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Abstract
Finding the optimal hyperparameters of a model can be cast as a bilevel optimization

problem, typically solved using zero-order techniques. In this work we study first-order
methods when the inner optimization problem is convex but non-smooth. We show that
the forward-mode differentiation of proximal gradient descent and proximal coordinate
descent yield sequences of Jacobians converging toward the exact Jacobian. Using implicit
differentiation, we show it is possible to leverage the non-smoothness of the inner problem
to speed up the computation. Finally, we provide a bound on the error made on the
hypergradient when the inner optimization problem is solved approximately. Results on
regression and classification problems reveal computational benefits for hyperparameter
optimization, especially when multiple hyperparameters are required.

1. Introduction

Almost all models in machine learning require at least one hyperparameter, the tuning of
which drastically affects accuracy. This is the case for many popular estimators, where
the regularization hyperparameter controls the trade-off between a data fidelity term and
a regularization term. Such estimators, including Ridge regression (Hoerl and Kennard,
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Table 1: Examples of non-smooth inner problems as in (1).

Inner problem, Φ f(β) gj(βj , λ) eλmax

Lasso 1
2n‖y −Xβ‖2 eλ|βj | 1

n‖X>y‖∞
elastic net 1

2n‖y −Xβ‖2 eλ1 |βj |+ 1
2e
λ2β2

j
1
n‖X>y‖∞

sparse log. reg. 1
n

∑n
i=1 ln(1 + e−yiXi:β) eλ|βj | 1

2n‖X>y‖∞
dual SVM 1

2‖(y �X)>β‖2 −∑p
j=1 βj ι[0,eλ](βj) −

1970), Lasso (Tibshirani, 1996; Chen et al., 1998), elastic net (Zou and Hastie, 2005),
sparse logistic regression (Koh et al., 2007), support-vector machine/SVM (Boser et al.,
1992; Platt, 1999) are often cast as an optimization problem (Table 1)

β̂(λ) ∈ arg min
β∈Rp

Φ(β, λ) , f(β) +

p∑
j=1

gj(βj , λ)︸ ︷︷ ︸
,g(β,λ)

, (1)

with smooth f : Rp → R (i.e., with Lipschitz gradient), proper closed convex (possibly non-
smooth) functions gj(·, λ), and a regularization hyperparameter λ ∈ Rr. In the examples
of Table 1, the computation of f involves a design matrix X ∈ Rn×p; and the cost of
computing ∇f(β) is O(np). In the SVM example, since we consider the dual problem, we
chose to reverse the roles of n and p to enforce β ∈ Rp. We often drop the λ dependency
and write β̂ instead of β̂(λ) when it is clear from context.

For a fixed λ, the issue of solving efficiently Problem (1) has been largely explored.
If the functions gj are smooth, one can use solvers such as L-BFGS (Liu and Nocedal,
1989), SVRG (Johnson and Zhang, 2013; Zhang et al., 2013), or SAGA (Defazio et al.,
2014). When the functions gj are non-smooth, Problem (1) can be tackled efficiently with
stochastic algorithms (Pedregosa et al., 2017) or using working set methods (Fan and Lv,
2008; Tibshirani et al., 2012) combined with coordinate descent (Tseng and Yun, 2009), see
overview by Massias et al. (2020). The question of model selection, i.e., how to select the
hyperparameter λ ∈ Rr (potentially multidimensional), is more open, especially when the
dimension r of the regularization hyperparameter λ is large.

For the Lasso, a broad literature has been devoted to parameter tuning. Under strong
hypothesis on the design matrix X, it is possible to derive guidelines for the setting of
the regularization parameter λ (Lounici, 2008; Bickel et al., 2009; Belloni et al., 2011).
Unfortunately, these guidelines rely on quantities which are typically unknown in practice,
and Lasso users still have to resort to other techniques to select the hyperparameter λ.

A popular approach for hyperparameter selection is hyperparameter optimization (Ko-
havi and John, 1995; Hutter et al., 2015; Feurer and Hutter, 2019): one selects the hyperpa-
rameter λ such that the regression coefficients β̂(λ) minimize a given criterion C : Rp → R.

2



Table 2: Examples of outer criteria used for hyperparameter selection.

