x
(
x3y
))
− x2

(
x
(
x2y
))
− 2x

(
x4y
)
− x

(
x3 (xy)

)
;

x3 (x (xy)) + x
((
x2x2

)
y
)

+ x
(
x
(
x3y
))
− x2

(
x
(
x2y
))
− x

(
x4y
)
− x

(
x3 (xy)

)
;

x
((
x2x2

)
y
)

+ x
(
x
(
x3y
))

+ x2
(
x2(xy

)
− x

(
x4y
)
− x

(
x3 (xy)

)
− x2

(
x
(
x2y
))

;(
x2x2

)
(xy) + x

((
x2x2

)
y
)

+ 2x
(
x
(
x3y
))
− x2

(
x
(
x2y
))
− 2x

(
x4y
)
− x

(
x3 (xy)

)
;

x2
(
x
(
x2y
))

+ x
(
x4y
)

+ x
(
x
(
x2 (xy)

))
− x2 (x (x (xy)))− x

((
x2x2

)
y
)
− x

(
x
(
x3y
))
.

4.4. Evanescent train identities of degree (n, 2) and evanescent homogeneous
identities of type [n, 2]. ‌

Let W[n,2] be the cardinality of M (x, y)[n,2] the set of monomials of type [n, 2]. For
w ∈M (x, y)[n,2] there are two ways to decompose w as a product of two monomials w =

w1w2. Either by taking w1 ∈M (x, y)[n−i] and w2 ∈M (x, y)[i,2] for 0 ≤ i ≤ n− 1 and in
this case we have

∑n−1
i=0 W[n−i]W[i,2] possible writings. Either with w1 ∈M (x, y)[i,1] and

w2 ∈M (x, y)[j,1] for 0 ≤ i ≤ j ≤ n such that i+j = n, hence 2i ≤ n and according to the
parity of n we have two cases. If n is odd, n = 2p+ 1, for all 0 ≤ i ≤ p words w1 and w2

have different degrees in x so there are
∑p
i=0W[2p+1−i,1]W[i,1] possible decompositions

for w in product of two monomials. If n is even, n = 2p, for all 0 ≤ i < p monomials
w1 and w2 have different degrees in x so there are

∑p−1
i=0 W[2p−i,1]W[i,1] decompositions

for w, and for i = p monomials w1 and w2 are in M (x, y)[p,1] hence we have
(W[p,1]+1

2

)
decompositions of w.

In summary, we obtained:

W[0,2] = 1,

W[n,2] =

n−1∑
i=0

W[2p+1−i]W[i,2] +

bn/2c∑
i=0

W[n−i,1]W[i,1] +

 0 if n odd(
W[n/2,1]

2

)
if n even

, (n ≥ 1) .

First values of W[n,2] are
n 0 1 2 3 4 5 6 7 8 9 10

W[n,2] 1 2 6 15 41 106 280 726 1891 4886 12622

4.4.1. Evanescent train identities of degree (n, 2). ‌

For any f ∈ K (x, y) and any integer r ≥ 1, we define x{r}f = x
(
x{r−1}f

)
where

x{0}f = f .

Lemma 50. For any integer r ≥ 0 we have:

∂x
((
x{r}y

)
y
)

=

r+1∑
i=2

ti, ∂y
((
x{r}y

)
y
)

= tr+1 + t;(4.7)
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∂x
(
x{r}y2

)
=

r∑
i=1

ti, ∂y
(
x{r}y2

)
= 2tr+1.(4.8)

Proof. Starting from ∂x
((
x{r}y

)
y
)

= t∂x
(
x{r}y

)
= t
(
1 + ∂x

(
x{r−1}y

))
and ∂y

((
x{r}y

)
y
)

=

t
(
∂y
(
x{r}y

)
+ 1
)

= t2∂y
(
x{r−1}y

)
+ t, and from ∂x

(
x{r}y2

)
= t
(
1 + ∂x

(
x{r−1}y2

))
and

∂y
(
x{r}y2

)
= t∂y

(
x{r−1}y2

)
the stated results are obtained recursively. �

We note F =
{(
x{r}y

)
y, x{r}y2; r ≥ 0

}
and Q 〈F 〉 the vector space over Q generated

by the set F .

Proposition 51. There is no evanescent train identity of type (1, 2).
For any n ≥ 2 and any w ∈M (x, y)[n,2] where w 6=

(
x{n}y

)
y and w 6= x{n}y2, there

is an unique polynomial Pw ∈ Q 〈F 〉 with |Pw|x ≤ n such that polynomial w − Pw is an
evanescent train identity of degree (n, 2).

Proof. We have seen that there is no train evanescent identity of degree (2, 1) so by
permutation of x and y there is no train evanescent identity of degree (1, 2).

Let be n ≥ 2. For any w ∈ M (x, y)[n,2] we have |∂xw| ≤ n + 1 with, in particular,∣∣∂x (x{n−k} ((x{k}y) y))∣∣ = n+ 1 for every 1 ≤ k < n.
Let be w ∈ M (x, y)[n,2] verifying w /∈ F , we look for Pw =

∑n
r=1 αr

(
x{r}y

)
y +∑n

s=0 βsx
{s}y2 such that f = w − Pw verify ∂xf = ∂yf = 0 and f (1, 1) = 0. Let be

∂xw =
∑n+1
i=1 λit

i and ∂yw =
∑n+1
i=1 µit

i, we have:

∂xf = (λn+1 − αn) tn+1 +

n∑
i=2

(
λi −

( n∑
r=i−1

αr +

n∑
s=i

βs

))
ti +

(
λ1 −

n∑
s=1

βs

)
t,

∂yf =

n+1∑
i=2

(
µi −

(
αi−1 + 2βi−1

))
ti +

(
µ1 −

( n∑
r=1

αr + 2β0

))
t.

And the solution of the linear system ∂xf = ∂yf = 0 and
∑n
r=1 αr +

∑n
s=0 βs = 1 is

αi = λi+1 −
n+1∑
k=i+2

1

2k−i−1
(µk + λk) , (1 ≤ i ≤ n)

βi =
1

2
(µi+1 − λi+1) +

n+1∑
k=i+2

1

2k−i
(µk + λk) , (1 ≤ i ≤ n)

β0 = 1−
n+1∑
k=2

1

2k−1
(µk + λk) .

However, according to the result a) of corollary 26 we have λi, µi ∈ N for any 1 ≤ i ≤ n,
therefore we have αi, βi ∈ Q, which completes the proof. �

We can deduce from this that

Corollary 52. For any n ≥ 2, the vector space of evanescent train polynomials of degree
(n, 2) has dimension W[n,2] − 2.

