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Graphical Abstract

Comment on the paper ”Improving Poor Man’s Kramers-Kronig
analysis and Kramers-Kronig constrained variational analysis”
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Highlights

Comment on the paper ”Improving Poor Man’s Kramers-Kronig
analysis and Kramers-Kronig constrained variational analysis”

Emmanuel Rousseau, Nicolas Izard, Jean-Louis Bantignies, Didier Felbacq

e A comment on the title paper is reported,
e We clarify some analytical expressions existing in the literature,

e Within the correct formulae we conclude that there is no need for an
ad hoc improvement on the opposite to the title paper,

e We highlight the symmetry properties of the function to be integrated
in order to agree with the usual assumptions made to derive the Kramers-
Kronig relations,

e The analytical formula we provide may be used to increase the accu-
racy of the "Poor Man’s Kramers-Kronig analysis” method and the
”Kramers-Kronig constrained variational analysis” method.



Comment on the paper "Improving Poor Man’s
Kramers-Kronig analysis and Kramers-Kronig
constrained variational analysis”

Emmanuel Rousseau®*, Nicolas Izard?, Jean-Louis Bantignies®, Didier
Felbacq®

@ Laboratoire Charles Coulomb, UMR5221 CNRS-Université de Montpellier, 34095,
Montpellier, France

Abstract

The title paper [Spectrochim. Acta A 213 (2019): 391-396] reports an im-
provement of the " Poor Man’s Kramers-Kronig analysis” and of the " Kramers-
Kronig constrained variational analysis” thanks to an ad hoc modification of
some analytical formulas existing in the literature. This ad hoc modification
is not based on mathematical grounds. In this comment we show that no ad
hoc modification is required but a correction of the analytical formula used
by the authors of the title paper [Spectrochim. Acta A 213 (2019): 391-396].

Keywords: Kramers-Kronig relations, Poor Man’s Kramers-Kronig analysis

1. Introduction

The Kramers-Kronig relations [eq.(1) and eq.(2)] allow to connect the
real part and the imaginary part of any holomorphic function [1, p. 28]. As
an example, for the dielectric constant £(o) = €'(0) 4 i€”(0), with real part
¢'(0) and imaginary part £”(0), assuming that it converges to 1 for large
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wavenumbers o, the Kramers-Kronig relations read [2, p. 179]:

+oo l/l l
o) —1= 79/ _U2da’ (1)

" 20, “+o00 / / o ,
13 (O’) = —?’P/ Ta?]da (2)

where P fR stands for the Cauchy principal-value integral. They are the
egs.(1) and (2) in the paper to be commented [3].

These relations hold if the analytic continuation of the function to be
considered, i.e. [e(0) — 1] here, is analytic in the upper part of the complex
plane and decreases to zero as |o| — +oo. They also assume the following
symmetry properties (see [2, p. 179]):

[g'(o0) = 1] is even = [¢'(—0) — 1] = [¢'(0) — 1] (3)
e’(0) is odd = £"(—0) = —£"(0) (4)

If the symmetry conditions do not hold, more general Kramers-Kronig
relations can be written but they involve integration range over R instead
over R*. They read:

+oo e’:‘” /
(o) —1= 73/ _O_d' (1b)

O-/

;P / ], (2b)

o' —o
independently on the existence of symmetry conditions or not. Actually
the eq.(1) derives from the eq.(1b) with the assumptions that the imaginary
part of the dielectric constant €”(o) is an odd function of the wavenumbers
(see [4, p.789)).

2. The T. Mayerhofer et al. proposal

In the reference[5], T. Mayerhofer et al. proposed a new method to nu-
merically integrate the Kramers-Kronig equations eq.(1) and eq.(2). They
named their method the "Poor man’s Kramers-Kronig analysis”. It consists
in interpolating the function to be integrated by a family of functions by (o).
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Figure 1: a) Triangular-shape function center on ¢ = 0. b) Odd triangular-shape function
center on o = 0.

For example, the interpolation of the imaginary part of the dielectric function
reads:

(o)=Y (o)bu(o) (5)

oLES

where & = {0} }x—o,. p—1 is the list of the p € N discrete wavenumbers and
e"(oy) is the value of the imaginary part of the dielectric function at the
wavenumber oy.

With the help of the eq.(5), the Kramer-Kronig equation (1) can be com-
puted as:

+o0 /
go)—1= Zé‘ or) X —77/ bk 2d0’ (6)
2—0

oLES
(o) = 1= &"(ox)ax(o) (7)
oLES
where the function ax(c) is defined by ay(0) = 2P f+°o "f;’*; do’ (see

the eq.(5) in [5]).