Criterion Problem type Criterion C(β)

Hold-out mean squared error Regression 1
n‖yval −Xvalβ‖2

Stein unbiased risk estimate (SURE)1 Regression ‖y −Xβ‖2 − nσ2 + 2σ2dof(β)

Hold-out logistic loss Classification 1
n

∑n
i=1 ln(1 + e−y

val
i Xval

i: β)

Hold-out smoothed Hinge loss2 Classification 1
n

∑n
i=1 `(y

val
i , Xval

i: β)

Here C should ensure good generalization, or avoid overcomplex models. Common examples
(see Table 2) include the hold-out loss (Devroye and Wagner, 1979), the cross-validation
loss (CV, Stone and Ramer 1965, see Arlot and Celisse 2010 for a survey), the AIC (Akaike,
1974), BIC (Schwarz, 1978) or SURE (Stein, 1981) criteria. Formally, the hyperparameter
optimization problem is a bilevel optimization problem (Colson et al., 2007):

arg min
λ∈Rr

{
L(λ) , C

(
β̂(λ)

)}
s.t. β̂(λ) ∈ arg min

β∈Rp
Φ(β, λ) .

(2)

Popular approaches to solve (the generally non-convex) Problem (2) include zero-order op-
timization (gradient-free) techniques such as grid-search, random-search (Rastrigin, 1963;
Bergstra and Bengio, 2012; Bergstra et al., 2013) or Sequential Model-Based Global Opti-
mization (SMBO), often referred to as Bayesian optimization (Mockus, 1989; Jones et al.,
1998; Forrester et al., 2008; Brochu et al., 2010; Snoek et al., 2012). Grid-search is a naive
discretization of Problem (2). It consists in evaluating the outer function L on a grid of
hyperparameters, solving one inner optimization Problem (1) for each λ in the grid (see
Figure 1). For each inner problem solution β̂(λ), the criterion C(β̂(λ)) is evaluated, and
the model achieving the lowest value is selected. Random-search has a similar flavor, but
one randomly selects where the criterion must be evaluated. Finally, SMBO models the
objective function L via a function amenable to uncertainty estimates on its predictions
such as a Gaussian process. Hyperparameter values are chosen iteratively to maximize a
function such as the expected improvement as described, e.g., by Bergstra et al. (2011).
However, these zero-order methods share a common drawback: they scale exponentially
with the dimension of the search space (Nesterov, 2004, Sec. 1.1.2).

When the hyperparameter space is continuous and the regularization path λ 7→ β̂(λ) is
well-defined and almost everywhere differentiable, first-order optimization methods are well
suited to solve the bilevel optimization Problem (2). Using the chain rule, the gradient of

1. For a linear model y = Xβ + ε, with ε ∼ N (0, σ2), the degree of freedom (dof, Efron 1986) is defined
as dof(β) =

∑n
i=1 cov(yi, (Xβ)i)/σ

2.
2. The smoothed Hinge loss is given by `(x) = 1

2
− x if x ≤ 0, 1

2
(1− x)2 if 0 ≤ x ≤ 1 and 0 else.
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Figure 1: 5-fold cross-validation error C(β(λ)): (top) Lasso CV error with respect to λ
for multiple hyperparameter optimization methods on the real-sim dataset, and (bottom)
elastic net CV error with respect to λ1 and λ2 on the rcv1 dataset. Crosses represent the
10 (top) or 25 (bottom) first error evaluations for each method.

L with respect to λ, also referred to as the hypergradient, evaluates to

∇λL(λ) = Ĵ >(λ)∇C(β̂(λ)) , (3)

with Ĵ(λ) ∈ Rp×r the Jacobian of the function λ 7→ β̂(λ),

Ĵ(λ) ,


∂β̂

(λ)
1

∂λ1
. . .

∂β̂
(λ)
1

∂λr
... . . .

...
∂β̂

(λ)
p

∂λ1
. . .

∂β̂
(λ)
p

∂λr

 . (4)

An important challenge of applying first-order methods to solve Problem (2) is eval-
uating the hypergradient in Equation (3). There are three main algorithms to compute
the hypergradient ∇λL(λ): implicit differentiation (Larsen et al., 1996; Bengio, 2000) and
automatic differentiation using the reverse-mode (Linnainmaa, 1970; LeCun et al., 1998)
or the forward-mode (Wengert, 1964; Deledalle et al., 2014; Franceschi et al., 2017). As
illustrated in Figure 1, once the hypergradient in Equation (3) has been computed, one can
solve Problem (2) with first-order schemes, e.g., gradient descent.
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Contributions. We are interested in tackling the bilevel optimization Problem (2), with
a non-smooth inner optimization Problem (1). More precisely,

• We show that classical algorithms used to compute hypergradients for smooth inner
problem have theoretically grounded non-smooth counterparts. We provide in Theo-
rem 9 an implicit differentiation formula for non-smooth optimization problems. We
obtain in Theorem 13, for the first time in the non-smooth case, error bounds with
respect to the hypergradient when the inner problem and the linear system involved
are only solved approximately. We obtain in Theorem 12 convergence rates on the
hypergradient for iterative differentiation of non-smooth optimization problems.