The following result provides a procedure for quickly constructing evanescent identities
from elements taken from M (x, y)[n,2].
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Theorem 53. For all integers p, q ≥ 2 and r ≥ 0 we put:

E[n]
p,q (x) = xpxq − xp+1 − xq+1 + x2;

E[n,1]
p,q (x, y) = xp (xqy)− x (xy)− xpy − xq+1y + x2y + xy;

E
[n,1]
p,{r} (x, y) = xp

(
x{r}y

)
− xpy − x{r+1}y + xy;

E
[n,1]
{r},p (x, y) = x{r} (xpy)− x{r+1}y − xp+ry + xr+1y;

E
[n,2]
p,{r} (x, y) = xp

((
x{r}y

)
y
)
− 2
(
x{p−1}y

)
y −

(
x{r+1}y

)
y + x{p−1}y2

+ (xy) y)− xy2 + y2;

E
[n,2]
{r},{s} (x, y) = x{r}

((
x{s}y

)
y
)
−
(
x{r+s}y

)
y +

(
x{r}y

)
y − x{r}y2;

F
[n,2]
p,{r} (x, y) = xp

(
x{r}y2

)
− 2
(
x{p−1}y

)
y + x{p−1}y2 − x{r+1}y2 + y2;

G[n,2]
p,q (x, y) = (xpy) (xqy)− 2

(
x{p}y

)
y − 2

(
x{q}y

)
y + x{p}y2 + x{q}y2

+2 (xy) y − 2xy2 + y2;

G
[n,2]
p,{r} (x, y) = (xpy)

(
x{r}y

)
− 2
(
x{p}y

)
y −

(
x{r}y

)
y + x{p}y2

+ (xy) y − xy2 + y2;

G
[n,2]
{r},{s} (x, y) =

(
x{r}y

)(
x{s}y

)
−
(
x{r}y

)
y −

(
x{s}y

)
y + y2.

Let G be the ideal generated by the family of polynomials(
E[n]
p,q, E

[n,1]
p,q , E

[n,1]
p,{r}, E

[n,1]
{r},p, E

[n,2]
p,{r}, E

[n,2]
p,{r}, E

[n,2]
{r},{s}, F

[n,2]
p,{r}, G

[n,2]
p,q , G

[n,2]
p,{r}, G

[n,2]
{r},{s}

)
p,q≥2
r,s≥0

and π : K (x)→ K(x)/G the canonical surjection.
So for any integer n ≥ 2 and any monomial w ∈M (x, y)[n,2] such that w 6=

(
x{n}y

)
y

and w 6= x{n}y2 we have π (w) = Pw and for any f ∈
⊕

n≥2K (x, y)[n,2], the polynomial
f − π (f) is an evanescent train identity of degree (n, 2).

Proof. We have shown in theorems 40 and 47 that polynomials E[n]
p,q, E

[n,1]
p,q , E[n,1]

p,{r}, E
[n,1]
{r},p

and E[n,2]
p,{r} are evanescent, let us show that this is also the case for the other polynomials

of the statement.
For p ≥ 2 and r ≥ 0 we have ∂x

(
xp
((
x{r}y

)
y
))

= t
(
∂x (xp) + ∂x

(
x{r}y

))
and

∂y
(
xp
((
x{r}y

)
y
))

= t∂y
((
x{r}y

)
y
)
, with relations (4.2), (4.3) and (4.7) we get:

∂x

(
xp
((
x{r}y

)
y
))

= 2tp +

p−1∑
i=2

ti +

r+2∑
i=3

ti, ∂y

(
xp
((
x{r}y

)
y
))

=

r+2∑
i=2

ti.

For any r, s ≥ 0 we have ∂x
(
x{r}

((
x{s}y

)
y
))

= t
(
1 + ∂x

(
x{r−1}((x{s}y)y))) we de-

duce that ∂x
(
x{r}

((
x{s}y

)
y
))

=
∑r
i=1 t

i + tr∂x
((
x{s}y

)
y
)
and ∂y

(
x{r}

((
x{s}y

)
y
))

=

t∂y
(
x{r−1}((x{s}y)y)) hence ∂y (x{r}((x{s}y)y)) = tr∂y

((
x{s}y

)
y
)
, using relations (4.7)

we have:

∂x

(
x{r}

((
x{s}y

)
y
))

=

r+s+1∑
i=1

ti − tr+1, ∂y

(
x{r}

((
x{s}y

)
y
))

= tr+s+1 + tr+1.
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For any p ≥ 2 and r ≥ 0 we have ∂x
(
xp
(
x{r}y2

))
= t

(
∂x (xp) + ∂x

(
x{r}y2

))
and

∂y
(
xp
(
x{r}y2

))
= t∂y

(
x{r}y2

)
with relations (4.8) we deduce:

∂x

(
xp
((
x{r}y

)
y
))

=

r+s+1∑
i=1

ti − tr+1, ∂y

(
xp
((
x{r}y

)
y
))

= tr+s+1 + tr+1.

For p, q ≥ 2 we have ∂x ((xpy) (xqy)) = t (∂x (xpy) + ∂x (xqy)) = t2 (∂x (xp) + ∂x (xq))
and ∂y ((xpy) (xqy)) = t (∂y (xpy) + ∂y (xqy)) = 2t2∂y (y) from this and relation (4.1) we
deduce

∂x ((xpy) (xqy)) = 2tp+1 + 2tq+1 +

p∑
i=3

ti +

q∑
i=3

ti, ∂y ((xpy) (xqy)) = 2t2.

Let be p ≥ 2 and r ≥ 0, we have ∂x
(
(xpy)

(
x{r}y

))
= t

(
∂x (xpy) + ∂x

(
x{r}y

))
and

∂y
(
(xpy)

(
x{r}y

))
= t
(
∂y (xpy) + ∂y

(
x{r}y

))
, using relations (4.2) and (4.3) we get

∂x

(
(xpy)

(
x{r}y

))
= 2tp+1 +

p∑
i=3

ti +

r+1∑
i=2

ti, ∂y

(
(xpy)

(
x{r}y

))
= tr+1 + t2.

For any integers r, s ≥ 0, from ∂x
((
x{r}y

)(
x{s}y

))
= t

(
∂x
(
x{r}y

)
+ ∂x

(
x{r}y

))
and

∂y
((
x{r}y

)(
x{s}y

))
= t
(
∂y
(
x{r}y

)
+ ∂y

(
x{r}y

))
and from relation (4.5) we deduce

∂x

((
x{r}y

)(
x{s}y

))
=

r+1∑
i=2

ti +

s+1∑
i=2

ti, ∂y

((
x{r}y

)(
x{s}y

))
= tr+1 + ts+1.

Using these results and the relations of lemma 50 we establish that polynomials E[n,2]
p,{r},

E
[n,2]
{r},{s}, F

[n,2]
p,{r}, G

[n,2]
p,q , G[n,2]

p,{r} and G
[n,2]
{r},{s} are evanescent.

