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Abstract

A numerical approach is presented to efficiently simulate time-resolved 3D phase-contrast

Magnetic resonance Imaging (or 4D Flow MRI) acquisitions under realistic flow conditions.

The Navier-Stokes and Bloch equations are simultaneously solved with an Eulerian-

Lagrangian formalism. A semi-analytic solution for the Bloch equations as well as a periodic

particle seeding strategy are developed to reduce the computational cost. The velocity

reconstruction pipeline is first validated by considering a Poiseuille flow configuration. The

4D Flow MRI simulation procedure is then applied to the flow within an in vitro flow phantom

typical of the cardiovascular system. The simulated MR velocity images compare favorably

to both the flow computed by solving the Navier-Stokes equations and experimental 4D

Flow MRI measurements. A practical application is finally presented in which the MRI simu-

lation framework is used to identify the origins of the MRI measurement errors.

1 Introduction

It is now well-established that hemodynamics is associated with the onset and evolution of sev-

eral cardiovascular disorders such as aneurysms, stenoses, or blood clot formation [1–3]. Over

the recent years, there has been increasing interest in using time-resolved 3D phase contrast

Magnetic Resonance Imaging (or 4D Flow MRI) [4] for detection and follow-up of numerous

vascular diseases as well as for research purposes. In addition to providing comprehensive

velocity data and vascular motion in a single exam, 4D Flow MRI also offers the possibility to

retrospectively evaluate numerous biomarkers derived from the velocity field, such as the rela-

tive pressure field [5], the wall shear stress [6], or the pulse wave velocity [7]. However, several

acquisition parameters (e.g.: spatio-temporal resolution, encoding velocity, imaging artifacts)

may limit the expected accuracy of the measurements and potentially lead to erroneous diag-

nosis [8, 9]. Moreover, the intrinsic complexities of the multi-modal MRI acquisition process

make it delicate to localize the sources of the measurement errors. The signal processing steps

required to reconstruct an MR image as well as the large variety of user-dependent acquisition

parameters are as many potential sources of errors that could alter the measurements, and pos-

sibly lead to misdiagnosis. The numerical simulation of the MRI acquisition process could be

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0248816 March 26, 2021 1 / 32

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Puiseux T, Sewonu A, Moreno R, Mendez

S, Nicoud F (2021) Numerical simulation of time-

resolved 3D phase-contrast magnetic resonance

imaging. PLoS ONE 16(3): e0248816. https://doi.

org/10.1371/journal.pone.0248816

Editor: Iman Borazjani, Texas A&M University

System, UNITED STATES

Received: October 26, 2020

Accepted: March 6, 2021

Published: March 26, 2021

Copyright: © 2021 Puiseux et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The datasets are

available at the following DOIs: https://doi.org/10.

6084/m9.figshare.13134884.v1 and https://doi.

org/10.6084/m9.figshare.13134806.v1.

Funding: Simulations were performed using HPC

resources from GENCI-CINES (Grants 2018-

A0040307194 and 2019-A0060307194) and with

the support of the High Performance Computing

Platform MESO@LR, funded by the Occitanie /

Pyrénées-Méditerranée Region, Montpellier

Mediterranean Metropole and the University of

Montpellier. This study was funded by ALARA

https://orcid.org/0000-0002-3548-6085
https://orcid.org/0000-0001-8014-1468
https://doi.org/10.1371/journal.pone.0248816
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248816&domain=pdf&date_stamp=2021-03-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248816&domain=pdf&date_stamp=2021-03-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248816&domain=pdf&date_stamp=2021-03-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248816&domain=pdf&date_stamp=2021-03-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248816&domain=pdf&date_stamp=2021-03-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248816&domain=pdf&date_stamp=2021-03-26
https://doi.org/10.1371/journal.pone.0248816
https://doi.org/10.1371/journal.pone.0248816
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.13134884.v1
https://doi.org/10.6084/m9.figshare.13134884.v1
https://doi.org/10.6084/m9.figshare.13134806.v1
https://doi.org/10.6084/m9.figshare.13134806.v1


an efficient way to decompose the acquisition process and to understand the mechanisms lead-

ing to measurement errors. It has already proven useful to describe and correct some sources

of imaging artifacts [10], as well as to optimize sequences [11] for anatomical MRI. The recent

MR fingerprinting technique [12] is also a good illustration of a possible use of MRI simulation

to generate a dictionary containing predicted MR signals for a representative variety of tissue

in order to improve the quantification of material properties. In that respect, the numerical

simulation of 4D Flow MRI could provide a better understanding of the flow errors and help

optimizing the sequences.

The main core of the acquisition process is based on the phenomenon of Nuclear Magnetic

Resonance (NMR) which is described at the macroscopic scale by the Bloch equations [13].

These equations describe the macroscopic motion of the nuclear magnetization arising when a

sample of nuclear spins (isochromat) experiences an external magnetic field. They read:

dMðtÞ
dt
¼ gMðtÞ � BðtÞ þ

M0 � MzðtÞ
T1

êz �
MxðtÞ
T2

êx �
MyðtÞ
T2

êy; ð1Þ

where γ is the gyromagnetic ratio, B is the external magnetic field experienced by the isochro-

mat, M = (Mx, My, Mz) is the nuclear magnetization vector, T1 and T2 are the relaxation times

of the magnetization and M0êz is the steady-state magnetization. An isochromat refers to a

sample of spins large enough to be described by the macroscopic Bloch equations, with similar

position (x, y, z) at time t, magnetic properties (T1,T2, M0) and precession frequency (see Sec.

2). Although T1, T2, M0 characterize the macroscopic nature of a tissue, the gyromagnetic ratio

is an atomic property. Note also that the hydrogen atom (for which γ = 267.5 × 106 rad/s/T) is

most often exploited in MRI as it is the most abundant atomic element in the human body.

Although many simulation frameworks have already been developed for static tissues imag-

ing [14–17], flow MRI modeling is still a challenging issue. This is mainly due to the necessity

to account for the dynamics of the spins, which results in a considerable increase of the

computational load. In its classical formulation (Eq 1), the Bloch equations are defined for

each isochromat, for which they are ordinary differential equations expressed in a Lagrangian

formalism. Nevertheless, when simulations with moving spins are targeted, the input velocity

field required to update their position is usually predicted by Computational Fluid Dynamics

(CFD) on a fixed Eulerian numerical mesh.

A classical approach often adopted in the literature consists in solving the Eulerian formula-

tion of the Bloch equations [18–20]. In this case, the CFD velocity (u) is used to transport the

magnetization vector and a convection term is explicitly added to the time rate of change of

the magnetization vector (M), which becomes:

dM
dt
ðr; tÞ ¼

@MðtÞ
@t
þ ðuðr; tÞ � rÞMðtÞ: ð2Þ

This approach has a relatively low computational cost since both the flow and Bloch equa-

tions can be solved on the same fixed mesh with no velocity interpolation needed. Neverthe-

less, the Eulerian Bloch equations are partial derivative equations that do not admit a generally

valid analytical solution. Moreover, the Eulerian formalism encompasses some modeling

assumptions as the necessity to prescribe boundary conditions for the magnetization vector.

Note also that transformations of the mesh are often used to correct the results for the spatial

misregistration effects [18, 19], although some alternatives use local magnetization transforma-

tions to account for the flow-related effects [21]. Finally, the Eulerian approach is less adapted

to complex flow configurations, where the time scale of the velocity variations may be small as

compared to the time scale of the MR sequence [19].
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An alternative approach consists in modeling the spin isochromats with Lagrangian parti-

cles, using the CFD velocity to update each particle position. The Bloch equations can then be

solved independently for each particle, with no spin-spin interaction [22–24]. Therefore, the

computational load can easily be partitioned on multiple cores to accelerate the calculations.

Nevertheless, a sufficient number of particles is required to accurately approximate the MR

signal. As discussed by Shkarin & Spencer [25], at least 3 isochromats/direction/voxel are nec-

essary to reduce the MR signal error to 1.5%: this may require high computational resources

depending on the image spatial resolution (450 million particles for a 256 × 256 × 256 image).

Since homogeneous particle repartition within the domain is also required to avoid zones with

spurious MR signals [24], the existing studies are most often limited to simulations in simple

geometries [18, 20, 26]. Moreover, in the usual procedure [15, 21–24, 26, 27], a prior CFD

simulation is performed to store all the particle positions during the entire simulation. This

approach can be suited to steady flows but seems irrelevant for pulsatile flows simulations in

which very long physical times, and thus many particle positions, generally need to be simu-

lated. For example, a particle tracking along a 4D Flow MRI simulation of physical scan dura-

tion Tacq = 6 min, discretized with a constant time step ΔtCFD = 10−3 s, and with 3 particles/

direction/voxel injected would require to store about 60 TB of memory for an acquisition

matrix of size (160 × 160 × 20). The huge file size, the repeated accesses to this file, and the

temporal interpolations required to update the particles position at different instants during

the MRI simulation, would lead to prohibitive computational costs. To address this problem,

we propose a method to perform MRI/CFD simulations “on the fly”, i.e. advancing the particle

positions and computing the resulting NMR signal during the calculation, without storing the

particle trajectory history.

