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Earthquakes are among the deadliest natural disasters, with 
statistics showing a global death toll of >50,000 per year in 
the period 2000–20161. Despite their impact on society, there 

is still a lack of fundamental understanding about earthquake con-
stitutive behaviour. During seismic events, part of the mechanical 
energy stored in the stressed rocks is dissipated by frictional heating 
along the fault, causing the local temperatures to rise2,3. �is pro-
motes the onset of thermally activated weakening mechanisms that 
help to reduce the shear strength4–6 in the fast-sliding portion of the 
fault, behind the rupture front2,3. E�cient lubrication means that 
more elastic energy can be transferred to the rupture tip, promoting 
earthquake propagation and enhancing the dissipation of energy 
into hazardous seismic waves7,8. �erefore, the characterization and 
quanti�cation of weakening mechanisms associated with the fault-
ing process are crucial issues in seismology and fault mechanics7.

In the past decades, several weakening mechanisms have been 
proposed on the basis of theoretical models and results of labora-
tory friction experiments that simulate high-velocity seismic slip in 
rocks. Among these, the �ash-heating model5,9 is important thanks 
to its general formulation. However, the �ash-weakening mecha-
nism relates to the concept of load-bearing asperities and does not 
consider their evolution during slip. With increasing slip, pressures 
and temperatures, �ash heating is likely to evolve to other ther-
mally controlled processes4,5 such as frictional melting10–12 (com-
mon in silicate rocks) or thermal pressurization13,14 (due to �uids 
initially present in the fault or released by thermal decomposition 
processes). Other weakening mechanisms proposed include pow-
der lubrication15,16, silica gel lubrication17 and thermal decomposi-
tion18. More recently, an alternative weakening mechanism has been 
described in experiments using carbonate gouges, where coseismic 
deformation is accommodated by ductile creep mechanisms19–22. 
Despite this wide range of weakening mechanisms described in the 
literature, the processes involved in fault lubrication are still not 

fully understood. In particular, there is no quantitative model for 
fault lubrication during earthquake slip4 in �ne-grained granular 
material (fault gouges) that can account for both experimental and 
seismological observations and be fully supported by microstruc-
tural studies (melt lubrication aside10,12,23).

In this article, we investigate coseismic weakening mechanisms 
in several rock-forming minerals by integrating mechanical data 
from shear experiments on powders at high velocity (v > 0.1 m s−1) 
with microstructural analyses. �e results, summarized in the fol-
lowing, show that the strengths of the analysed materials follow a 
common temperature-dependent law and develop microstructures 
consistent with viscous deformation mechanisms.

Shear experiments at seismic velocity
We shear powders (grain size 63–90 µm) of a range of silicate and 
non-silicate, anhydrous rock-forming minerals (experimental pro-
cedure as in Pozzi et al.22 and references therein20,21). Speci�cally, we 
tested carbonate (calcite20 and dolomite24,25), sulfate (anhydrite26), 
halide (halite27) and silicate (olivine28,29) powders, which are com-
monly used as analogues for a range of natural fault gouges30. �ese 
minerals do not produce frictional melts (apart from halite) and 
do not contain structural water, hydroxyl or hydrogen. �e testing 
materials and conditions were chosen to diminish the e�ciency 
of �ash-heating processes5,31 (by using �ne-grained powders) and 
to exclude the contribution of �uid-driven mechanisms to fault 
weakening10,16,20,21,25.

A normal stress of σn = 25 MPa (20 MPa for olivine) was applied 
to the gouges and held constant throughout the tests. �e samples 
were then sheared at room temperature and humidity at di�erent 
seismic velocities (0.28–1.4 m s−1) for ~1 m of total slip. �is amount 
of slip is enough to produce weakening, but still not large enough to 
produce substantial thermal decomposition, frictional melting and 
other physical changes in the rocks20,25.
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Despite the hazard posed by earthquakes, we still lack fundamental understanding of the processes that control fault lubrica -
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For each experiment, the e�ective friction coe�cient µ* (the 
measured ratio between shear and normal stress, which is not 
dependent on any particular deformation mechanism) follows a 
classic weakening pro�le21 (Fig. 1a). Initial slip hardening in the 
Byerlee’s range (Stage I; µ* = 0.6–0.9)—almost absent in halite—is 
followed by an abrupt decay of fault strength to low friction val-
ues (Stage II; µ* < 0.4). Friction then remains low during shearing 
at constant velocity, showing a slow decay with slip (Stage III in  
Fig. 1a). Partial re-strengthening is observed during the �nal 
deceleration and arrest of slip (Stage IV). �e bulk temperature in 
the principal slip zone (PSZ) cannot be measured directly and is 
obtained using an equation for one-dimensional thermal di�usion13 
(Fig. 1b and Methods).