As a family of interpolating functions by (o), T. Mayerhofer et al. choose
in the ref. [5] some functions introduced previously by Kuzmenko in the
ref.[6] where he described the method denoted ” Kramers-Kronig constrained
variational analysis”. The functions by(c) are depicted on the Fig.(1-a).



Their analytical formula are:

%%__11 o € |og_1, 0%
br(0) = ;ﬁl—ii 0 €|ok, Opt1] (8)
0 otherwise

O< o1 <o < Ok+1

This is the eq.(4) in [3]. These functions are of triangular-shape and centered
on the frequency o € S. They get null values outside the range [oy_1, 0g11].
Because the functions by (o) are piecewise linear, their Hilbert transform can
be analytically evaluated. T. Mayerhofer et al. have found [3, 5]:

1 — O — — —
ag/[(o_) _ o OkL—1 In o Ot B Ok+1 o In o Ot (9)
T |0k — Ok-1 00— 0k-1 Ok4+1 — Ok 0 — Okl
_ 1 {9(0 —0k=1) _ Ok —op1)glo —on) | glo = 0k+1)}
T [ Ok — 0k-1 (Uk—Uk—l)(0k+1 —Uk) Ok+1 — Ok

with  g(x) = z1n|z|

This is the equation (5) in [3] that corresponds partially to a result ini-
tially published by A.B. Kuzmenko in [6]. Indeed the equivalent of the
function g(z) defined above is in A.B. Kuzmenko’s paper[6] gx(z,y) =
(x+y)ln|x+y| + (zr —y)In|z —y|. T. Mayerhofer et al. retain only the
term proportional to (z — y)In|x — y| but with a difference in the sign of
the prefactor. Indeed it is —1/m in the result used by T. Mayerhofer et al.
whereas it is +1/7 in the result reported by A.B. Kuzmenko. We will show
below that the prefactor —1/7 given by T. Mayerhofer et al. is the correct
one.

In order to check the accuracy of the ”Poor man’s Kramers-Kronig analy-
sis” method, T. Mayerhofer et al. computed in the ref. [5] and in the ref. [3],
the difference between the eq.(9) and a numerical integration of the Kramers-
Kronig equation (1). The numerical integration is based on the Riemann sum
approximation [7] of the eq.(1) (see the eq.(2) in [5]). The calculations are
done for one single triangular-shape function centered on o; = 3000 cm™!
with og = 2999 cm™! and 05 = 3001 cm™!. Denoting by A(c) the difference
between the eq.(9) and its numerical calculation, they got in the ref.[5] a
maximal discrepancy on the order of |A(c)| ~ 1072 as shown by the Fig.(S1)
in the supplementary information of the ref. [5]. In the Fig.(3) of the subse-
quent publication (ref. [3]) they got a more or less constant disagreement on
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the order of [A(c)| ~ 10~%. These discrepancies lead them to some comments
in the two previously mentioned refs.[5, 3]. Indeed, in the ref. [5, p.3167],
they wrote: ”There is, however, also a drawback, which is that [eqn (8) and
(9)] are not fully Kramers-Kronig consistent.”. In the ref. [3, p.394] they
wrote "[A(o)] reflects the deviations from the Kramers-Kronig conformity”.
T. Mayerhofer et al. concluded that there is a mismatch between the analyt-
ical formula and the numerical integration of the eq.(1). They finally assume
that the correct result is given by the numerical integration and provide in
the ref.[3] an ad hoc modification of the analytical equation (9). The ad hoc
modification leads to an increase of the accuracy, the quantity A(co) being
small and center on zero in the range [2990 cm™!, 3010 cm™!] but with an
absolute difference that reachs |A(c)| ~ 4.107° at maximum. The ad hoc
modification is the eq.(10) in the ref.[3]. This ad hoc modification sounds
rather strange since the eq.(9) is a priori an exact analytical result. The ad
hoc modification has no mathematical justifications.

In this comment, we show that no ad hoc modification is needed but
actually a correction of the analytical formula eq.(9) to get a fully ” Kramers-
Kronig conformity” between the analytical result and the numerical evalu-
ation of the equation (1). From the mathematical side, this is reassuring
because the function fi(0) = ax(0) + ibx(0) being analytic in the complex
plane, its real and imaginary parts have to satisfied the Kramers-Kronig re-
lations egs.(1b-2b) in the general case or eqs.(1-2) if ai(o) and bg(o) have
some specific symmetries.