Well-resolved computations are now achievable at reasonable costs because of computa-

tional power gains due to the recent improvements of hardware and software capabilities. To

that extent, Lagrangian computations are now feasible and adapted to simulate complex flow

MRI measurements [19]. However, to the best of the authors’ knowledge and as summarized

in the literature review presented in Table 1, no simulation framework of 4D Flow MRI (or

time-resolved 3D PC-MRI) sequences has ever been proposed yet.

The objective of this work is to present a workflow able to simulate time-resolved 3D

PC-MRI acquisitions of flow fields of arbitrary complexity. Pulsatile transitional flows in

complex geometries, as encountered in the cardiovascular system, are specifically targeted.

To this aim, an original framework is proposed where the Bloch equations are advanced on

Table 1. Review of the published works in flow MRI simulations.

Publication Configuration Formulation Sequence

Steinman et al., 1997 [27] steady 3D idealized bifurcation Lagrangian 2D/3D GE VE

Jou et Saloner, 1998 [18] pulsatile 2D carotid bifurcation Eulerian 2D GE VC/VU

Lorthois et al., 2005 [19] steady 2D carotid bifurcation Eulerian 2D GE VC/VU

Marshall, 2010 [23] steady 3D carotid bifurcation Lagrangian 3D GE VE

Petersson et al., 2010 [22] steady 3D stenosis Lagrangian 3D GE VE

Jurczuk et al., 2014 [28] steady 3D vascular network Eulerian 2D/3D GE

Xanthis et al., 2014 [29] steady 3D cylinder Lagrangian 2D GE VE

Klepaczko et al., 2014 [26] steady 3D stenosed/U-bend tubes Lagrangian 3D GE VC

Fortin et al., 2018 [24] steady 3D cerebral artery Lagrangian 3D GE VE

GE: gradient echo; VC: velocity compensated; VU: velocity uncompensated; VE: velocity encoded. Detailed explanations on the sequence terminologies are given in Sec.

2.4 and 2.5.

https://doi.org/10.1371/journal.pone.0248816.t001
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Lagrangian particles behaving like tracers in a flow field solved simultaneously. Hence, the

Bloch equations are solved “on the fly” so that the particles trajectories do not need to be

stored, as usually done [23, 24]. The resulting simulated MR signal is collected and synthetic

MR images are reconstructed. As the simulated MR images are calculated from a reference

flow field, the comparison between the flow field predicted by CFD and that reconstructed by

the simulated MRI (SMRI) process allows the identification of the sources of errors due to the

imaging technique. In particular, it is virtually possible to add assumptions and sources of

errors to quantify their effect on the results.

To illustrate the potential of the method and compare with real MRI measurements, a well-

controlled experiment delivering a pulsatile blood-mimicking fluid flow within a rigid phan-

tom typical of the cardiovascular system was designed and several PC-MRI experiments were

carried out [30]. An image-based CFD analysis was performed, prescribing as inlet velocity

profile the PC-MRI measurements performed. The Bloch equations were also solved in this

configuration, in order to compare standalone CFD and SMRI results with MRI experimental

measurement. As we have full control of the geometry of the non deformable flow domain and

fluid rheology, classical sources of uncertainties met in vivo such as segmentation errors, wall

motion and blood properties are suppressed, which potentially enables to identify the sources

of errors coming from the MRI process itself.

Some basic concepts of Magnetic Resonance Imaging intended to the non-expert readers

are first introduced in Sec. 2. The numerical procedure for simulating the Bloch equations as

well as the coupling strategy with CFD are then presented in Sec. 3. The verification and vali-

dation of the developed numerical pipeline are detailed in Sec. 4. The Bloch equations solver is

first validated by reproducing the numerical test case published in Yuan et al. [31]. Then, the

full velocity reconstruction pipeline is verified through the MRI simulation of a Poiseuille flow

configuration. The CFD coupling is finally validated through the full 4D Flow simulation of

the flow phantom experiment described above [30]. The reconstructed images are compared

with both the input CFD velocity maps and experimental 4D Flow MRI measurements. The

influence of the spatial resolution and particle density on the reconstructed velocity field is

also investigated.

2 Basic concepts in MRI

The next section presents MRI concepts that are essential for the understanding of the pro-

posed method by non-expert readers.

2.1 Nuclear Magnetic Resonance (NMR)

The NMR experiment is illustrated in Fig 1. Without any external magnetic field, the nuclear

spins (i.e the total angular momentum of an atomic nucleus) are randomly oriented (Fig 1a).

However, if a uniform static magnetic field (B0) is applied to a sample of spins, the spins start

precessing at the Larmor frequency ω0 = γB0 around the B0 axis and an equilibrium magneti-

zation vector M = M0 aligned with B0 arises from the sum of their magnetic moments (Fig 1b).

The NMR experiment mainly consists of an excitation of the sample of spins from their equi-

librium state associated with B0, followed by a relaxation in which a tissue-specific magnetic

signature is collected. The excitation consists in applying a radiofrequency (RF) pulse at Lar-

mor frequency to disturb the net magnetization vector from its equilibrium state and shift it

towards the transverse plane (Fig 1c). At the end of the RF excitation, the spins sample, or iso-

chromat, evolves towards its equilibrium state (Fig 1d) and the net magnetization resulting

from the relaxation induces a temporal variation of the magnetic flux (according to Faraday’s

law of induction) measured through a receiver coil during a readout event.
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2.2 Signal reception

The signal measured by a receiver coil during the relaxation of the isochromat is proportional

to the spin density of the excited sample. Formally, the complex signal can be written as:

SðtÞ ¼
Z

O

Mxyðr; tÞCxyðrÞdO; ð3Þ

where the transverse magnetization (Mxy = Mx + iMy) is integrated over the whole sample

O and Cxy is the receiver coil sensitivity profile; in this work, the coils are supposed perfect

(Cxy = 1) over the entire domain.

2.3 Signal localization

In practice, the sample is made up of different tissues (e.g.: fat, liver, blood) with specific pro-

ton densities and relaxation properties (T1 and T2, see Eq 1). The overall received MR signal is

therefore a sum of the net magnetization signals emitted by each tissue. To localize the spatial

distribution of each tissue within the sample, an additional spatially varying magnetic field

Fig 1. Illustration of the NMR experiment. (a) When no magnetic field is applied, the spins are randomly oriented.

When a B0 field is applied along the z-axis, all the spins precess around the z-axis and (b) an equilibrium magnetization

arises, oriented along the same axis. The equilibrium magnetization is shifted towards the transverse xy-plane by the

effects of an RF-pulse (B1) applied at resonance frequency (c). When the RF-excitation is released, the magnetization

relaxes towards its equilibrium value (d) with a precession frequency that depends on the magnetic properties of the

isochromat considered. Note that the magnetization shift due to the RF-pulse is around two or three orders of

magnitude faster than the relaxation process.

https://doi.org/10.1371/journal.pone.0248816.g001
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(gradient field) is added to the static field B0 thus linearly modifying the precession frequency

of the spins in space. Subsequently, each isochromat contributes with its own frequency and

phase to the signal recorded by the receiver coil. Three-directional magnetic gradients fields

G = (Gx, Gy, Gz) are applied in 3D imaging to encode the isochromats along each direction.

2.4 MR sequence

The temporal arrangement of the external magnetic field in the Bloch equations (see Eq 1) is

referred to as the MRI sequence and mainly consists of repetitions of RF-excitations, phase

and frequency encoding gradients and signal readouts. A repetition refers to this elementary

series of events in the external magnetic field. To each instant t during the signal readout cor-

responds a particular phase and frequency encoding of the signal. Therefore, a unique wave

number k(t) = (kx(t), ky(t), kz(t)) can be defined as:

kðtÞ ¼
g

2p

Z t

0

GðtÞdt: ð4Þ

where the time origin t = 0 is taken as the end of the first RF pulse. The space containing k(t) is

referred to as the k-space and corresponds to the Fourier conjugate of the standard spatial

domain O. Using this k-space formalism, an MRI sequence can be defined as the temporal

arrangement of magnetic fields necessary to cover a specific trajectory in the discretized k-

space. In the classical Cartesian k-space filling strategy, a phase-encoding gradient is first

applied along ky direction to encode the spins phase. A frequency-encoding gradient is then

applied along kx direction during the readout to modify the spin frequencies as the time

increases. In other words, one k-space line in the kx direction is filled during each signal read-

out, which itself consists of several readout samples. For 3D imaging, an additional phase-

encoding gradient is applied along the kz direction.