Microstructures and deformation mechanisms
A�er each run, samples were carefully recovered and cross sec-
tions of the most deformed parts were prepared for microstructural 
analysis (Fig. 2f and Supplementary Figs. 3–11). In all experiments, 
we observe a PSZ with �nite thickness of a few tens of microns 
(Fig. 2) that shows marked textural di�erences with the surround-
ing materials. �e PSZs are characterized by �ne-grained polygo-
nal aggregates with extremely low porosity, fairly homogeneous 
grain size and oblique foliation21 (Fig. 2). Little overprinting of 
microstructures due to late- and/or post-deformation annealing 
(Supplementary Section II) or by local embrittlement during stage 
IV21 (white arrows in Fig. 2a–e) is expected in our experiments.

At high magni�cations, within the PSZs, grains show low 
aspect ratio22 (on an average, nearly equant), display diamond 
shapes, quadruple junctions, narrow gaps and numerous grain 
boundaries aligned with the shear direction (Supplementary  
Fig. 12a–d and Supplementary Section III). �ese textures are com-
patible with mechanisms of neighbour switching that are typical of 
grain-boundary sliding32,33 (GBS, Fig. 3e). Microstructural analysis 
in calcite experiments suggests di�usion-accommodated GBS19,20,22, 
although we do not exclude dislocation-accommodated GBS for 
the other materials. Transmission electron microscope imaging in 
both calcite and olivine shows that PSZ grains contain dislocations  

(Fig. 3f–i), dislocation walls and subgrains (regions bounded by dis-
location walls, Fig. 3f,i), indicative of dislocation creep (DC) mecha-
nisms. Notably, oblique foliation (Fig. 2) development is compatible 
with both GBS and DC mechanisms34,35.

�ese observations extend recent results of high-velocity experi-
ments in calcite gouges showing that deformation during Stage III 
slip is controlled by a combination of grain-size-sensitive (GBS) and 
grain-size-insensitive (DC) creep mechanisms19–22. DC limits the 
grain growth in the PSZ36–38 (by formation of subgrains, Fig. 3f), 
while di�usion-assisted GBS could be instrumental in explaining 
the measured low stress19–22,38. Microstructural observations from 
all other materials tested here also support the hypothesis that 
coseismic deformation is accommodated by viscous processes at 
sub-melting temperatures.

Arrhenius-type �ow law describes coseismic fault strength
Microstructural analyses suggest that the PSZ accommodates 
almost all of the shear deformation and maintains constant thick-
ness throughout Stage III21, meaning that its strain rate is nearly 
constant. During Stage III, for each material, the natural logarithm 
of shear stress (τ) versus the inverse values of calculated tempera-
ture (Fig. 4a) shows—to a good approximation—a linear trend with 
speci�c slope (thick lines in Fig. 4b).

Exponential regression allows computation of the dependence 
of fault strength τ on temperature T during Stage III, which follows 
the equation

ln τ = A
1
T
+ B (1)

where A and B are best-�t constants. �e speci�c best-�t equations 
of each material-dependent curve are reported in Fig. 4.

Ductile creep mechanisms share a similar exponential relation-
ship following the general Arrhenius-type constitutive equation39

γ̇ = C� τn

Dme−
Q
RT (2)
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Fig. 1 |  Mechanical data.  a, µ* evolving with displacement during Stages I–IV (see text for details). During Stage III, µ* values are lower in experiments 
run at higher velocities. Each experiment terminates with partial re-strengthening during deceleration to arrest. b, Shear stress as a function of 
calculated temperature (up to Stage III). Note that the Stage III mechanical data of calcite, dolomite and anhydrite—and with good approximation for 

experiment code.
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where γ̇ is the shear strain rate, C* is a pre-exponential constant, D is 
the mean grain size, n and m are the stress and grain-size exponents, 
respectively, Q is the activation energy and R is the gas constant. 
Equation (2) can be rearranged40 to:

ln τ =
Q
nR

1
T
+

1
n
ln γ̇

Dm

C� (3)

which is directly comparable to equation (1).
�e PSZ grains were simultaneously a�ected by GBS (Fig. 

3a) and DC mechanisms (Fig. 3c). Our observations con�rm the 
hypotheses formulated by Ashby and Verrall32 in their pioneering 
work on the �ow of superplastic alloys, which predicted that GBS 
and DC are likely to occur simultaneously in nature. �e slope A 
in equation (1) is controlled primarily by the ratio of activation 
energy Q and stress exponent n, normalized by the gas constant R 
(equation 3); hence, it is not the expression of a single deformation 
mechanism.