Let be w ∈ M (x, y)[n,2] such that w 6=
(
x{n}y

)
y and w 6= x{n}y2. Let us show

by induction on the degree n in x of w, that polynomial w − π (w) is evanescent.
This is true for n = 2, as can be seen on generators of evanescent train identity of
degree (2, 2) given below. Suppose the result true for any v ∈ M (x, y)[p,2] and any
2 ≤ p < n. There are u, v ∈ M (x, y) such that w = uv with u ∈ M (x, y)[n−k,1],
v ∈ M (x, y)[k,1] or u ∈ M (x, y)[n−k] and v ∈ M (x, y)[k,2] with 1 < k < n. We have
∂x (w − π (w)) = ∂x (uv − π (u)π (v)) = t (∂x (u− π (u)) + ∂x (v − π (v))), in the same
way we have ∂y (w − π (w)) = t∂y (u− π (u)) + t∂y (v − π (v)).

Therefore, if u ∈M (x, y)[n−k,1], v ∈M (x, y)[k,1], it results from theorem 47 that the
polynomial w − π (w) is evanescent.

In the case of u ∈ M (x, y)[n−k] and v ∈ M (x, y)[k,2], with theorem 40 we have that
u − π (u) is evanescent and by induction hypothesis it is the same of the polynomial
v − π (v).

It is clear that for all w ∈M (x, y)[n,2] we have π (w) ∈ Z 〈F 〉 then by uniqueness of
polynomial Pw we have π (w) = Pw. �

Applying this theorem we obtain the generators of evanescent train identities:

– of degree (2, 2)

x2y2 − 2 (xy) y + y2;
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(xy)
2 − 2 (xy) y + y2;

x ((xy) y)− (x (xy)) y + (xy) y − xy2;(
x2y
)
y − 2 (x (xy)) y + (xy) y + x

(
xy2
)
− xy2.

– of degree (3, 2)

x2 ((xy) y)− (x (xy)) y − (xy) y + y2;

x (xy)
2 − 2 (x (xy)) y + 2 (xy) y − xy2;

x
(
x2y2

)
− 2 (x (xy)) y + 2 (xy) y − xy2;

(x (xy)) (xy)− (x (xy)) y − (xy) y + y2;

x3y2 − 2 (x (xy)) y + x
(
xy2
)
− xy2 + y2;

x2
(
xy2
)
− 2 (xy) y − x

(
xy2
)

+ xy2 + y2;

x ((x (xy)) y)− x (x (xy)) y + (xy) y − xy2;

(xy)
(
x2y
)
− 2 (x (xy)) y + x

(
xy2
)
− xy2 + y2;(

x2 (xy)
)
y − 3 (x (xy)) y + 2 (xy) y + x

(
xy2
)
− xy2;

x (x ((xy) y))− (x (x (xy))) y + (x (xy)) y − x
(
xy2
)

;(
x3y
)
y − 2 (x (x (xy))) y + (xy) y + x

(
x
(
xy2
))
− xy2;(

x
(
x2y
))
y − 2 (x (x (xy))) y + (x (xy)) y + x

(
x
(
xy2
))
− x

(
xy2
)

;

x
((
x2y
)
y
)
− 2x (x (xy)) y + (x (xy)) y + (xy) y + x

(
x
(
xy2
))
− x

(
xy2
)
− xy2.

– of degree (4, 2)

x2 (xy)
2 − 2 (x (xy)) y + y2;

x3
(
xy2
)
− 2 (x (xy)) y + y2;

(x (xy))
2 − 2 (x (xy)) y + y2;

x2
(
x2y2

)
− 2 (x (xy)) y + y2;

x2((x (xy) y)− (x (x (xy))) y − (xy) y + y2;

x4y2 − 2 (x (x (xy))) y + x
(
x
(
xy2
))
− xy2 + y2;

x2
(
x
(
xy2
))
− 2 (xy) y − x

(
x
(
xy2
))

+ xy2 + y2;(
x3y
)

(xy)− 2 (x (x (xy))) y + x
(
x
(
xy2
))
− xy2 + y2;

x3 ((xy) y)− 3 (x (xy)) y + (xy) y + x
(
xy2
)
− xy2 + y2;(

x2y
)2 − 4 (x (xy)) y + 2 (xy) y + 2x

(
xy2
)
− 2xy2 + y2;(

x2x2
)
y2 − 4 (x (xy)) y + 2x (xy) + 2x

(
xy2
)
− 2xy2 + y2;(

x2y
)

(x (xy))− 3 (x (xy)) y + (xy) y + x
(
xy2
)
− xy2 + y2;(

x2 (xy)
)

(xy)− 3 (x (xy)) y + (xy) y + x
(
xy2
)
− xy2 + y2;
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x4y
)
y − 2 (x (x (x (xy)))) y + x

(
x
(
x
(
xy2
)))

+ (xy) y − xy2;

(x (x (xy))) (xy)− (x (x (xy))) y − (xy) y + y2;

x (y (x (x (xy))))− (x (x (x (xy)))) y + (xy) y − xy2;

x
(
x (xy)

2
)
− 2 (x (x (xy))) y + 2 (x (xy)) y − x

(
xy2
)

;

x
(
x
(
x2y2

))
− 2 (x (x (xy))) y + 2 (x (xy)) y − x

(
xy2
)

;

x (x (y (x (xy))))− (x (x (x (xy)))) y + (x (xy)) y − x
(
xy2
)

;

x
(
x2 ((xy) y)

)
− (x (x (xy))) y − (x (xy)) y + 2 (xy) y − xy2;

x ((xy) (x (xy)))− (x (x (xy))) y − (x (xy)) y + 2 (xy) y − xy2;

x (x (x ((xy) y)))− (x (x (x (xy)))) y + (x (x (xy))) y − x
(
x
(
xy2
))

;

x
(
x3y2

)
− 2 (x (x (xy))) y + 2 (xy) y + x

(
x
(
xy2
))
− x

(
xy2
)
− xy2;

x
(
x2
(
xy2
))
− 2 (x (xy)) y + 2 (xy) y − x

(
x
(
xy2
))

+ x
(
xy2
)
− xy2;(

x
(
x2 (xy)

))
y − 3 (x (x (xy))) y + 2 (x (xy)) y + x

(
x
(
xy2
))
− x

(
xy2
)

;(
x3 (xy)

)
y − 2 (x (x (xy))) y − (x (xy)) y + 2 (xy) y + x

(
x
(
xy2
))
− xy2;(

x2 (x (xy))
)
y − (x (x (xy))) y − 2 (x (xy)) y + 2 (xy) y + x

(
xy2
)
− xy2;((

x2x2
)
y
)
y − 2 (x (x (xy))) y − (x (xy)) y + 2 (xy) y + x

(
x
(
xy2
))
− xy2;(

x
(
x3y
))
y − 2 (x (x (x (xy)))) y + x

(
x
(
x
(
xy2
)))

+ (x (xy)) y − x
(
xy2
)

;

x
(
(xy)