In practice, several groups of pulse sequences can be distinguished (spin echo, gradient

echo, inversion recovery, . . .) to highlight specific anatomic or functional parameters; gradient

echo pulse sequences are generally adapted to flow imaging. The chronogram of a typical gra-

dient echo sequence is illustrated in Fig 2.

Formally, an MRI sequence is defined by the characteristics of the external magnetic field

B(r, t) (see Eq 1). However, the Bloch equations are generally expressed in the frame of refer-

ence that rotates clockwise at Larmor frequency ω = ω0 = γB0, around the z-axis by convention.

This cancels the static magnetic field contribution such that the magnetic field is referred to as

the effective magnetic field Beff ¼ B � o0

g
êz. The effective magnetic field at position r and time

t in this frame of reference reads:

Beffðr; tÞ ¼

Bx

By

Bz

0

B
B
B
@

1

C
C
C
A
¼

B1ðtÞ cos ðo1tÞ

� B1ðtÞ sin ðo1tÞ

r � GðtÞ þ DBzðr; tÞ

0

B
B
B
@

1

C
C
C
A
; ð5Þ

where B1 is the RF field that rotates around the z-axis at frequency ω1 with respect to the frame

of reference. Note that the RF pulse shape is often described by a filtered cardinal sine (SINC)

function, as its Fourier transform corresponds to a rectangular profile. SINC RF pulses equally

excite the spins within a given bandwidth while leaving the surrounding spins precessing at a

frequency out of the given bandwidth unaffected. r�G in Eq 5 corresponds to the magnetic

field induced by the gradient coils and ΔBz(r, tn) represents the deviations of the magnetic field

due to off-resonance effects. The off-resonance effects mainly comprise non-linear gradients

PLOS ONE Numerical simulation of time-resolved 3D PC-MRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0248816 March 26, 2021 6 / 32

https://doi.org/10.1371/journal.pone.0248816


(non-constant G(t)), concomitant fields, eddy currents, chemical shift, T�
2

dephasing and

magnetic susceptibility. In the initial development phase, these effects are neglected, thus it is

assumed that ΔBz = 0 hereafter.

2.5 Phase-contrast MRI

Phase-contrast MRI exploits the relationship that exists between the phase shift of moving

spins and their velocities. The phase shift encompassed by an isochromat between the RF-exci-

tation (at t = 0) and a given time t can be written in the rotating frame of reference as:

�ðr; tÞ ¼
Z t

0

gBzðr; tÞdt ¼ g
Z t

0

rðtÞ � GðtÞdt: ð6Þ

In particular, it can be written for t = TE, the echo time, which is the time at half the read-

out. From a first-order Taylor expansion of the isochromat position at the vicinity of t = 0, the

Fig 2. Diagram of a typical gradient echo pulse sequence with frequency and phase encoding gradients along x-axis and y-axis, and slice selection

gradient along z-axis. Each k-space line is filled during the readout event where the signal is measured by the receiver coil. This pulse sequence is

repeated changing the phase encoding gradient amplitudes (Gy) after each repetition time TR to incrementally fill the k-space lines, as represented by

the several amplitudes. For full Cartesian k-space sampling, the time between the RF-excitation and half the readout corresponds to the echo time and is

denoted TE. It is a characteristic time of the evolution of the isochromats between the excitation by the RF and the signal measurement.

https://doi.org/10.1371/journal.pone.0248816.g002
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previous equation becomes at echo time TE:

�ðr;TEÞ ¼ �0 þ gr0 �

Z TE

0

GðtÞdt
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

M0

þ gu0 �

Z TE

0

tGðtÞdt
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

M1

;
ð7Þ

where ϕ0 is an additional background phase induced by the initial phase and field inhomoge-

neities, u0 the isochromat velocity, and M0, M1 the zeroth- and first-order moments of the

gradient. Amongst the several existing velocity encoding strategies [32], the so-called flow

compensation technique is often preferred as it reduces pulsatile flow artifacts [4]. It consists

in a reference scan where all the velocity-induced phase shifts are refocused at the echo time

(M0 = 0, M1 = 0). Then a second scan is applied with added bipolar gradient to encode the flow

velocity (M0 = 0, M1 6¼ 0) while removing the background phase shift. This encoding strategy

is illustrated in Fig 3. The velocity component along each encoding direction i can then be

retrieved from the phase difference between these two scans, such as:

ui ¼
Venc;i

p
D�i; ð8Þ

where Δϕi = arg(Ii) − arg(Iref) refers to the motion-induced voxel dephasing, Iref corresponds to

the reference scan phase image, and Ii to the i-th velocity component phase image. Venc;i ¼
p

gDM1

corresponds to a 2π phase shift and is a user-defined parameter. In order to avoid phase wrap-

ping, VENC should be set larger than the largest velocity value expected in the imaging domain,

in the given direction and in absolute value. In phase-contrast MRI, acceleration and higher-

order terms are neglected due to the first-order Taylor expansion of the isochromat position

[33]. Since cardiovascular flows are pulsatile, the cardiac cycle can be sampled into several time-

frames (or phases). As the time duration of one cardiac cycle is not sufficient to acquire all the

data, the k-space is filled progressively over several cycles, each phase data being acquired in a

synchronized way from one cycle to another. This synchronisation is usually performed by

using electrocardiogram signal (ECG-gating).

Fig 3. Illustration of the effects of applying either flow compensating (left) or bipolar encoding velocity gradients (right) on the phase of the

magnetization vector. The static spins (blue) result in a zero accumulated phase at the end of the application, while the moving spins (red) result in a

non-zero phase.

https://doi.org/10.1371/journal.pone.0248816.g003
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2.6 Image reconstruction

A particular property of the MR signal (see Eq 3) is that it can be written as the Fourier trans-

form of the weighted transverse magnetization, using the k-space formalism described in Sec.

2.4. Therefore, the k-space signal can be converted into a 2D or 3D image in the spatial domain

by applying a 2D or 3D inverse Fourier transform. More details about signal detection and

image reconstruction concepts can be found in [34].

2.7 RF-spoiling

The RF-spoiling corresponds to the disruption of the residual transverse magnetization that

remains at the end of each repetition, before the next RF pulse is applied. This is generally

required in PC-MRI sequences to ensure that the transverse magnetization recovers a steady

state before each RF excitation. However, the relaxation of the longitudinal magnetization is

generally incomplete. After several repetitions the longitudinal magnetization is saturated and

converges towards its steady-state value Mss
z generally smaller than M0 [34]. In practice, RF-

spoiling is performed by varying the phase of the RF-pulse following a predefined pattern [35].

3 Numerical methods

3.1 4D Flow MRI simulation procedure

The entire CFD-MRI simulation procedure is illustrated in Fig 4. A pseudo-code of the proce-

dure is provided in Algorithm 1. In our algorithm, the fluid flow is solved independently of the

Bloch equations. The Bloch equations are solved on fluid particles that behave as tracers, per-

fectly following the local fluid velocity. Each particle represents an isochromat, with a value of

magnetization advanced in time. All calculations regarding the MRI simulation are performed

only on particles. The next sections detail the different steps presented synthetically in Fig 4

and Algorithm 1.

Fig 4. Main steps of the CFD-MRI simulation procedure. NSE: Navier-Stokes Equations. BC: Boundary conditions. The grey block corresponds to

the simulation framework kernel, while the red/blue blocks are inputs/outputs to the simulation. tf is the final time of the simulation. The output

“simulated images” correspond to three phase difference images and a magnitude image.

https://doi.org/10.1371/journal.pone.0248816.g004
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Algorithm 1: Pseudo-code of the coupled CFD-MRI simulation procedure.
Input:
B1(t), G(t), t, readout  InputSequence()
T1, T2, γ, Minj  ParticlesData()
rnodes  MeshData()
Initialize Data:
rp  FillWithParticles()
for p = 1: npt do
Mp = Minj
up = u0

end
Temporal Loop:
while not done do
tm = tn

Δtcfd  CalcCFLTimeStep(CFL)
tn = tn + Δtcfd
for i = 1: nnodes do
Ui  SolveNavierStokes(Ui, Δtcfd)

end
if spoiling==True then
DeactivateAllParticles(npt)
npt  FillWithParticles()

end
while tm < tn + Δtcfd do
for p = 1: npt do
Bp

eff  CalcBeff(Bm
1
;GðtmÞ)

Dtpmri  CalcMRTimeStep(Bp
eff)

tm ¼ tm þ Dtpmri
up InterpolateVelocityOnParticle(U)
rp AdvanceParticlePosition(rp)
Mp SolveBloch(Bp

eff ;Dt
p
mri)

end
if readout==True then
S(tn) CalcMRSignal(Mp)

end
end

end
3.1.1 Particle seeding. To model the isochromats, a homogeneous spatial distribution of

Np Lagrangian particles is seeded inside a fluid domain which is itself discretized with a fixed

(Eulerian) numerical mesh. Np,el particles are seeded inside each Eulerian cell of the mesh fol-

lowing a uniformly random distribution [36]. As found in [37], this randomization should pre-

vent spurious rephasing artifacts to appear. An injection magnetization M(t = 0) = Minj = (0, 0,

Minj) is prescribed as initial condition for each seeded particle. The longitudinal magnetization

is set to its steady state value Minj ¼ Mss
z so that no presaturation of the magnetization is

required [34]. An isochromat volume wp ¼
Vel
Np;el

and a set of magnetic properties (T1, T2, M0)

are associated to each particle p inside an element of volume Vel.