�e combination of mechanical data and microstructural obser-
vations suggests that the �ow rate in the PSZ is dominated by the 
most e�ective mechanism, which in calcite is arguably some type of 
di�usion-accommodated GBS19–22. DC is the mechanism that limits 
the grain growth in the PSZ36–38 of calcite samples (for example, by 
subgrain rotation22), and it might become the dominant deforma-
tion mechanism in other materials.

It is worth noting that the ratio A = Q/nR obtained for all tested 
materials is substantially lower than that obtained from previous 
studies performed at lower strain, sub-seismic strain rate and coarser 
grain size, for both grain-size-sensitive and grain-size-insensitive 
creep (Supplementary Section VI). Such previous studies accept 
that best-�t parameters of �ow laws evolve with increasing 
strain and can be considered constant only for limited ranges of  
strain36–38,41–43. Looking forwards, our results highlight the need for 
further research to improve our understanding of the physics of 
deformation processes across the transition from low to high strain 
and from sub-seismic to seismic strain rates.

�e comparison between equations (1) and (3) shows that 
the intercept B is controlled primarily by strain rate, grain size, 
grain-size exponent m and pre-exponential factor C*.

�e linear �t of experimental data and microstructural obser-
vations point to a grain-size-dependent rheology in which fault 
strength is controlled mainly by temperature according to an 
Arrhenius-type law, while the interplay of di�erent creep mecha-
nisms adjusts to the evolving conditions.

During Stage III, olivine aggregates show a change of depen-
dence of fault stress to temperature (change of slope, A term in 
equation 1) at values above T ≈ 900 °C (Fig. 4b). Such a tempera-
ture threshold corresponds to a homologous temperature (T/Tm) of 
~0.57, where the melting temperature of forsterite olivine (Fo90) is 
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Fig. 2  | Microstructures.  a–e, Forescattered ( a,e) and backscattered ( b–d) scanning electron microscope images of sample PSZs in polished cross sections 
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Tm = 1,765 °C28. �is might suggest a change of the involved defor-
mation mechanisms and reduced material strength, which is consis-
tent with previous studies reporting faster rheological weakening in 
olivine44 when T > 0.6Tm.

Implications for coseismic weakening mechanisms
We have shown that coseismic weakening observed in a range of dif-
ferent minerals is plausibly achieved through viscous deformation 
along faults. We therefore propose that localization of deformation 
into thin PSZs and the associated weakening are likely controlled 
by a balance between heat production (by shear heating) and dis-
sipation (by thermal di�usion and endothermic processes)4,23,45. 
�e PSZ system will evolve towards its steady state by the minimi-
zation of viscous strain energy when a stable temperature pro�le 
is established across the slip zone at larger amounts of slip4. �is 
rheological evolution is similar to that known for coseismic fric-
tional melts where the molten layer properties are controlled by the 
heat balance across the fault23. Notably, the melt viscosity that con-
trols the shear resistance of the fault (friction) is also controlled by 
a well-constrained Arrhenius-type dependency to temperature23,46. 
For comparison, see the linear slope in the inset of Fig. 4b, which was 
measured during weakening by melt lubrication of high-velocity 
shear experiments of gabbro23.

We also note that, in the alternative model of �ash heating5,13, 
bulk weakening is achieved through the temperature rise at the 
asperity scale, which causes plastic so�ening and/or melting of 

contacts5,12. �e mechanisms of �ash heating are thus likely to also 
be viscous in nature and not mutually exclusive with our �ndings. 
�e bulk behaviour of the fault is a function of the distribution 
and dimensions of asperities, which in�uence the local energy bud-
get. In conclusion, the di�erence between �ash heating and vis-
cous deformation in a PSZ might simply be related to the scale of 
observation.

�e similarity of the processes involved during coseismic slip is 
in good agreement with the observed ubiquity of weakening docu-
mented at seismic velocities across a wide range of fault materials4. 
�erefore, we propose that coseismic weakening by viscous pro-
cesses at either sub- (coseismic ultramylonites22) or super-solidus 
(frictional melt10,12,23) temperatures is more widespread than pre-
viously thought. �ese mechanisms obey a simple Arrhenius-type 
dependency to temperature, whose thermodynamic parameters 
can be potentially determined through experimental investiga-
tion. Our results o�er an alternative, quantitative viewpoint of 
fault strength-controlling processes and provide a new perspec-
tive on the role of ductile processes active along faults at seismic 
strain rates.
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data and code availability are available at https://doi.org/10.1038/
s41561-021-00747-8.
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Methods
Apparatus and sample assembly.
tested using a low- to high-velocity rotary shear apparatus (model MIS-233-1-77, 

shallow crustal conditions (up to ~2 
of the apparatus, it is possible to perform experiments with an arbitrary amount  
of slip.