3. Main results

The equation (1) and consequently its numerical integration assume that
the function to be integrated €”(o) is an odd function of the wavenumber
(see [2, eq.(6.32)]). But the interpolating functions considered by T. May-
erhofer et al. are neither odd or even. In order to get an agreement between
an analytical result and the numerical integration of the eq.(1) a family of
odd interpolating-functions has to be considered. The basis functions we
considered are then:

bp(o) for ¢ > 0
bi(o) = (10)
—bi(|o|) for o < 0



where the function by(o) has been previously defined by the eq.(8) and |o]|
stands for the modulus of o. The function by () is depicted on the Fig.(1-b).
The Hilbert transform of the functions by (o) is:

+oo I /
akR(U) = %77/ bi (o) do’

oo O — O
1 +oo 7 ! 1 ‘oo 1 o o/
:—P/ Mw%-@/ Mda’
™ 0 o' —o T 0 o +o
1 +oob / 1 +oob /
:_73/ Mda'——?/ ﬂda'
T Jo o' —o T Jo o +o

We have found more convenient to start from the eq.(1b) rather than
from the eq.(1). The result of the analytical calculations is:

ay (o) = ay' (o) + (o) (11)
with
1 _
Ck(a):__ o+ 01 n o+ o I 0k+1+01n 0+ Oy (12>
T | Ok — Of—1 0+ 01 Ok+1 — Ok 0+ Op41
(o) = 1 [9(U+0k—1) (k1 — ok-1)g(0 + %) n g(o + 0k+1)]
T ok — oK1 (0k — 0k—1)(Okt1 — Ok)  Okt1 — O

a (o) is given by the eq.(9). As compared to the result studied by T.
Mayerhéfer et al., our solution includes an extra term ¢ (o) due to the con-
tribution of the function by (o) at negative wavenumbers whereas the term
aM (o) comes from the contribution of the positive-wavenumbers range.

In order to check that our analytical solution eq.(11) is consistent with
the eq.(1), we numerically integrate the eq.(1) with the built-in function
for integration of the software Mathematica® (denoted NI(c)). In order
to get a precise numerical result, we specify the option ”Principal Value”
in the Mathematica® function. The solution we propose eq.(11) and the
numerical calculation NI(o) are compared on the Fig.(2-a) as respectively
the plain black-line and the red dots. They perfectly fit. Indeed as shown by
the Fig.(2-b) the absolute difference |A(c)| = |af(c) — NI(o)| is less than
5 x 10713 4.e on the order of magnitude of the numerical rounding.

The correction we make to the analytical formula provided by T. May-
erhofer et al., i.e. the term cx(0), decreases linearly in the range [2990, 3010]
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Figure 2: Comparison between the analytical formula (o) and the numerical integration
NI(o). a) Blue curve: by(c) given by the eq.(10) with parameters oy = 2999cm™! 0y =
3000cm~! and oy = 3001cm™? ; Black curve: @ (o) given the eq.(11) ; Red dots: NI(o),
i.e. the numerical integration of the eq.(1) with the software Mathematica®. b) Difference
between the numerical calculation NI (o) and the analytical expression aff(o).

varying from ¢;(2990) ~ 5.314 x 107° to ¢(3010) =~ 5.296 x 10~°. These val-
ues are small but larger by several orders of magnitude than the numerical
precision on the order of ~ 5 x 1073, This numerical accuracy is reached
thanks to the option ”Principal Value” of the Mathematica® built-in func-
tion for integration. This option was needed in order to check the adequacy
between the analytical result and the numerical integration of the eq.(1). In-
deed as already said the function ¢ (o) takes values on the order of ~ 5.107°
in the range [2990, 3010jcm™*. An accuracy better than 107° is then required
to get a conclusion. On the opposite, according to their Fig.(3) in ref.[3] T.
Mayerhofer et al. got an absolute difference on the order of ~ 4.107° be-
tween their numerical calculations and their analytical formula augmented
by the ad hoc correction. This value of ~ 4.107° reflects the fact that the
analytical formula (9) given by T. Mayerhofer et al. missed the contribution
of the negative-frequencies part that is taken into account when the eq.(1) is
integrated numerically. Restoring the negative-frequency contribution to the
Kramer-Kronig relations leads to a ”Kramers-Kronig consistency” between
the imaginary part bi(o) and the real part ai(o) of the analytic function

fk(O') = CLk(O') + Zbk((f)