3.1.2 Spoiling modeling. As already mentioned in Sec. 2.5, RF-spoiling is generally per-

formed in phase-contrast sequences to remove the transverse residual magnetization. How-

ever, as found in [24], a realistic simulation of an RF-spoiling event yielding an error inferior

to 3% may require 1000 isochromats/voxel to avoid constructive vector summation and the

associated spurious signal. This would lead to a dramatic increase of the computational bur-

den. To circumvent this issue, RF-spoiling is modeled by setting the transverse magnetization

of each particle to zero.
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Additionally, to take advantage of RF-spoiling, all the particles within the domain are sup-

pressed at each spoiling event, and Np particles are re-seeded at the same location as initially,

with the magnetization vector reset to its initial value Minj ¼ ð0; 0;Mss
z Þ.

The re-seeding of particles at the same initial location is illustrated in Fig 5. It is a key step

of the methodology that presumably allows to keep the particles distribution homogeneous,

and avoids areas of spurious signal due to either a lack of particles in high velocity regions, or

the accumulation of slow velocity particles near the boundary walls.

3.1.3 Temporal discretization. Owing to the broad variety of magnetic-related time dis-

cretization constraints, a multi-criterion time-stepping approach was implemented to numeri-

cally solve the Bloch equations. The aim is to ensure the numerical stability and the precision

of the algorithm and to properly represent the highest frequencies of the external magnetic

field.

During magnetic events when RF is off, a numerical stability criterion for the explicit

Runge-Kutta scheme can be obtained from a stability analysis [38], which enforces the follow-

ing time step constraint:

Dtmri � Dtstab ¼
2

T2
1

T2
2

þ g

2p
Bz;max

� �2
� � ; ð9Þ

where Bz,max corresponds to the maximum z-component of the magnetic field prescribed to a

particle. In addition, to capture the stiff variations of the magnetization induced by abrupt

Fig 5. Schematic illustration of the particles position at different instants between two consecutive RF excitations in a pipe flow with an

aneurysm-like wall bulging. The black spheres represent the classical particles injection strategy where particles are initially seeded within the whole

domain and continuously injected from the inlet boundary surface. In contrast, in the proposed seeding strategy (blue spheres), the particles are

periodically re-seeded at their initial location, and the steady-state magnetization is prescribed. In the classical strategy, zones of agglomerated and

empty particles can be observed especially in the aneurysm sac [23], while the proposed approach allows to keep homogeneous the particle repartition.

https://doi.org/10.1371/journal.pone.0248816.g005
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changes in the magnetic field source term, another time step constraint is calculated as:

Dtmri � Dtmag ¼
2pbn
gBeff ;max

; ð10Þ

where Beff,max corresponds to the maximum effective magnetic field imposed to a particle, and

bn (for Bloch Number) is a dimensionless coefficient fixed by the user which corresponds to

the fraction of revolution described by the spin with maximum precessing frequency during

one iteration.

When the particle experiences a rising gradient field, the following additional time con-

straint applies:

Dtmri � Dtgrad ¼ min
i

0:1
Gi;max

j
@Gi
@t j

 !

; ð11Þ

where Gi,max is the maximum gradient amplitude specified in the sequence along the i-th axis.

This constraint ensures that each gradient ramp is sampled with at least ten time steps. It was

notably added for instants with small or null Beff and with large time derivative of the gradient.

Another time constraint Δtseq was imposed to ensure a sufficient sampling of the RF wave-

form, as well as the correct time delays between readout samples, where the signal is collected.

Finally, a regular update of the information between Eulerian and Lagrangian data was

imposed to ensure the coupling with CFD. In practice, the time step was adjusted to match

each CFD time step ΔtCFD.

This multi-time step integration strategy significantly reduces the overall computation time

as compared to a classical uniform time stepping strategy for all the equations. For example,

a simulation with uniform time steps of Δt = 10−5 s requiring 20 000 iterations and 294 s to

complete would run in 11.4 s and 1218 iterations with the proposed variable time-stepping

approach. A typical time step distribution is illustrated in Fig 6, where it is shown that different

time step constraints will limit the time step to advance the Bloch equations depending on the

events in the sequence.

3.1.4 Coupling with CFD. To advance the particle position, the fluid velocity is calculated,

then interpolated to the particles. The fluid velocity is predicted by solving the incompressible

Fig 6. Evolution of the simulation time step over an arbitrary pulse sequence (RF and gradient) as a function of the magnetic event. Within each

CFD iteration of time ΔtCFD, the fluid velocity is kept constant. For indication, in a pipe of 5 cm radius and 10 cm length, with T2 = 10 ms, and with a

gradient strength Gmax = 10 mT/m of 0.1 ms rise time, the order of magnitude for the minimum time steps would be: Δtstab� 10−7 s, Δtmag� 10−5 s

(with bn = 1), Δtgrad� 10−5 s, Δtseq� 10−3 s and ΔtCFD� 10−3 s.

https://doi.org/10.1371/journal.pone.0248816.g006
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Navier-Stokes equations (NSE) that read:

r � u ¼ 0; ð12Þ

r
@u
@t
þ u � ru

� �

¼ � rpþ mr2u; ð13Þ

where u, p, ρ and μ are the velocity field, pressure field, constant density and constant dynamic

viscosity of the fluid, respectively. To this aim, the NSE are discretized on a fixed numerical

mesh and solved using the YALES2BIO solver [39] (http://imag.umontpellier.fr/~yales2bio/),

an in-house CFD solver dedicated to the simulation of blood flows in complex geometries at

both macroscopic and microscopic scales [40–44]. The flow solver uses high-order finite-vol-

ume non-dissipative numerical methods to solve the NSE on unstructured meshes [45]. All

these features are implemented with the coupling of OpenMP and MPI interfaces to confer its

massively parallel capabilities to the solver. A fourth-order explicit Runge-Kutta time advance-

ment scheme is used to advance the fluid velocity, as well as a centered fourth-order scheme

for the spatial discretization. The divergence-free condition is met thanks to a fractional-step

algorithm [46], and the associated Poisson equation is solved using a Deflated Preconditioned

Conjugate Gradient algorithm [47]. For turbulent and transitional flows, Large Eddy Simula-

tion are performed, using the sigma eddy-viscosity-based subgrid-scale model [48] to account

for the effects of the unresolved sub-grid scales on the dynamics of the resolved structures.

More details can be found in [30]. For numerical stability purposes, the CFD time step ΔtCFD
is systematically computed to ensure that the Courant–Friedrichs–Lewy (CFL) condition

remains inferior to 0.9. The CFD velocity is then interpolated on each particle with an inverse

distance weighting interpolation, and the particle position is advanced as:

rpðt þ DtmriÞ ¼ rpðtÞ þ
Z tþDtmri

t
uðrp; tÞdt; ð14Þ

where Δtmri is the time step computed as detailed in Sec. 3.1.3, rp the particle position and u the

interpolated velocity. The integration is performed using a third-order Runge-Kutta method

(RK3). Note that the numerical time step Δtmri is associated to the particle advancement which

depends on the discretization of the Bloch equations, and differs from the CFD-related time

step ΔtCFD, as discussed in the former section. The magnetic time constraints are generally

more restrictive than the fluid time steps, by up to three or four orders of magnitude in some

cases. In order to avoid redundant CFD calculations, the fluid velocity is kept constant until

the sum of the magnetic time steps reaches ΔtCFD.