�e apparatus is housed in a rigid loading frame of steel plates arranged in a 
vertical con�guration and is composed of two vertical sha�s on which the sample 
assembly is mounted. �e upper sha� is connected through a gearbox to an electric 
servo-controlled motor (11 kW), which outputs a maximum rated torque of 70 Nm 
and maximum revolution rate of 1,500 rpm. �e revolution rate and the cumulative 
rotation angle are measured by a tachometer and a pulse counter (3,600 pulses 
per full rotation), respectively, mounted on the upper sha�. �e apparatus can 
accelerate to the maximum revolution rate (1,500 rpm) in 0.277–0.351 s at normal 
stresses of 25 MPa, depending on the tested material (the numbers refer to calcite 
and olivine powders, respectively). �e axial load is applied to the lower main 
sha� by a pneumatic piston (Bellofram type cylinder) with an 82 mm stroke and 
maximum thrust of 10 kN. �e axial load system is equipped with a high-precision 
air regulator to automatically correct the load �uctuation during the experiment. 
Axial load is measured using a compression load cell with a rated output of 
2 mV/V ± 0.5% and resolution of ±5 kN.

�e axial displacement values are measured using a high-sensitivity 
displacement gauge (strain gauge type) with a capacity of 10 mm and rated output 
of 5 mV/V ± 0.1%. Axial displacement resolution is ±2 m. Torque values are 
measured by two compression load cells (strain gauge type), which are activated 
by a torque bar �xed to the lower sha�. �e load cell capacity is 1  kN, with a rated 
output of 2 mV/V ± 0.5%. Torque cell resolution is ±0.5 N.

�e sample assembly consists of two hollow cylinders (external radius of 
12.5 mm and internal radius of 5.25 mm) sandwiching a layer of gouge (1 g, 
grain size 63–90 m). �e cylinders are made of titanium–vanadium alloy 
(Ti90Al6V447), which is chosen as it has similar thermal properties (thermal 
conductivity of 5.8 Wm–1 K–1) to common rocks. �e base of each cylinder that is 
in contact with the gouge layer is machined with a crosshatch pattern of grooves 
(500 m deep) to force shear localization within the gouge layer. A Te�on cylinder 
and a Te�on ring tightly fastened by a hose clip are mounted to prevent the internal 
and lateral extrusion of the gouge, respectively, during the experiments.

Given the cylindrical shape of the stainless steel cylinders, the slip rate (v) is 
variable across the sample. A reference radius of 8.33 mm is chosen to calculate slip 
and tangential slip rate of the material. �e temperature rise is calculated using a 
simple mono-dimensional equation for heat di�usion13 in non-adiabatic conditions 
(see Supplementary Section V for a detailed overview):

ΔT =
1

2ρcP πκ

t

0

τv( t ) v( t )
t − t

dt (4)

where τv is the shear stress, v is the velocity, ρ is the rock density, cP is the speci�c 
heat, κ is the thermal di�usivity, Φ is the heat �ux and t is time.

Microstructural analysis. Samples are carefully recovered a�er each run and 
prepared for microstructural analysis (see Supplementary Section I for further 
information). Cross sections were studied using a FEI Helios Dual Beam Nanolab 

600 scanning electron microscope (SEM) at the Department of Physics of Durham. 
Images were acquired in backscattered (BS) and forescattered (FS) modes. BS is 
operated using the through-the-lens acquisition system on samples coated with 
graphite (<30 nm). FS is operated on uncoated specimens tilted at 70° using a 
4 Quadrant KE Development FS imaging control detector. FS technique is best 
used for detailed microstructures as it produces good contrast along the grain 
boundaries.

FEI SEM was also used to prepare thin foils—carved with ion milling 
from speci�c locations of SEM-prepared samples—for transmission electron 
microscopy. Images were acquired on a JEOL 2100F FEG transmission electron 
microscope at the Department of Physics of Durham using scanning mode.

Data availability
�e mechanical data used for Figs. 1 and 4 are archived on Zenodo at https://doi.
org/10.5281/zenodo.4639947. All data are available from the authors on request. 
Source data are provided with this paper.
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