(
x2y
))
− 2 (x (x (xy))) y + 2 (xy) y + x

(
x
(
xy2
))
− x

(
xy2
)
− xy2;((

x2x2
)
y
)
y − 2 (x (x (xy))) y − (x (xy)) y + 2 (xy) y + x

(
x
(
xy2
))
− xy2;

x2 (x ((xy) y))− (x (x (xy))) y + (x (xy)) y − 2 (xy) y − x
(
xy2
)

+ xy2 + y2;

x2
((
x2y
)
y
)
− 2 (x (x (xy))) y + (x (xy)) y − (xy) y + x

(
x
(
xy2
))
− x

(
xy2
)

+ y2;

(xy)
(
x
(
x2y
))
− 2 (x (x (xy))) y + (x (xy)) y − (xy) y + x

(
x
(
xy2
))
− x

(
xy2
)

+ y2;(
x
(
x
(
x2y
)))

y − 2 (x (x (x (xy)))) y + (x (x (xy))) y + x
(
x
(
x
(
xy2
)))
− x

(
x
(
xy2
))

;

x
((
x2 (xy)

)
y
)
− 3 (x (x (xy))) y + 2 (x (xy)) y + (xy) y + x

(
x
(
xy2
))
− x

(
xy2
)
− xy2;

x
((
x3y
)
y
)
− 2 (x (x (x (xy)))) y + (x (xy)) y + (xy) y + x

(
x
(
x
(
xy2
)))
− x

(
xy2
)
− xy2;

x
(
y
(
x
(
x2y
)))
− 2 (x (x (x (xy)))) y + (x (x (xy))) y + (xy) y + x

(
x
(
x
(
xy2
)))

− x
(
x
(
xy2
))
− xy2;

x
(
x
((
x2y
)
y
))
− 2 (x (x (x (xy)))) y + (x (x (xy))) y + (x (xy)) y + x

(
x
(
x
(
xy2
)))

− x
(
x
(
xy2
))
− x

(
xy2
)
.

4.4.2. Evanescent homogeneous identities of type [n, 2].

Proposition 54. For any n ≥ 2, the vector space of evanescent homogeneous identities
of type [n, 2] is generated by at least W[n,2] − 2n evanescent homogeneous identities.

Proof. Let be n ≥ 2, we note N = W[n,2]. Let be M (x, y)[n,2] = {wk; 1 ≤ k ≤ N}
and f =

∑N
i=1 αiwi, we look for (αi)1≤i≤N ∈ KN such that f (1, 1) = 1 and ∂xf =
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∂yf = 0 where ∂xf =
∑N
i=1 αi∂xwi and ∂yf =

∑N
i=1 αi∂ywi. For all 1 ≤ i ≤ N we have

∂xwi, ∂ywi ∈ K [t] with |∂xwi| ≤ n+1 and |∂ywi| ≤ n+1, moreover, there is 1 ≤ i, j ≤ N
such that |∂xwi| = n+1 and |∂ywj | = n+1, therefore the solutions (αi)1≤i≤N of equations
∂xf = 0 and ∂yf = 0 are solutions of two linear systems with n + 1 équations and N

unknowns. From f (1, 1) = 1 we deduce that
∑N
i=1 αi = 0, therefore the rank of the

linear system ∂xf = 0 is ≤ n, the same is true for the system ∂yf = 0, thus the rank of
linear system ∂xf = ∂yf = 0 is ≤ 2n therefore the space of the solutions is of dimension
≥W[n,2] − 2n. �

With the method used in the proof we obtain the following generators of the evanescent
homogeneous polynomials:

– of type [2, 2]

x2y2 − (xy)
2

;(
x2y
)
y + x

(
xy2
)
− x ((xy) y)− (x (xy)) y;

– of type [3, 2]

x3y2 − (xy)
(
x2y
)

;

x
(
x2y2

)
− x (xy)

2
;

x2 ((xy) y)− (xy) (x (xy)) ;

x3y2 + x2
(
xy2
)
− 2 (xy) (x (xy)) ;

x3y2 −
(
x3y
)
y +

(
x
(
x2y
))
y − (xy) (x (xy)) ;(

x3y
)
y −

(
x2 (xy)

)
y + x

(
x2y2

)
− x

((
x2y
)
y
)

;(
x3y
)
y + x

(
x
(
xy2
))
− x ((x (xy)) y)− (x (x (xy))) y;(

x2 (xy)
)
y − (x (x (xy))) y − x

(
x2y2

)
+ x (x ((xy) y)) ;

x3y2 + x
(
x2y2

)
−
(
x2 (xy)

)
y − (x (xy)) (xy)− x (y (x (xy))) + (x (x (xy))) y;

– of type [4, 2]

(x (xy))
2 − x2

(
x2y2

)
;

x3
(
xy2
)
− x2

(
x2y2

)
;

x2 (xy)
2 − x2

(
x2y2

)
;

x
(
x3y2

)
− x

(
(xy)

(
x2y
))

;(
x3 (xy)

)
y −

(
x2
(
x2y
))
y;

x
(
x
(
x2y2

))
− x
(
x (xy)

2)
;(

x2y
)

(x (xy))− (xy)
(
x2 (xy)

)
;

x2 ((x (xy)) y)− (xy) (x (x (xy))) ;

x
(
x2 ((xy) y)

)
− x ((xy) (x (xy))) ;
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x
(
x3y2

)
− 2x ((xy) (x (xy))) + x

(
x2
(
xy2
))

;

x2
(
x2y2

)
− x

(
x3y2

)
− x2

(
x
(
xy2
))

+ x
(
x
(
x2y2

))
;

x
(
x3y2

)
− x2

(
x2y2

)
− x

((
x2 (xy)

)
y
)

+ x2 ((x (xy)) y) ;(
x4y
)
y + x ((xy) (x (xy)))−

(
x2 (x (xy))

)
y − x

((
x3y
)
y
)

;(
x
(
x3y
))
y + x ((xy) (x (xy)))− x

(
x3y2

)
−
(
x
(
x
(
x2y
)))

y;

x
(
x3y2

)
+ x

((
x
(
x2y
))
y
)
− x

((
x3y
)
y
)
− x ((xy) (x (xy))) ;

x
(
x3y2

)
+ x2

(
x
(
xy2
))
− x2 (x ((xy) y))− x ((xy) (x (xy))) ;

x2
(
x2y2

)
− x2

((
x2y
)
y
)
− x ((xy) (x (xy))) + x

((
x2 (xy)

)
y
)

;((
x2x2

)
y
)
y −

(
x3 (xy)

)
y − x

(
y
(
x2 (xy)

))
+ x ((xy) (x (xy))) ;

x2
(
x2y2

)
− (xy)

(
x
(
x2y
))
− x ((xy) (x (xy))) + x

(
y
(
x2 (xy)

))
;(

x
(
x3y
))
y − x

((
x3y
)
y
)