3.1.5 Numerical advancement of the Bloch equations. So far, two classes of approaches

have been adopted in the literature to solve the Bloch equations. The first approach was ini-

tially developed in the work of Bittoun et al. [14] for static tissues simulations and later

extended to the flow-related effects [15, 21]. In this method, the driving magnetic field is

decomposed as a series of piecewise constant waveforms (rectangular RF pulses and gradients).

While it requires a relatively low computational effort due to the analytical formulation, a very

large sampling frequency is necessary to limit the approximation errors when simulating real-

istic non-rectangular RF-pulse and gradient shapes. Another classical approach is based on a

complete numerical integration, where an iterative method is used to approximate the Bloch

equations, with no preliminary assumption on the magnetic field waveform [17, 19, 24]. This

resolution method is relatively simple to implement and its accuracy depends upon the order

of the time stepping method and of the time resolution. The numerical integration results

in higher computational cost as compared with an analytical formulation and it can be
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unnecessarily time consuming in regimes where the Bloch equations admit exact solutions,

particularly during relaxation.

In this study, a semi-analytic solution was implemented. The Bloch equations are solved

numerically by using a fourth-order Runge-Kutta scheme (RK4) during the RF excitations,

and analytically whenever the particles experience a relaxation or encoding gradients events.

Considering t = 0 as the end of the RF pulse (where Bx(t) = By(t) = 0 for all instants such that

0< t< tn where tn is the time of the current iteration), the Bloch equations for the transverse

magnetization can be expressed as:

dMxy

dt
¼ �

1

T2

þ igBz

� �

Mxy; ð15Þ

where Mxy = Mx + iMy and i2 = −1. The previous equation admits the following solution:

Mxyðrp; tnÞ ¼ jMxyðrp; 0Þjei�0e� tn=T2e� i�ðrp;tnÞ; ð16Þ

where, in the ideal case where off-resonance effects are neglected (ΔBz = 0), it is recalled that:

�ðrp; tnÞ ¼ g
Z tn

0

rpðtÞ � GðtÞdt; ð17Þ

and ϕ0 is the phase of the transverse magnetization at the end of the RF pulse. To reach an

explicit form of the phase, it is further assumed that the gradient profile over time can be prop-

erly represented by a piecewise linear function over a set of time intervals [tm, tm + 1]. Under

this assumption, G(t) is explicitly written as:

GðtÞ ¼ GðtmÞ þ
@G
@t

�
�
�
�
m

ðt � tmÞ; ð18Þ

over each [tm, tm + 1] interval, and the phase expression can be recast as:

�ðrp; tnÞ ¼ g
Xn� 1

m¼0

Z tmþ1

tm
rpðtÞ � GðtÞdt: ð19Þ

As already mentioned in Sec. 2.5, an inherent limitation of PC-MRI sequences is the first-

order expansion of the isochromat position rp assumed to reconstruct the velocity. In other

words, velocity is assumed constant over each time interval (acceleration and higher order

terms are neglected [4]) and the following expression is used:

rpðtÞ ¼ rpðtmÞ þ up
rkðtmÞðt � tmÞ; ð20Þ

where up
rk is obtained from the RK3 particle position advancement in order to conserve the

benefits of the 3rd-order accurate particle position advancement scheme (see Eq 14). Introduc-

ing the two previous decompositions in Eq 19 yields the following expression for the phase:

�ðrp; tnÞ ¼
Xn� 1

m¼0

gðamDtm þ bm
ðDtmÞ2 þ cmðDtmÞ3Þ; ð21Þ
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where Δtm = tm+1 − tm, and

am ¼ rpðtmÞ � GðtmÞ;

bm
¼

1

2
rpðtmÞ �

dG
dt

�
�
�
�
m

þ upðtmÞ � GpðtmÞ;

cm ¼
1

3
upðtmÞ �

dG
dt

�
�
�
�
m

:

ð22Þ

This formulation can easily be implemented and is valid both when encoding gradients are

on or during relaxation processes (where gradients are zero). Indeed, the time step constraint

enunciated in Eq 9 does not apply. Here the gradients waveforms are assumed linear for the

sake of simplicity but the same reasoning could be adopted for non linear gradients waveforms

as long as they can be integrated (like for radial or spiral k-space trajectories). The phase ϕ can

then be reintroduced in Eq 16 so that the magnetization can be explicitly calculated.

At the end of each iteration, the particle position is updated from the velocity vector esti-

mated by CFD, and this procedure is repeated until the end of the pulse sequence. Images are

finally reconstructed using an inverse Fourier transform of the full k-space, and each velocity

component retrieved from the phase difference images (as detailed in Sec. 2.5).

4 Verification and validation

4.1 Validation of the Bloch solver

The configuration proposed by Yuan et al. [31] and reproduced in [20] was tested to validate

the implementation of the Bloch equations solver. The evolution of the magnetization vector

of isochromats flowing along a 1-D segment (see Fig 7a) under a simple 90˚ slice-selection

pulse sequence (see Fig 7(b) was simulated and compared to the results obtained in [31]. It

consists in applying an RF-pulse with a limited frequency bandwidth together with a slice

selection gradient along the z-axis, which generates a gradient of frequencies around the Lar-

mor frequency and along the z direction. In that way, only the spins whose resonance fre-

quency is included in the slice of interest are excited. The magnetization was recorded at the

end of the rewinder gradient as marked by the arrow in Fig 7(b). The reported magnetization

profiles are compared for several input particle velocities (from 0 to 200 cm/s) in Fig 7(c). The

present results are in very good agreement with the outcomes of [31] irrespective of the pre-

scribed velocity. The relative error � was computed for different time steps and reached a pla-

teau at Δt = 5×10−5 s: �� 10−2 in the x direction and �� 10−4 for the y and z components of

the magnetization.

4.2 Verification of the velocity reconstruction pipeline

A second test case was performed to verify the whole velocity reconstruction pipeline. The

objective is to retrieve, from an in silico 2D PC MRI acquisition, the velocity field prescribed

(but not computed) within the region of interest. To this end, a Poiseuille velocity profile was

imposed in a duct of square cross-section numerical domain, such that:

wðrÞ ¼ wmax 1 �
r2

R2

� �

if r � R;

¼ 0 elsewhere;

ð23Þ

where R = 5 mm is the radius of the flow domain and wmax = 0.1 m/s the maximum axial velocity.
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Outside the Poiseuille region (r> R), a null velocity was prescribed to the spins to simulate

static tissues. The numerical domain is illustrated in Fig 8(a). As it gathers both static and mov-

ing spins, this configuration allows to mimic the behavior at the interface of a vessel. A 2D

PC-MRI sequence was simulated in transverse orientation with a matrix size (Nx, Ny) = (36, 36),

Fig 7. (a) Schematic illustration of the flow configuration used in Yuan et al. [31]. (b) 90˚ slice selective excitation

sequence simulated. (c) Evolution along the centerline of the magnetization (Mx, My, Mz) for several velocities imposed

to the particles. The dashed lines correspond to the YALES2BIO simulation results, while solid lines correspond to

Yuan et al. data [31].

https://doi.org/10.1371/journal.pone.0248816.g007
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a voxel size Δx = 0.5 mm, Δy = 0.5 mm, Δz = 10 mm, a FOV = (18, 18, 18) and a VENC set to

0.12 m/s. Note that a buffer zone was added upstream of the slice position in order to pre-satu-

rate the spins entering the domain, and avoid spurious magnetization inflow effects. Moreover,

the field of view was set slightly larger than the numerical domain to avoid wrap-around arti-

facts [34].

The sensitivity of the velocity reconstruction to the temporal discretization was tested

(results not shown, see [38]) by varying the Bloch number bn (see Eq 10). A large velocity

error (� = 15%) was found for bn> 1, followed by a sudden drop for bn = 1 and a plateau as bn
decreases (� = 10−4% was found between bn = 0.25 and bn = 1). For the present case, the Bloch

number was set to bn = 0.25. To test the convergence of the results with the number of isochro-

mats, up to 4096 isochromats/voxel were seeded in the numerical domain. The image recon-

struction was performed by 2D Fourier transform of the collected k-space signal. The velocity

field evaluated in the reconstructed image was compared with the analytical Poiseuille flow

solution averaged over each voxel.