• Based on the former contributions we propose an algorithm to tackle Problem (2). We
develop an efficient implicit differentiation algorithm to compute the hypergradient
in Equation (3), leveraging the sparsity of the Jacobian and enabling the use of state-
of-the-art solvers (Algorithm 5). We combine in Algorithm 6 this fast hypergradient
computation with a gradient descent scheme to solve Problem (2).

• We provide extensive experiments on diverse datasets and estimators (Section 4).
We first show that implicit differentiation significantly outperforms other hypergra-
dient methods (Section 4.1). Then, leveraging sparsity, we illustrate computational
benefits of first-order optimization with respect to zero-order techniques for solving
Problem (2) on Lasso, elastic net and multiclass logistic regression (Section 4.2).

• We release our implementation as a high-quality, documented and tested Python
package: https://github.com/qb3/sparse-ho.

General notation. We write ‖·‖ the Euclidean norm on vectors. For a set S, we denote
by Sc its complement. We denote [p] = {1, . . . , p}. We denote by (ej)

p
j=1 the vectors of

the canonical basis of Rp. We denote the coordinate-wise multiplication of two vectors u
and v by u� v, and by u�M the row-wise multiplication between a vector and a matrix.
The i-th line of the matrix M is Mi: and its j-th column is M:j . The spectral radius of
a matrix M ∈ Rn×n is denoted ρ(M) = maxi |si| where s1, . . . , sn are the eigenvalues of
M . For a matrix M , we write that M � 0 if M is positive definite. The regularization
parameter, possibly multivariate, is denoted by λ = (λ1, . . . , λr)

> ∈ Rr. We denote Ĵ(λ) ,

(∇λβ̂(λ)
1 , . . . ,∇λβ̂(λ)

p )> ∈ Rp×r the weak Jacobian (Evans and Gariepy, 1992) of β̂(λ) with
respect to λ.

Convex analysis. For a convex function h : Rp → R, the proximal operator of h is
defined, for any x ∈ Rp, as: proxh(x) = arg miny∈Rp

1
2‖x− y‖2 + h(y). The subdifferential

of h at x is denoted ∂h(x) =
{
u ∈ Rp : ∀z ∈ Rp, h(z) ≥ h(x) + u>(z − x)

}
. A function is

said to be smooth if it has Lipschitz gradients. Let f be a L-smooth function. Lipschitz
constants of the functions ∇jf are denoted by Lj ; hence for all x ∈ Rp, h ∈ R:

|∇jf(x+ hej)−∇jf(x)| ≤ Lj |h| .
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Table 3: Partial derivatives of proximal operators used.

gj(βj , λ) proxgj(·,λ)(zj) ∂z proxgj(·,λ)(zj) ∂λ proxgj(·,λ)(zj)

eλβ2
j /2 zj/(1 + eλ) 1/(1 + eλ) −zjeλ/(1 + eλ)2

eλ|βj | ST(zj , e
λ) | sign(ST(zj , e

λ))| −eλ sign(ST(zj , e
λ))

eλ1 |βj |+ 1
2e
λ2β2

j
ST(zj ,e

λ1 )

1+eλ2
| sign(ST(zj ,e

λ1 ))|
1+eλ2

(
−eλ1 sign(ST(zj ,e

λ1 ))

1+eλ2
,
− ST(zj ,e

λ1 )eλ2

(1+eλ2 )2

)
ι[0,eλ](βj) max(0,min(zj , e

λ)) 1]0,eλ[(zj) eλ1zj>eλ

For a function f , its gradient restricted to the indices in a set S is denoted ∇Sf . For a
set Ξ ⊂ Rp, its relative interior is noted ri(Ξ), and its indicator function is defined for any
x ∈ Rp by ιΞ(x) = 0 if x ∈ Ξ and +∞ otherwise. A function h : R → R ∪ {+∞} is said
to be proper if dom(h) = {x ∈ R : h(x) < +∞} 6= ∅), and closed if for any α ∈ R, the
sublevel set {x ∈ dom(h) : h(x) ≤ α} is a closed set.

For a function ψ : Rp×Rr 7→ Rp, we denote ∂zψ the weak Jacobian with respect to the
first variable and ∂λψ the weak Jacobian with respect to the second variable. The proximal
operator of g(·, λ) can be seen as such a function ψ of β and λ (see Table 1 for examples):

Rp × Rr → Rp

(z, λ) 7→ proxg(·,λ)(z) = ψ(z, λ) .