+ x ((x (x (xy))) y)− (x (x (x (xy)))) y;

x4y2 + 2x
(
x3y2

)
− 2x2

(
x2y2

)
− 2x

((
x2 (xy)

)
y
)

+ x2
(
x
(
xy2
))

;

x
((
x3y
)
y
)

+ x
(
x
(
x
(
xy2
)))
− x (x (y (x (xy))))− x (y (x (x (xy)))) ;(

x3y
)

(xy) + 2x
(
x3y2

)
+ x2

(
x
(
xy2
))
− 2x2

(
x2y2

)
− 2x

((
x2 (xy)

)
y
)

;

x
(
x3y2

)
+
(
x2 (x (xy))

)
y + x

((
x2 (xy)

)
y
)
−
((
x2x2

)
y
)
y − 2x ((xy) (x (xy))) ;

x
(
x3y2

)
+ x2

(
x
(
xy2
))

+ x
((
x3y
)
y
)
− x2

(
x2y2

)
− x

(
x
((
x2y
)
y
))
− x

((
x2 (xy)

)
y
)

;

x2
(
x2y2

)
+
(
x
(
x2 (xy)

))
y + x

((
x2 (xy)

)
y
)
− x

(
x3y2

)
− x2

(
x
(
xy2
))
−
((
x2x2

)
y
)
y;

2x
(
x3y2

)
+ x3 ((xy) y) + x2

(
x
(
xy2
))
− 2x2

(
x2y2

)
− x

((
x2 (xy)

)
y
)
− x ((xy) (x(xy)) ;(

x2y
)2

+ 4x
(
x3y2

)
+ 2x2

(
x
(
xy2
))
− 3x2

(
x2y2

)
− 2x

((
x2 (xy)

)
y
)
− 2x ((xy) (x (xy))) ;

x2
(
x2y2

)
+ x

((
x2 (xy)

)
y
)

+ x (x (x ((xy) y)))− x
(
x3y2

)
− x2

(
x
(
xy2
))
− x ((x (x (xy))) y) ;(

x2x2
)
y2 + 4x

(
x3y2

)
+ 2x2

(
x
(
xy2
))
− 3x2

(
x2y2

)
− 2x

((
x2 (xy)

)
y
)
− 2x ((xy) (x (xy))) ;

2x
(
x3y2

)
+ x2

(
x
(
xy2
))

+
(
x2y
)

(x (xy))− 2x2
(
x2y2

)
− x

((
x2 (xy)

)
y
)
− x ((xy) (x (xy))) ;

x2
(
x2y2

)
+
(
x
(
x3y
))
y + 2x

((
x2 (xy)

)
y
)
− x

(
x3y2

)
− x2

(
x
(
xy2
))
−
((
x2x2

)
y
)
y

− x
((
x3y
)
y
)

;

x2
(
x2y2

)
+ x

((
x2 (xy)

)
y
)

+ x ((xy) (x (xy))) + x (x (y (x (xy))))− 2x
(
x3y2

)
− x2

(
x
(
xy2
))
− x (y (x (x (xy)))) ;

4.5. Evanescent train identities of degree (n, 1, 1) and evanescent homogeneous
identities of type [n, 1, 1]. ‌

We can write all w ∈ M (x, y, z)[n,1,1] in the form w = w1w2 where (w1, w2) ∈
M (x)[n,−i]×M (x, y, z)[i,1,1] for 0 ≤ i ≤ n−1, or (w1, w2) ∈M (x, y)[n−i,1]×M (x, y, z)[i,0,1]

with 0 ≤ i ≤ n, as ]M (x, y, z)[i,0,1] = ]M (x, z)[i,1] we have

W[n,1,1] =

n−1∑
i=0

W[n−i]W[i,1,1] +

n∑
i=0

W[n−i,1]W[i,1], W[0,1,1] = 1.
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The first values of W[n,1,1] are

n 0 1 2 3 4 5 6 7 8 9 10
W[n,1,1] 1 3 9 25 69 186 497 1314 3453 9019 23454

4.5.1. Evanescent train identities of degree (n, 1, 1). ‌

For all f ∈ K (x, y, z) and all integer r ≥ 1, we define x{r}f = x
(
x{r−1}f

)
where

x{0}f = f .

Lemma 55. For any integer r ≥ 0 we have:

w ∂x (w) ∂y (w) ∂z (w)

x{r} ((xy) z)
r∑
i=1

ti + tr+2, tr+2, tr+1;

x{r} ((xz) y)
r∑
i=1

ti + tr+2, tr+1, tr+2;

x{r} (yz)
r∑
i=1

ti, tr+1, tr+1.

Proof. Indeed, we have ∂x
(
x{r} ((xy) z)

)
= t

(
1 + ∂x

(
x{r−1} ((xy) z)

))
, from this we de-

duce recursively that ∂x
(
x{r} ((xy) z)

)
=
∑r
i=1 t

i + tr∂x ((xy) z) with ∂x ((xy) z) = t2.
Next, ∂y

(
x{r} ((xy) z)

)
= t∂y

(
x{r−1} ((xy) z)

)
and ∂z

(
x{r} ((xy) z)

)
= t∂z

(
x{r−1} ((xy) z)

)
from which we deduce that ∂y

(
x{r} ((xy) z)

)
= tr∂y

(
(xy) z

)
and ∂z

(
x{r} ((xy) z)

)
=

tr∂z
(
(xy) z

)
with ∂y

(
(xy) z

)
= t2 and ∂z

(
(xy) z

)
= t. From witch, by exchanging

the roles of y and z, we deduce the results concerning monomials x{r} ((xz) y). From
∂x
(
x{r} (yz)

)
= t

(
1 + ∂x

(
x{r−1} (yz)

))
it results ∂x

(
x{r} (yz)

)
=
∑r
i=1 t

i, next with
∂y
(
x{r} (yz)

)
= t∂y

(
x{r−1} (yz)

)
we get ∂y

(
x{r} (yz)

)
= tr∂y (yz) = tr+1, we deduce

from this after exchanging y and z that ∂z
(
x{r} (yz)

)
= tr+1. �

We consider the set F =
{
x{r} ((xy) z) , x{r} ((xz) y) , x{r} (yz) ; r ≥ 0

}
and we note

Q 〈F 〉 the vector space over Q generated by F .

Proposition 56. There is no evanescent train identity of degree (1, 1, 1).
For any n ≥ 2 and any w ∈ M (x, y, z)[n,1,1] such that w /∈ F , there is an unique

polynomial Pw ∈ Q 〈F 〉 with |Pw|x ≤ n such that the polynomial w−Pw is an evanescent
train identity of degree (1, 1, 1).