The axial velocity profile shown in Fig 8(b) reveals an excellent agreement between the ana-

lytical and reconstructed velocity fields. A small mean error �� ¼ 0:5% was found over the

entire image, where the error was defined as: � ¼ j
wSMRI � w
wmax

j, where SMRI corresponds to the

MRI simulation. However, slight visual discrepancies can be observed near the boundary

Fig 8. Poiseuille flow test case simulated with a 2D PC-MRI sequence. (a) Boundaries of the domain (flow in black

and static tissues in gray) simulated. (b) Axial velocity profile along the x-axis reconstructed by MRI (dots) and

compared with the imposed Poiseuille analytical solution (solid line). (c) Maximum and (d) mean errors as a function

of the particle density.

https://doi.org/10.1371/journal.pone.0248816.g008
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walls, where high velocity gradients occur. At this site, a maximum error of max(�) = 6.4.%

was observed. This can partially be explained by both the finite and discrete sampling of the k-

space signal [25]. The former effect is commonly referred to as Gibbs ringing artifact [34] and

specifically occurs at regions of sharp phase transition (boundaries of the flow domain).

A convergence analysis with the particle density was undertaken and the results are

depicted in Fig 8(c) and 8(d). It shows that about 10 particles/voxel are necessary for the

velocity to yield a mean error under 1% as well as about 20 particles/voxel for the maximum

velocity error to be lower than 10%. Similarly, the peak velocity at the center of the image

raised an error lower than � < 1% with only 2 particles/voxel. This result is comparable with

the the peak velocity error obtained with a 2D multi-slices sequence and reported in Xanthis

et al. [29] (1.6% ± 2.8% error for 24 isochromats/voxel).Generally speaking, these results

roughly agree with the study by Shkarin and Spencer [25], where 27 particles/voxel were

necessary to keep MR signal error under 1.5% as compared to an analytical signal with sta-

tionnary isochromats. However, the reconstructed axial velocity (and not the MR signal) is

used here for comparison, thus offering a better validation of the whole pipeline. Besides,

the particle density necessary to obtain a consistent signal would be dramatically higher

(around 1000 particles/voxel) if the RF-spoiling was simulated instead of modeled, as

observed in [24]. Finally, the same computation was performed without the volume weight-

ing fraction associated with the particles. Higher mean errors were produced (5% at 20 par-

ticles/voxel), highlighting the importance of accounting for the isochromat volume in the

simulations.

4.2.1 Numerical efficiency of the semi-analytic formulation. To evaluate the computa-

tional efficiency of the method, the 2D PC-MRI acquisition of the Poiseuille flow configuration

was simulated with the semi-analytic formulation and compared to the velocity reconstructed

with the full numerical integration method (RK4). The associated computational costs are pre-

sented in Fig 9. While both methods seem to linearly evolve with the number of particles per

voxel, the semi-analytic method is 5 times faster while the mean residual errors were the same

for both formulations.

Fig 9. Computational cost for the MRI simulation of a Poiseuille flow with a 2D PC-MRI sequence, at different spin densities

with an imaging matrix of size 16 × 16 and a FOV of 32 × 32 × 10 mm3. The proposed semi-analytic formulation is compared to

the full numerical integration method, where a fourth-order Runge-Kutta numerical scheme is adopted to discretize the Bloch

equation. The computational cost is defined as the computational time divided by the lowest time.

https://doi.org/10.1371/journal.pone.0248816.g009
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5 Application to a complex pulsatile 3D flow

The whole CFD-MRI simulation pipeline was tested by simulating the flow phantom experi-

ment presented in a previous publication [30] and briefly detailed thereafter.

5.1 Material and methods

5.1.1 Experimental setup. A rigid flow phantom was constructed to produce complex

and realistic flow patterns as observed in the cardiovascular system (see Fig 10a). A separation

of flow was introduced to mimic a collateral artery as well as a 180˚ pipe bend to mimic aortic

arch blood flows. A protuberance was also attached at the intersection between the collateral

and main branch in order to reproduce the swirling patterns observed in an aortic aneurysm.

A pulsatile flow was delivered to the flow phantom by a programmable pump (CardioFlow

5000 MR, Shelley Medical Imaging Technologies, London, Ontario, Canada). A Newtonian

blood-mimicking fluid with kinematic viscosity ν = 4.02 × 10−6 m2/s, density ρ = 1020 kg/m3,

and MR relaxation times T1 = 0.85 s and T2 = 0.17 s at 1.5 T was supplied to the circuit. More

details can be found in [30].

5.1.2 PC-MRI acquisitions. Several scans were carried out with a 1.5 T scanner (Siemens

Magnetom Avanto, Siemens Medical Systems, Erlangen, Germany). One 4D Flow MRI scan

was performed with prospective gating, full k-space sampling and no parallel imaging accelera-

tion. The encoding velocity was set to VENC = 0.5 m/s in all three encoding directions, while

TE = 3.52 ms and TR = 6.6 ms. The matrix size was set to 160 × 160 × 28 and the FOV was

320 × 320 × 56 mm3. The spatial resolution was Δx × Δy × Δz = 2 × 2 × 2 mm3 while the tem-

poral resolution was Δtp = 52.8 ms. Finally, the flip angle α was set to 15˚ and the pixel band-

width to Δf = 0.6 kHz/Px. This set of parameters resulted in a 40-min scan duration. As

detailed in [30], this set of parameters corresponds to an idealized scan as compared to clinical

practice setups. It can thus serve as a reference for comparison with the CFD.

Fig 10. (a) Flow phantom schematic representation annotated with locations of surfaces of interest. (b) Flow rate waveform over a cycle at different

locations of the phantom (inlet, bend, collateral).

https://doi.org/10.1371/journal.pone.0248816.g010
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An additional 2D cine PC-MRI scan was performed at the inlet surface of the flow phan-

tom, with a high planar spatial resolution (0.78 × 0.78 mm2) and a 6mm slice thickness to

increase the Signal to Noise ratio. This high-resolution acquisition was used as inflow bound-

ary condition for the CFD computations.

5.1.3 CFD simulation setup. The walls were assumed rigid and a zero pressure boundary

condition was prescribed at the outlet. The inlet velocity profile was prescribed from the 2D

cine PC-MRI scan acquired at the inlet surface, where the MR velocities were bilinearly inter-

polated on the numerical mesh at each cardiac phase. A trigonometric interpolation was then

performed to fit the time-course velocity signal [30]. The flow phantom was discretized with a

tetrahedron-based unstructured mesh with 2 mm characteristic mesh size (approx. 150000

uniform elements), generated with GAMBIT 2.4.6 (ANSYS, Inc., Canonsburg, PA).

5.1.4 Numerical pulse sequence design. A synthetic 4D Flow MRI sequence was

designed using the JEMRIS software (http://www.jemris.org/) [17] with characteristics

matching the experimental sequence described in Sec. 5.1.2. The acquisition matrix was

reduced to (80, 30, 120) as compared to the experimental one to decrease simulation time.

Each cardiac cycle of duration Tc = 0.985 s was split into Np = 17 phases, with a temporal res-

olution Δtp = 58 ms and a repetition time TR = 6ms. As the sequence is composed of a refer-

ence and three velocity sensitive sub-sequences to fully encode the 3D velocity field [32], it

was split into four sub-sequences, each treated separately to reduce the wall-clock simulation

time. This technique inherently suppresses the misregistration artifacts that arise in classical

interleaved velocity encoding strategies as a result of the time delays between different veloc-

ity encoding directions [27]. Therefore, Nseg ¼ b
Dtp
TRc ¼ 9 subsets (k-space lines) were filled

instead of Nseg ¼ b
Dtp
4TRc ¼ 2 normally with interleaved velocity encoding. The resulting physi-

cal time to simulate each subsequence was then Tacq ¼
NyNzNp
Nseg

Dtp ¼ 394:4 s. Such a long

sequence yields arrays of few millions entries. For this reason, the sequence reading was seg-

mented so that only small arrays composed by 1000 cells or less are manipulated and stored

in data buffers. This decomposition has proven to efficiently accelerate the computations

as the buffers are small enough to be stored in the cache memory, therefore avoiding the

repeated access to the Random Access Memory [45]. Although the numerical sequence

was designed in line with the experimental protocol parameters, it is expected that some

divergences remain because the details of the MRI sequence are manufacturer-proprietary

information.

5.1.5 MRI simulation setup. The semi-analytic formulation presented in Sec. 3.1.5 was

used to solve the Bloch equations, with a Bloch number bn = 1, in agreement with what was

found in Sec. 4.2. To minimize the relative error while keeping a reasonable simulation time,

48 particles/voxel were seeded within the fluid domain following the procedure detailed in

Sec. 3.1.1, resulting in about 1.1 million particles seeded in total. All the simulations were per-

formed on Dell PowerEdge C6320 nodes composed of 28 cores Intel Xeon E5-2690 V4 2,6

GHz with 128 GB random-access memory per node. The whole SMRI-CFD simulation was

run with twelve nodes in about 20 hours and 33 917 700 iterations.