Finally, even if T. Mayerhofer et al. had ruled out! this possibility, we
think that the solution we propose here was already included in the ref.
8, egs. (8) and (12)]. The main goal of this comment was to clarify the
assertion made by Mayerhofer et al. in [3] that an ad hoc modification of the
existing formula was needed to reach a good accuracy between the analytical
expression and a numerical integration of the equation (1). Our comment
shows that this assertion is unfounded. To clearly explain why we think no
ad hoc modification is needed, we have found worth to derive in this comment
the set of eq.(9) and eq.(11). This derivation highlights the importance of the
symmetry of the function to be integrated in order to satisfy the assumptions
made while deriving the Kramers-Kronig relations (1). Finally, our result
also disagrees with A. B. Kuzmenko’s solution [6] by some sign difference and
finally clarifies some existing formulae available in the literature. In order for
the reader to appreciate the difference between our result and the equations
available in the literature,the table (1) summarized in a uniform notational
way the result provided by A.B. Kuzmenko|[6] and the two results derived by
T. Mayerhofer et al.. The differences and similarities can be appreciated.

The analysis detailed in the previous paragraph shows that the contribu-
tion of the negative-frequencies part [i.e. the term cx(0), eq.(12)] is on the
order of 5 x 107° in the range [2990 cm™!, 3010 cm™!]. As a consequence,
considering a scale similar to the Fig.2-a) there would be no significant dif-
ferences between our result and the equation used by T. Mayerhofer et al.
without and with the ad hoc correction. Nevertheless Kramer-Kronig analy-
sis often require the integration of the Kramer-Kronig equations over a wide
range of frequencies. Indeed, rigorously speaking the Kramers-Kronig equa-
tions have to be integrated over R. The low-frequency part of a spectrum
can contribute to the final result and it could be interesting to compare the
behavior of the formulae existing in the literature at low frequency. This is
done here for a central frequency of o, = 20 cm™*. We can also investigate
situation where the experimental frequency-increment is larger than lem™!,
the only case considered in [3]. As a consequence we test our equation and
the equations available in the literature (summarized in the table 1) with the
parameters o, = 20 cm™ !, 0y = 10 ecm ™!, 044y = 30 cm ™. Such a compar-

!They wrote in[3] ” An alternative explanation could be that the derivation of Eq. (5)
contains an error, but since B-spline analysis shares the same mathematical base [14] we
rule out this explanation.”
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Figure 3: Comparison between the different equations available in the literature as sum-
marized in the table 1. The calculations are performed with o1 = 10 cm™ ", 0, =
20 cm ™!, 0541 = 30 cm ™1,

a) black line: this work, equation al(c), blue line: a (o),
solution proposed in [3], red line: af (o), solution proposed in [6]. b) black line: this work,
equation aff(c), dashed blue line: aQ/I’Q(U)7 solution with an ad hoc modification proposed
in [3].



Table 1: Equations for the quantity ax(co) that can be found in some references in the
literature. The notations have been unified for a greater clarity.

Reference equation
: K _ 11 |9k(ook—1) _ (ok+1—0k-1)9Kx(0:0k) | 9K (0,0k+1)
eq.(lS) n [6] A (g) =tz Op—0k—_1 (0k—0k—1)(Ok+1—0k) - Okt1—0% J
with gr(z,y) = (x —y)In|x —y| + (z + y) In |z + y|
: M 1 |gm(ook—1)  (Okr1—0k-1)9m(0,0%) | gm(0,0k11)
eq'(5) n [3] A (0> T ow | op—ok_1 (O'kta'k—l)(ak-&-l_a'k) k41— 0k
with gy (z,y) = (x —y)In|z — y|
. M2 o 0,0} — o —0)— 0,0 0,0
eq.(l()) n [3] Ay, (0) - _% (Fk) {gfk(*a:fll) o ((U};Tkakl)ét)Tifl(*U:)) gfk(ﬂf;kl)J
with gy (z,y) = (x —y)In |z —y|
This work GR(U) _ _ 1 |grlook—1) _ (0k41=0k-1)9R(0,0k) | 9R(0:0k+1)
k T | op—0k_1 (ok—0k—1)(Okt1—0%) Tkt1—0Ok
and ref.[8] with gr(z,y) = (r —y)In|z —y| — (x + y) In|z + ¥