Proof. Let be f = λ1x (yz) + λ2 (xy) z + λ3 (xz) y + µ1xy + µ2xz + µ3yz, we have
∂xf = (λ2 + λ3) t2 + (λ1 + µ1 + µ2) t, ∂yf = (λ1 + λ2) t2 + (λ3 + µ1 + µ3) t and ∂zf =
(λ1 + λ3) t2 +(λ2 + µ2 + µ3) t, it is easy to deduce that ∂xf = ∂yf = ∂zf = 0 if and only
if we have f = 0, therefore there is no evanescent train polynomial of degree (1, 1, 1).

We take n ≥ 2, let be w ∈M (x, y, z)[n,1,1] such that w /∈ F , according to result c) of
corollary 26, polynomials ∂xw, ∂yw and ∂zw are of degrees in x less than n + 1, let be
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∂xw =
∑n+1
k=1 αkt

k, ∂yw =
∑n+1
k=1 βkt

k and ∂zw =
∑n+1
k=1 γkt

k. We put

Pw =

n−1∑
k=0

λkx
{k} ((xy) z) +

n−1∑
k=0

µkx
{k} ((xz) y) +

n∑
k=0

νkx
{k} (yz)

by applying the relations of lemma 55 we get

∂xPw = (λn−1 + µn−1) tn+1 + (λn−2 + µn−2 + νn) tn

+

n−1∑
i=2

(
n−1∑
k=i

(λk + µk + νk) + (λi−2 + µi−2) + νn

)
ti +

(
n∑
k=1

(λk + µk + νk) + νn

)
t,

∂yPw = (λn−1 + νn) tn+1 +

n∑
k=2

(λk−2 + µk−1 + νk−1) tk + (µ0 + ν0) t,

∂zPw = (µn−1 + νn) tn+1 +

n∑
k=2

(λk−1 + µk−2 + νk−1) tk + (λ0 + ν0) t.

So we have ∂xw = ∂xPw if and only if
λn−1 + µn−1 = αn+1

λn−2 + µn−2 + νn = αn

(λk−2 + µk−2) +
∑n−1
i=k (λi + µi + νi) + νn = αk, (2 ≤ k ≤ n− 1)∑n−1

i=1 (λi + µi + νi) + νn = α1

and we have ∂yw = ∂yPw, ∂zw = ∂zPw if and only if we have respectively
λn−1 + νn = βn+1

λk−2 + µk−1 + νk−1 = βk, (2 ≤ k ≤ n) ,

µ0 + ν0 = β1,

and 
µn−1 + νn = γn+1

λk−1 + µk−2 + νk−1 = γk, (2 ≤ k ≤ n)

λ0 + ν0 = γ1.

According to result d) of corollary 26, we can note that in these two systems we have∑n−1
k=0 (λk + µk) +

∑n
k=0 νk =

∑n+1
k=1 βk = ∂yPw (1) = 1, therefore Pw (1, 1, 1) = 1.

The solution of these systems of linear equations are:

λk =

n+1∑
i=k+2

1

2i−k−1

(
αi + βi −

(
2i−k−1 − 1

)
γi
)
, (0 ≤ k ≤ n− 1)

µk =

n+1∑
i=k+2

1

2i−k−1

(
αi −

(
2i−k−1 − 1

)
βi + γi

)
, (0 ≤ k ≤ n− 1)

νk =
1

2
(−αk+1 + βk+1 + γk+1)

+

n+1∑
i=k+2

1

2i−k
(
−3αi +

(
2i−k − 3

)
βi +

(
2i−k − 3

)
γi
)
, (1 ≤ k ≤ n− 1)
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ν0 = 1−
n+1∑
i=2

1

2i−1
(αi + βi + γi) ,

νn =
1

2
(−αn+1 + βn+1 + γn+1) .

�

We can deduce the following.

Corollary 57. For n ≥ 2, the vector space of evanescent train identities of degree (n, 1, 1)
has dimension W[n,1,1] − 3.

As before we can give a procedure for quickly constructing evanescent identities from
elements taken in M(x, y, z)[n,1,1].

Theorem 58. For all integers p, q ≥ 2, r ≥ 0 and for any t, t1, t2 ∈ {y, z}, t1 6= t2, we
put

E[n]
p,q (x) = xpxq − xp+1 − xq+1 + x2;

E[n,1]
p,q (x, t) = xp (xqt)− x (xt)− xpt− xq+1t+ x2t+ xt;

E
[n,1]
p,{r} (x, t) = xp

(
x{r}t

)
− xpt− x{r+1}t+ xt;

E
[n,1]
{r},p (x, t) = x{r} (xpt)− x{r+1}t− xp+rt+ xr+1t;

E[n,1,1]
p,q (x, y, z) = (xpy) (xqz) + x{p} (yz) + x{q} (yz)−

p−1∑
i=0

x{i}
(

(xy) z + (xz) y − 2yz
)

−
q−1∑
i=1

x{i}
(

(xy) z + (xz) y − 2yz
)
− 4x (yz)− yz;

E
[n,1,1]
{r},{s} (x, y, z) =

(
x{r}y

)(
x{s}z

)
−
r−1∑
i=0

x{i}
(

(xy) z − yz
)
−
s−1∑
i=0

x{i}
(

(xy) z − yz
)
− yz;

E[n,1,1]
p (x, t1, t2) = (xpt1) t2 −

p−1∑
i=1

x{i}
(

(xt1) t2 + (xt2) t1 − 2t1t2

)
+ x{p} (t1t2)

− (xt1) t2 − x (t1t2) ;

E
[n,1,1]
p,{r} (x, t1, t2) = (xpt1)

(
x{r+1}t2

)
−

p−1∑
i=0

x{i}
(

(xt1) t2 + (xt2) t1 − 2t1t2

)
−

r∑
i=1

x{i}
(

(xt2) t1 − t1t2
)

+ x{p} (t1t2)− x (t1t2)− t1t2;

F
[n,1,1]
p,{r} (x, y, z) = xp

(
x{r} (yz)

)
−
p−2∑
i=0

x{i}
(

(xy) z + (xz) y − 2yz
)

+ x{p−1} (yz)− x{r+1} (yz)− yz;
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G
[n,1,1]
p,{r} (x, t1, t2) = xp

(
x{r} ((xt1) t2)

)
−
p−2∑
i=0

x{i}
(

(xt1) t2 + (xt2) t1 − 2t1t2

)
− x{r+1} ((xt1) t2) + x{p−1} (t1t2)− t1t2;

Let H be the ideal generated by the family of polynomials(
E[n]
p,q, E

[n,1]
p,q , E

[n,1]
p,{r}, E

[n,1]
{r},p, E

[n,1,1]
p,q , E

[n,1,1]
{r},{s}, E

[n,1,1]
p , E

[n,1,1]
p,{r} , F

[n,1,1]
p,{r} , G

[n,1,1]
p,{r}

)
p,q≥2
r,s≥0

and π : K (x)→ K(x)/H the canonical surjection.
So for any n ≥ 2 and any monomial w ∈ M[n,1,1] (x, y, z) such that w /∈ F we

have π (w) = Pw and for any f ∈
⊕

n≥2K (x, y, z)[n,1,1], the polynomial f − π (f) is an
evanescent train identity of degree (n, 1, 1).