5.1.6 Data reduction. Several post-processing steps are required to properly compare the

CFD velocity field at the nodes of the fixed unstructured grid with the simulated MR velocity

images (SMRI). First, as several cardiac cycles are necessary to fully fill the k-space, the CFD

velocity field was phase-averaged over the entire simulation time, removing the first ten cycles

to cancel the effects of the non-physical initial condition. The phase-averaged velocity field

(denoted HR-CFD) was then downsampled to the MRI spatial resolution (denoted LR-CFD).

Detailed explanations can be found in [30].
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5.2 Numerical efficiency of the particle seeding strategy

To highlight its benefits, the proposed particle seeding strategy described in Sec. 3.1.1 was

compared with a classical injection approach. In the classical approach, the particles are ini-

tially seeded in the whole domain, and continuously injected through the inlet boundary sur-

face [24]. The injection rate is set such that the number of particles is kept constant during the

simulation. In the proposed approach, the particles positions are reinitialized after each repeti-

tion time. The particle density and sparsity distributions obtained from the two approaches

are reported in Fig 11 where the particle density is here defined as the current-to-initial ratio

of the number of particle per mesh element. In other words, a homogeneous particle distribu-

tion would result in a particle density of 1.0. As compared to the boundary injection approach,

the proposed strategy results in a net improvement of the particle distribution homogeneity.

The density and sparsity maps shown in Fig 11 reveal significant reduction of the particles

agglomeration especially near the entrance and at the collateral elbow, as well as a better parti-

cle filling near the inner wall of the bend. Quantitatively, the seeding strategy results in 0.05%

of the Eulerian grid cells having a particle density larger than 5 while 4.8% of cells for the injec-

tion strategy. Similarly, 28% and 64% of the cells have a particle density lower than 1.0 for the

seeding and injection strategies, respectively.

5.3 Results

5.3.1 Qualitative analysis. Fig 12 compares the magnitude of the simulated MRI velocity

field to the magnitude of the phase-averaged CFD velocity field at different instants in the

cycle. For visual clarity, the computed MR images were segmented with a binary mask

obtained from the signal magnitude of the simulated MRI. A first visual comparison shows

good agreement of the two fields regardless of the phase considered, although the SMRI veloc-

ity seems blurred as compared to the CFD field. This may result from the summation of a finite

sample of particles. In both cases, the largest spatial velocity variations mainly occur in the

pipe bend, aneurysm neck and mixing layer at the collateral outlet elbow. The flow structures

smaller than the voxel size should produce intravoxel phase dispersion due to the vector sum-

mation of a finite number of spins with different velocity vector directions. It has been shown

that three isochromats per spatial directions per voxel are required to reduce the image error

under 1.5% [25]; with 48 particles/voxel, the present simulation is expected to keep this source

of error to a small value.

5.3.2 Quantitative analysis. The Pearson’s correlation coefficient was used as an indicator

of the similarities between SMRI and CFD velocity fields. It is defined as the covariance

between the two modalities, normalized by the product of their standard deviation. Fig 13

shows the time evolution of the Pearson’s correlation coefficient computed between the SMRI

velocity and the CFD phase-averaged velocity field. As expected, the low-resolution CFD

velocity better matches the SMRI velocity (peak correlation r2 = 0.978 and mean correlation

r2 = 0.966) as compared to the high-resolution CFD (peak correlation r2 = 0.967 and mean cor-

relation r2 = 0.958). In addition, the highest correlation is reached when the inlet flow rate is

maximum. Note that the temporal evolution of the correlation over a cycle roughly follows the

same trends as the absolute flow rate (see Fig 10b). Moreover, Bland-Altman and linear regres-

sion plots shown in Fig 13 reveal that some discrepancies still remain, with no systematic bias.

The effect of the parameters of the SMRI on the errors is now investigated.

5.3.3 Influence of the spin density. As for the Poiseuille flow validation case (see Sec.

4.2), the influence of the particle density was assessed. The L2-norm of the mismatch �L2(ri, tn)

= ||uSMRI(ri, tn) − uLR(ri, tn)|| was computed as it accounts for the errors owed to both the mag-

nitude and orientation of the velocity vector. The volume-averaged and maximum errors are
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plotted in Fig 14 as a function of the spin density at time t/Tc = 0.44. Let us first consider the

baseline case, with a voxel size of 2 mm.

As found for the steady Poiseuille flow simulation in Sec. 4.2, a plateau can be observed

around 40 particles/voxel, although a higher mean error is reported as compared to the simple

Poiseuille flow. This discrepancy corresponds to about 3 cm/s, or 6% of the VENC. This higher

Fig 11. a) Particle density histogram with y axis expressed in logarithmic scale and b) particle density maps over the

surface of the flow domain, after a simulation time of 8 s. Note that the particle density was mapped with a log scale to

highlight both the dense and sparse regions. The ‘seeding’ strategy is the proposed particle reinitialization strategy

while the ‘injection’ approach corresponds to the continuous injection from the inlet boundary surface. Note that only

the external surface is shown as the largest zones of particles agglomeration and sparsity are located at the boundary

cells.

https://doi.org/10.1371/journal.pone.0248816.g011

PLOS ONE Numerical simulation of time-resolved 3D PC-MRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0248816 March 26, 2021 22 / 32

https://doi.org/10.1371/journal.pone.0248816.g011
https://doi.org/10.1371/journal.pone.0248816


error can most probably be explained by larger spatial misregistration artifacts due to the pres-

ence of an accelerated three-dimensional flow. For the maximum error, a similar plateau cor-

responding to 20 cm/s or 40% of the VENC is reported.

5.3.4 Influence of the spatial resolution. Two additional simulations were performed

with voxel sizes set to (3 mm)3 and (4 mm)3. The resulting volume averaged and maximum

L2-norm errors are shown in Fig 14. Similarly to the 2 mm case, the mean error associated

with the 4 mm voxel size also reaches a plateau between 20 and 40 spins/voxel. For the 3 mm

case, the mean error slowly decreases as the particle density increases. A comparison of all

three cases reveals a global increase of the mean error with the spatial resolution. Similar con-

vergence behavior is observed for the three cases when considering the maximum error (see

Fig 14b), with a plateau comprised between 40-50% of the VENC. Note however that the maxi-

mum error is not impacted by the SMRI resolution.

As errors are calculated with respect to a downsampled CFD, which supposedly repro-

duces the voxel averaging process, it is not straightforward that larger voxel sizes would

induce larger mean error levels. To get an in-depth understanding of this phenomenon, the

L2-norm error maps in the XZ middle plane of the phantom are presented in Fig 15. The lat-

ter show that, at solid boundaries, high velocity errors are amplified as voxel size increases.

This effect mainly arises as a result of the SMRI processing at boundary walls, where the

voxel signal is partially averaged by the random phase noise that lies outside the phantom.

Consequently, the errors are amplified at larger voxel sizes as a larger proportion of the voxel

lays outside the domain. This effect is however not reproduced by the CFD down sampling,

Fig 12. Comparison in the XZ-middle plane between (top) ||uSMRI|| and (bottom) ||uHR|| at four different phases during the cycle.

https://doi.org/10.1371/journal.pone.0248816.g012
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where the velocity is averaged with zero velocity contributions instead of random noisy

velocity comprised between [−VENC, VENC]. A simple remedy would be to add stationary

particles around the flow phantom to generate a coherent signal, as it was done in the Poi-

seuille test case (see Sec. 4.2).

Regardless of the voxel size, the other predominant region of large L2-norm errors can be

observed downstream of the collateral branch, in the recirculating zone located under the jet

(see the circled region in Fig 15). This region harbors highly disturbed flow patterns (especially

at this specific phase), where the high momentum of the collateral jet induces a recirculating

flow region with adverse pressure gradient and counter rotating vortices. As it will be detailed

in Sec. 5.4, the larger errors observed in this particular location are acceleration-induced.

Fig 13. (a). Evolution along a cycle of the Pearson’s correlation calculated between HR-CFD and SMRI, as well as between LR-CFD

and SMRI. (b). Bland-Altman and (c). linear regression plots at phase t/Tc = 0.2 for the SMRI/LR-CFD comparison.

https://doi.org/10.1371/journal.pone.0248816.g013
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5.4 Origin of the measurement errors

An MRI simulator presents the main advantage to produce in silico images which are by defi-

nition, free of experimental errors. In this sense, one could use the MRI simulation to strictly

identify the origins of the measurement errors in 4D flow MRI in order to determine what pro-

portion of the errors is associated with a malfunctioning of the hardware, and which is related

to software limitations (reconstruction or pulse sequence). Of course, such a study would

necessitate the explicit simulation of real effects and modifications of MRI sequences to isolate

errors. This is a study in itself and is out of the scope of the paper. This section should be

viewed as an illustration of the capabilities of MRI simulation to point to different types of

errors and quantify their effects as a function of the characteristics of the flow of interest.