ison is shown in the Fig.3. Our result a?(c) is plotted as the black curve in
Fig.3-a). Again it differs from a numerical integration of the eq.(1) only by
the numerical accuracy on the order of 107!3 em~!. The blue curve in the
Fig.3-a) is the eq.(5) in [3] [see formula a (o) in the table 1]. This result
differs by an amount close to 0.1 cm™ [i.e ~ 18%] as compared to the exact
analytical result. In this frequency range, the difference between the solution
proposed by T. Mayerhofer et al. and the exact solution is clearly visible.
The red curve in the Fig.3-a) is the solution al* (o) proposed by Kuzmenko
as his equation (13) in [6]. Because of the incorrect sign for the contribution
of the positive-frequency his solution is mirrored with respect to the exact
solution alf(c). Finally, we can also compare our solution with the ad hoc
modification proposed by T. Mayerhofer et al. in the paper [3] that is the
subject of this comment. This is done in the Fig. 3-b) where the black curve
is our exact analytical solution and the blue dashed curve is the equation
a,"*(o) proposed by T. Mayerhéfer et al. [see the table (1) for the formulal.
A very clear difference is shown. Indeed, the ad hoc solution proposed by T.
Mayerhofer et al. diverges at low frequency because of the prefactor 2. This
divergence can significantly decrease the accuracy of the ad hoc modification
proposed by T. Mayerhofer et al. in [3].
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4. Conclusion

As noted by T. Mayerhofer et al. there is a problem of consistency be-
tween the analytical formula they used eq.(9) and the Kramers-Kronig equa-
tion (1). This assertion sounds rather weird since the considered functions
are analytics in the upper part of the complex plane. The remedy to this
inconsistency is not an ad hoc modification of the analytical formula on the
contrary to the proposition of the title paper[3]. Indeed, the consistency can
be reached if the considered functions fulfill all the assumptions that lead
to the Kramers-Kronig equations (1). Notably the functions must be odd.
Considering odd and triangular-shape functions, we recovered an analytical
formula [8] that is consistent with the numerical evaluation of the Kramers-
Kronig equation (1). This analytical formula eq.(11) can be used to improve
the accuracy of the " Kramers-Kronig constrained variational analysis” [6] and
the accuracy of the "Poor Man’s Kramers-Kronig analysis” [5].

References

[1] V. Lucarini, J. J. Saarinen, K.-E. Peiponen, E. M. Vartiainen, Kramers-

Kronig relations in optical materials research, vol. 110, Springer Science
& Business Media, 2005.

2] F. Wooten, Optical Properties of  Solids, Elsevier,
ISBN 9780127634500, d0i:10.1016/¢2013-0-07656-6, URL
http://dx.doi.org/10.1016/C2013-0-07656-6, 1972.

3] T. G. Mayerhofer, J. Popp, Improving Poor Man’s Kramers-Kronig
analysis and Kramers-Kronig constrained variational analysis, Spec-
trochimica Acta Part A: Molecular and Biomolecular Spectroscopy 213
(2019) 391-396, ISSN 1386-1425, doi:10.1016/j.saa.2019.01.084, URL
http://dx.doi.org/10.1016/j.saa.2019.01.084.

[4] W. Jones, N. H. March, Theoretical solid state physics, Vol. 2: Non-
Equilibrium and Disorder, vol. 2, Wiley-Interscience, New York, 1973.

[5] T. G. Mayerhofer, S. Pahlow, U. Hiibner, J. Popp, Removing interference-
based effects from the infrared transflectance spectra of thin films on
metallic substrates: a fast and wave optics conform solution, The Ana-
lyst 143 (13) (2018) 3164-3175, ISSN 1364-5528, doi:10.1039 /c8an00526e,
URL http://dx.doi.org/10.1039/c8an00526e.

11



6] A. B. Kuzmenko, Kramers-Kronig constrained variational anal-
ysis of optical spectra, Review of Scientific Instruments 76 (8)
(2005) 083108, ISSN 1089-7623, doi:10.1063/1.1979470, URL
http://dx.doi.org/10.1063/1.1979470.

[7] K. Ohta, H. Ishida, Comparison among several numerical integra-
tion methods for Kramers-Kronig transformation, Applied Spectroscopy
42 (6) (1988) 952-957.

[8] B. Johs, J. S. Hale, Dielectric function representation by B-splines, phys-
ica status solidi (a) 205 (4) (2008) 715-719, doi:10.1002/pssa.200777754,
URL https://doi.org/10.1002/pssa.200777754.

12