Proof. We have already shown to the theorems 40 and 47 that polynomials E[n]
p,q, E

[n,1]
p,q ,

E
[n,1]
p,{r} and E

[n,1]
{r},p are evanescent, let us show it for the other polynomials of the statement.

For any p, q ≥ 2 and any r, s ≥ 0, we have ∂x ((xpy) (xqz)) = t (∂x (xpy) + ∂x (xqz)),
then ∂y ((xpy) (xqz)) = t∂y (xpy) = t2, likewise ∂z ((xpy) (xqz)) = t2 and with relation
(4.2) we get:

∂x ((xpy) (xqz)) = 2

p∑
i=3

ti + 2tp+1 + 2tq+1, ∂y ((xpy) (xqz)) = t2, ∂z ((xpy) (xqz)) = t2.

We have ∂x
((
x{r}y

) (
x{s}z

))
= t
(
∂x
(
x{r}y

)
+ ∂x

(
x{s}z

))
, next ∂y

((
x{s}y

) (
x{s}z

))
=

t∂y
(
x{r}y

)
= t2∂y

(
x{r−1}y

)
and likewise ∂z

((
x{s}y

) (
x{s}z

))
= t2∂z

(
x{s−1}z

)
, with re-

lation (4.3) we deduce recursively that

∂x
((
x{r}y

)(
x{s}z

))
=

r+1∑
i=2

ti +

s+1∑
i=2

ti,

∂y
((
x{r}y

)(
x{s}z

))
= tr+1, ∂z

((
x{r}y

)(
x{s}z

))
= ts+1.

From ∂x
(
(xpy)

(
x{r}z

))
= t

(
∂x (xpy) + ∂x

(
x{r}z

))
, ∂y

(
(xpy)

(
x{r}z

))
= t∂y (xpy),

∂z
(
(xpy)

(
x{r}z

))
= t∂z

(
x{r}z

)
and with (4.2) and (4.3) we get

∂x

(
(xpy)

(
x{r}z

))
= 2tp+1 +

p∑
i=3

ti +

r+1∑
i=2

ti,

∂y

(
(xpy)

(
x{r}z

))
= t2, ∂z

(
(xpy)

(
x{r}z

))
= tr+1.

We have ∂x
(
xp
(
x{r} (yz)

))
= t
(
∂x (xp) + ∂x

(
x{r} (yz)

))
= t∂x (xp)+t2∂x

(
x{r−1} (yz)

)
,

∂y
(
xp
(
x{r} (yz)

))
= t∂y

(
x{r} (yz)

)
= t2∂y

(
x{r−1} (yz)

)
and likewise ∂z

(
xp
(
x{r} (yz)

))
=

t2∂z
(
x{r−1} (yz)

)
.

Similarly, we have ∂x
(
xp
(
x{r} ((xy) z)

))
= t
(
∂x (xp) + ∂x

(
x{r} ((xy) z)

))
= t∂x (xp)+

t2∂x
(
x{r−1} ((xy) z)

)
, ∂y

(
xp
(
x{r} ((xy) z)

))
= t∂y

(
x{r} ((xy) z)

)
= t2∂y

(
x{r−1} ((xy) z)

)
and ∂z

(
xp
(
x{r} ((xy) z)

))
= t2∂z

(
x{r−1} ((xy) z)

)
. Applying relation (4.1) we deduce
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recursively that

∂x

(
xp
(
x{r} (yz)

))
= 2tp +

p−1∑
i=2

ti +

r+1∑
i=2

ti,

∂y

(
xp
(
x{r} (yz)

))
= tr+2, ∂z

(
xp
(
x{r} (yz)

))
= tr+2.

and

∂x

(
xp
(
x{r} ((xy) z)

))
= 2tp + tr+3 +

p−1∑
i=2

ti +

r+1∑
i=2

ti,

∂y

(
xp
(
x{r} ((xy) z)

))
= tr+3, ∂z

(
xp
(
x{r} ((xy) z)

))
= tr+2.

With these results and the relations of lemma 55 we show by simple calculations that
polynomials E[n,1,1]

p,q , E[n,1,1]
{r},{s}, E

[n,1,1]
p , E[n,1,1]

p,{r} , F [n,1,1]
p,{r} and G[n,1,1]

p,{r} are evanescent.
Let be w ∈ M (x, y, z)[n,1,1] such that w /∈ F , let us show by induction on the

degree n in x of w that the polynomial w − π (w) is evanescent. The result is true
for n = 2 as can be verified on the generators of train polynomial of degree (2, 1, 1)
given below. Suppose the result true for all monomials of type [p, 1, 1] with 2 ≤ p < n.
There are u, v ∈ M (x, y, z) such that w = uv with

∣∣u∣∣
x
,
∣∣v∣∣

x
< n so we have either

u ∈ M (x, y)[n−p,1], v ∈ M (x, z)[p,1], or else u ∈ M (x)[n−p], v ∈ M (x, y, z)[p,1,1]. We
have ∂x (w − π (w)) = ∂x (uv − π (u)π (v)) = t∂x (u− π (u))+t∂x (v − π (v)) and likewise
∂y (w − π (w)) = t∂y (u− π (u)) + t∂y (v − π (v)) and ∂z (w − π (w)) = t∂z (u− π (u)) +
t∂z (v − π (v)).

In the case of u ∈M (x, y)[n−p,1], v ∈M (x, z)[p,1], according to theorem 55 polynomi-
als u− π (u) and v − π (v) are evanescent, so we have ∂x (w − π (w)) = ∂y (w − π (w)) =
∂z (w − π (w)) = 0.

When u ∈M (x)[n−p], v ∈M (x, y, z)[p,1,1], according to theorem 40 and by induction
hypothesis, polynomials u− π (u) and v − π (v) are evanescent.

It is clear that for all w ∈ M (x, y, z)[n,1,1] such that w /∈ F we have π (w) ∈ Z [F ]

and therefore by uniqueness of the polynomial Pw we have π (w) = Pw. �

Using this theorem we can give the generators of evanescent train identities:

– of degree (2, 1, 1)

x2 (yz)− (xy) z − (xz) y + yz,

(xy) (xz)− (xy) z − (xz) y + yz,

(x (xy)) z − x ((xy) z)− (xy) z + x (yz) ,

(x (xz)) y − x ((xz) y)− (xz) y + x (yz) ,(
x2y
)
z + x (x (yz))− x ((xy) z)− x ((xz) y)− (xy) z + x (yz) ,(

x2z
)
y + x (x (yz))− x ((xy) z)− x ((xz) y)− (xz) y + x (yz) .