5.4.1 Software-related errors. While the in silico images are free of noise, with no mag-

netic field distortion, phantom motion or off-resonance effects, some sources of velocity dis-

crepancies subsist such as intravoxel phase dispersion [49], velocity fluctuations effects [22] or

k-space troncature and discrete sampling artifacts. Moreover, as highlighted by Steinman et al.

Fig 14. Evolution of the (a) mean and (b) maximum mismatch between LR-CFD and MRI simulation for different

spin densities and voxel sizes at t/Tc = 0.44.

https://doi.org/10.1371/journal.pone.0248816.g014

Fig 15. Map of the velocity mismatch at t/Tc = 0.44 between LR-CFD and SMRI at three different spatial resolutions. Left 2 mm3, middle 3 mm3,

and right 4 mm3. The error is calculated based on the LR-CFD, which is specific to each spatial resolution. In all the simulations, 48 particles/voxel were

seeded in the domain.

https://doi.org/10.1371/journal.pone.0248816.g015
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[27], some errors could be caused by spatial misregistrations due to the time delays between

the different spatial and velocity encodings, as well as velocity displacement artifacts due to the

acceleration of spins during velocity encodings. The former does not exist in the present study

since the three velocity components were acquired simultaneously (see Sec. 5.1.4). Conversely,

the latter should be prevalent in the highly pulsatile flow regime considered. This is illustrated

in Fig 16 which indicates regions of large SMRI/LR-CFD discrepancies and of large phase-

averaged acceleration field (@u
@t þ u � ru) computed from the HR-CFD field. Similar structures

can be observed in the collateral jet (I), in the main flow detachment into the aneurysm neck

(II), as well as at the beginning of the pipe bend (IV). These similarities suggest that at least

some of the largest velocity mismatches are owed to the non-inclusion of acceleration terms

in the phase equation (see Eq 20) by assuming linear time variations of the spin position [50].

Should it be mentioned, this acceleration artefact is inherent to the MRI sequences used in

practice and is not related to the methodology proposed to generate in silico MRI.

5.4.2 Hardware-related errors. The simulated MRI velocity was also compared with the

experimental 4D Flow MRI measurements described in the previous Sec. 5.1.2. The measured

and the synthetic velocities were compared to the CFD velocity at peak systole (t/Tc = 0.44),

when the flow rate is maximum. L2-norm error maps are reported in Fig 17. A first striking

result is that the highest error sites are similarly located under the jet, at the collateral elbow

outlet. As previously suggested, they mainly arise as a result of the large convective accelera-

tion. Moreover, the MRI error spreads on a larger region as compared to SMRI. It should be

recalled that the 3 directions of the velocity were encoded simultaneously in the simulations to

avoid time delays between different velocity components. Conversely, the interleaved velocity

encoding strategy adopted in the experimental sequence could induce non-negligible time off-

sets and cause this widespread error pattern in the direction of the main flow. Note that the

larger error spots observed in the MRI measurements were expected as the MRI simulations

are free of many additional sources of experimental limitations such as magnetic field inhomo-

geneities, off-resonance effects and measurement noise.

6 Discussion

In this study, a workflow for simulating realistic time-resolved 3D PC-MRI acquisitions was

presented. To this aim we introduced a numerical procedure with an “on-the-fly” CFD cou-

pling. A semi-analytic solution of the Bloch equations as well as a periodic particle seeding

strategy were implemented to accelerate the computations. The computational gain of the

semi-analytic formulation was evaluated, as well as the parallel efficiency of the entire pro-

gram. The Bloch equations solver was validated from the literature [31], and a Poiseuille flow

configuration was simulated to validate the full velocity reconstruction workflow. Even for this

simple flow configuration with large particle density, a systematic velocity error was reported

with peaks around 6% near the boundary walls. It was inferred that the discrete sampling and

truncation of the k-space were partially responsible for the remaining error. To cancel these

effects, the Poiseuille velocity field might be convoluted with the point spread function

described in [34]. To validate the coupling with CFD, several MRI simulations of a well-con-

trolled flow phantom experiment were performed and compared to the phase-averaged CFD

velocity downsampled to the MRI resolution. Qualitatively, a very good agreement was

observed irrespective of the considered phase. The largest velocity correlation was obtained at

peak systole while a decreasing correlation was observed as the flow rate decreases. A potential

explanation for this trend is that phases when flow deceleration occurs are very favorable to

the development of turbulent-like flow features [43].
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Fig 16. Largest patterns of phase-averaged CFD acceleration (top) and L2-norm of the SMRI/LR-CFD velocity mismatch (bottom) at two instants

in the cycle. The threshold values were set to (left) 25 and (right) 7% of the maximum CFD acceleration and (left) 14 and (right) 12% of the maximum

mismatch at t/Tc = 0.44 − t/Tc = 0.91, respectively.

https://doi.org/10.1371/journal.pone.0248816.g016
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The sensitivity of the solution to spatial resolution and spin density was investigated. As

compared to the existing simulators, the presented method seems to provide an accurate solu-

tion with less particles. We suggest that this is a direct consequence of the proposed particle

seeding strategy, which maintains a homogeneous particle distribution along the entire simu-

lation. Besides, the semi-analytic formulation coupled to the massively parallel capabilities of

the YALES2BIO solver allows the simulation of realistic flow MRI sequences with physical

times up to hundreds of seconds.

As an illustration of the usefulness of in silico MRI capabilities, the numerical pipeline was

used to discriminate between the measurements errors caused by the pulse sequence limita-

tions and the distortions induced by hardware flaws. It was suggested from the comparison

with CFD acceleration maps that larger errors are related to the fact that the spins acceleration

is not accounted for in the phase-velocity relationship (see Sec. 3.1.5). Acceleration-sensitive

acquisitions could be acquired to account for the flow high-order motion [51] or post-process-

ing corrections could be applied to correct the velocity field [33].

The MRI/CFD mismatch was also compared to the SMRI/CFD mismatch. While the

dominant velocity error patterns were well predicted by the simulation, some errors were

not reproduced. It implies that some of the observed errors were associated with off-reso-

nance effects such as gradient non-linearities, T2
� relaxation effects, chemical shift, or mag-

netic susceptibility.

However, some limitations remain and numerical implementations should be considered

to make in silico MRI more realistic. First, some numerical artifacts introduced by the model-

ing assumptions were not addressed and require further developments. For instance, injection

Fig 17. Velocity L2-norm error in the XZ-middle plane of the (left) experimental and (right) simulated MRI at peak systole t/Tc = 0.44. The

L2-norm error is calculated based on the LR-CFD obtained from a 2 mm characteristic mesh size.

https://doi.org/10.1371/journal.pone.0248816.g017
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of pre-magnetized particles at the inlet boundary surface are necessary to avoid spurious signal

resulting from sparsely distributed particles. Moreover, some errors are associated with the

cycle-to-cycle fluctuations: for instance the phase-averaged CFD velocity is compared with

MR velocity resulting from a progressive k-space filling. Reinitializing the flow field periodi-

cally at each cardiac cycle would remove the cycle-to-cycle fluctuations and thus isolate the

related errors. This should however produce less realistic MR velocity images. Then, coil sensi-

tivity profiles should appear as a weighting factor of the MR signal to mimic experimental MRI

acquisition. The magnetization dynamics can be fully described by solving the Bloch-Torrey

equations that accounts for the transfer of magnetization due to diffusion [52]. Also, a rela-

tively coarse CFD numerical mesh was used in the simulations to limit the computational cost.

While it should not impact the comparison with the simulated MRI velocity, it is expected that

a coarser CFD produces higher velocity deviations from the real flow field, and therefore could

yield larger errors as compared to the experimental MR velocity measurements. A finer mesh

should be considered to improve the results [30]. Finally, a preponderant limitation of this

framework is that there are numerous differences between the simulated and experimentally

acquired sequences. For example, the SMRI sequence was designed as a retrospectively gated

sequence while the experimental measurements presented were prospectively gated. To this

respect, the readout time sampling was slightly different as compared to that of the MRI.

Moreover the three velocity components were encoded simultaneously in the simulation, but

sequentially in real MRI experiment. As a result, potential time delays between each velocity

component could arise and amplify the errors. As it belongs to the manufacturers, little is

known about the design of the experimental sequence and further developments are required

to simulate realistic MR sequences. Nevertheless, basic pulse sequence blocks can be numeri-

cally reproduced with higher fidelity and should suffice to identify the hardware flaws. While

the present manuscript is devoted to the description and validation of an MRI simulation

framework, future developments will be dedicated to assessing the influence of acquisition

parameters such as VENC on the velocity outcomes.
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