– of degree (3, 1, 1)

x
(
x2 (yz)

)
− x ((xy) z)− x ((xz) y) + x (yz) ,



41

x ((xy) (xz))− x ((xy) z)− x ((xz) y) + x (yz) ,

x ((x (xy)) z)− x (x ((xy) z))− x ((xy) z) + x (x (yz)) ,

x ((x (xz)) y)− x (x ((xz) y))− x ((xz) y) + x (x (yz)) ,

x2 (x (yz))− x (x (yz))− (xz) y − (xy) z + x (yz) + yz,

x2 ((xy) z)− x ((xy) z)− (xz) y − (xy) z + x (yz) + yz,

x2 (y (xz))− x (y (xz))− (xz) y − (xy) z + x (yz) + yz,

(x (xy)) (xz)− x ((xy) z) + x (yz)− (xy) z − y (xz) + yz,

(x (xz)) (xy)− x ((xz) y) + x (yz)− (xy) z − y (xz) + yz,(
x2 (xy)

)
z + x (x (yz))− 2x ((xy) z)− x (y (xz)) + 2x (yz)− (xy) z,(

x2 (xz)
)
y + x (x (yz))− 2x ((xz) y)− x ((xy) z) + 2x (yz)− (xz) y,

(x (x (xy))) z − x (x ((xy) z)) + x (x (yz))− x ((xy) z)− (xy) z + x (yz) ,

(x (x (xz))) y − x (x (y (xz))) + x (x (yz))− x (y (xz))− y (xz) + x (yz) ,

x3 (yz) + x (x (yz))− x ((xy) z)− x (y (xz)) + x (yz)− y (xz)− z (xy) + yz,(
x2y
)

(xz) + x (x (yz))− x ((xy) z)− x (y (xz)) + x (yz)− y (xz)− (xy) z + yz,(
x2z
)

(xy) + x (x (yz))− x ((xy) z)− x (y (xz)) + x (yz)− y (xz)− (xy) z + yz,

x
((
x2y
)
z
)

+ x (x (x (yz)))− x (x (y (xz)))− x (x ((xy) z)) + x (x (yz))− x ((xy) z) ,

x
((
x2z
)
y
)

+ x (x (x (yz)))− x (x (y (xz)))− x (x ((xy) z)) + x (x (yz))− x (y (xz)) ,(
x
(
x2y
))
z + x (x (x (yz)))− x (x ((xy) z))− x (x (y (xz))) + x (x (yz))− x ((xy) z)

− (xy) z + x (yz) ,(
x
(
x2z
))
y + x (x (x (yz)))− x (x ((xy) z))− x (x (y (xz))) + x (x (yz))− x (y (xz))

− y (xz) + x (yz) ,(
x3y
)
z + x (x (x (yz)))− x (x (y (xz)))− x (x ((xy) z)) + 2x (x (yz))− x ((xy) z)

− x (y (xz))− (xy) z + x (yz) ,(
x3z
)
y + x (x (x (yz)))− x (x (y (xz)))− x (x ((xy) z)) + 2x (x (yz))− x ((xy) z)

− x (y (xz))− (xz) y + x (yz) .

4.5.2. Evanescent homogeneous identities of type [n, 1, 1]. ‌

Proposition 59. For any n ≥ 2, the vector space of evanescent homogeneous identities
of type [n, 1, 1] is generated by at least W[n,1,1] − 3n evanescent homogeneous identities
of type [n, 1, 1] .

Proof. In what follows we put N = W[n,1,1] and M (x, y, z)[n,1,1] = {wk; 1 ≤ k ≤ N}. Let
be f =

∑N
k=1 αkwk, we look for (αk)1≤k≤N such that f (1, 1, 1) = 0, ∂xf = ∂yf = ∂zf =

0. Because for all w ∈ M[n,1,1] we have |∂xw| , |∂yw| , |∂zw| ≤ n + 1 and according to
lemma 55 there is a monomial w ∈ M (x, y, z)[n,1,1] such that ∂xw, ∂yw or ∂zw is of
degree n + 1, we deduce that the polynomials ∂xf , ∂yf and ∂zf are of degree n + 1.
Therefore relations ∂xf = 0, ∂yf = 0 and ∂zf = 0 are equivalent to three linear systems
of n + 1 equations of unknowns (αk)1≤k≤N , condition f (1, 1, 1) = 0 implies that each
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of these systems is of rank ≤ n, it follows that the rank of system of linear equations
∂xf = ∂yf = ∂zf = 0 is ≤ 3n and therefore the space of solutions is of dimension
≥W[n,1,1] − 3n. �

By using the method followed in the above proof, we explain the generators of evanes-
cent homogeneous identities:

– of type [2, 1, 1]

x2 (yz)− (xy) (xz) ,(
x2y
)
z − (x (xy)) z − x (y (xz)) + x (x (yz)) ,(

x2z
)
y − (x (xz)) y − x ((xy) z) + x (x (yz)) .

– of type [3, 1, 1]

x3 (yz)−
(
x2y
)

(xz) ,

x3 (yz)− (xy)
(
x2z
)
,

x
(
x2 (yz)

)
− x ((xy) (xz)) ,

x2 ((xy) z)− (x (xy)) (xz) ,

x3 (yz)−
(
x3y
)
z +

(
x
(
x2y
))
z − x2 ((xy) z) ,(

x3y
)
z + x ((xy) (xz))− x

((
x2z
)
y
)
−
(
x2 (xy)

)
z,(

x3y
)
z − x

((
x2z
)
y
)
− (x (x (xy))) z + x (x (z (xy))) ,(

x3y
)
z −

(
x
(
x2y
))
z − x ((x (xz)) y) + x (x (y (xz))) ,(

x3y
)
z − (x (x (xy))) z − x ((x (xz)) y) + x (x (x (yz))) ,

x
((
x2y
)
z
)
−
(
x
(
x2y
))
z − x ((x (xy)) z) + (x (x (xy))) z,(

x3y
)
z −

(
x3z
)
y + x ((x (xy)) z)− (x (x (xy))) z +

(
x
(
x2z
))
y − x

(
yx2zy

)
,

x3 (yz)−
(
x3y
)
z + (x (x (xy))) z − x ((x (xy)) z) + x

((
x2z
)
y
)
− x2 ((xz) y) ,

x3 (yz)−
(
x3y
)
z + x

((
x2z
)
y
)
− x ((x (xy)) z) + (x (x (xy))) z − (xy) (x (xz)) ,(

x3y
)
z −

(
x3z
)
y + x ((x (xy)) z)− (x (x (xy))) z + (x (x (xz))) y − x ((x (xz)) y) ,(

x3z
)
y −

(
x2 (xz)

)
y + x ((xy) (xz))− x ((x (xy)) z) + (x (x (xy))) z −

(
x
(
x2y
))
z,

x3 (yz)− 2
(
x3y
)
z + (x (x (xy))) z − x ((x (xy)) z) + x

((
x2z
)
y
)

+
(
x
(
x2y
))
z − x2 (x (yz)) .
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