In this case we denote ∂z proxg(·,λ) , ∂zψ and ∂λ proxg(·,λ) , ∂λψ. Since we consider only
separable penalties g(·, λ), ∂z proxg(·,λ) is a diagonal matrix, so to make notation lighter,
we write ∂z proxg(·,λ) for its diagonal. We thus have

∂z proxg(·,λ) = (∂z proxgj(·,λ))j∈[p] ∈ Rp (by separability of g)

∂λ proxg(·,λ) ∈ Rp×r .

Explicit partial derivatives formulas for usual proximal operators can be found in Table 3.

2. Related work

The main challenge to evaluate the hypergradient ∇λL(λ) is the computation of the Jaco-
bian J(λ). We first focus on the case where Φ(·, λ) is convex and smooth for any λ.

Implicit differentiation. We recall how the implicit differentiation3 formula of the gra-
dient ∇λL(λ) is obtained for smooth inner optimization problems. We will provide a
generalization to non-smooth optimization problems in Section 3.2.

3. Note that implicit refers to the implicit function theorem, but leads to an explicit formula for the
gradient.
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Theorem 1 (Bengio 2000) Let β̂(λ) ∈ arg minβ∈Rp Φ(β, λ) be a solution of Problem (1).
Assume that for all λ > 0, Φ(·, λ) is a convex smooth function, ∇2

βΦ(β̂(λ), λ) � 0, and that
for all β ∈ Rp, Φ(β, ·) is differentiable over ]0,+∞[. Then the hypergradient ∇λL(λ) reads:

∇λL(λ)︸ ︷︷ ︸
∈Rr

= −∇2
β,λΦ(β̂(λ), λ)︸ ︷︷ ︸
∈Rr×p

(
∇2
βΦ(β̂(λ), λ)

)
︸ ︷︷ ︸

∈Rp×p

−1
∇C(β̂(λ))︸ ︷︷ ︸
∈Rp

. (5)

Proof For a smooth convex function β 7→ Φ(β, λ) the first-order condition writes:

∇βΦ(β̂(λ), λ) = 0 , (6)

for any β̂(λ) solution of the inner problem. Moreover, if λ 7→ ∇βΦ(β̂(λ), λ) is differentiable,
differentiating Equation (6) with respect to λ leads to:

∇2
β,λΦ(β̂(λ), λ) + Ĵ >(λ)∇2

βΦ(β̂(λ), λ) = 0 . (7)

The Jacobian Ĵ >(λ) is computed by solving the following linear system:

Ĵ >(λ) = −∇2
β,λΦ(β̂(λ), λ)︸ ︷︷ ︸
∈Rr×p

(
∇2
βΦ(β̂(λ), λ)

)
︸ ︷︷ ︸

∈Rp×p

−1
. (8)

Plugging Equation (8) into Equation (3) yields the desired result.

The computation of the gradient via implicit differentiation (Equation (5)) involves the
resolution of a p×p linear system (Bengio, 2000, Sec. 4). This potentially large linear system
can be solved using different algorithms such as conjugate gradient (Hestenes and Stiefel
1952, as in Pedregosa 2016) or fixed point methods (Lions and Mercier 1979; Tseng and Yun
2009, as in Grazzi et al. 2020). Implicit differentiation has been used for model selection of
multiple estimators with smooth regularization term: kernel-based models (Chapelle et al.,
2002; Seeger, 2008), weighted Ridge estimator (Foo et al., 2008), neural networks (Lorraine
et al., 2019) or meta-learning (Franceschi et al., 2018; Rajeswaran et al., 2019). In addition
to hyperparameter selection, it has been applied successfully in natural language processing
(Bai et al., 2019) and computer vision (Bai et al., 2020).

Problem (1) is typically solved using iterative solvers. In practice, the number of it-
erations is limited to reduce computation time, and also since very precise solutions are
generally not necessary for machine learning tasks. Thus, Equation (6) is not exactly sat-
isfied at machine precision, and consequently the linear system to solve Equation (5) does
not lead to the exact gradient ∇λL(λ), see Ablin et al. (2020) for quantitative convergence
results. However, Pedregosa (2016) showed that one can resort to approximate gradients
when the inner problem is smooth, justifying that implicit differentiation can be applied
using an approximation of β̂. Interestingly, this approximation scheme was shown to yield
significant practical speedups when solving Problem (2), while preserving theoretical prop-
erties of convergence toward the optimum.
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Iterative differentiation. Iterative differentiation computes the gradient ∇λL(λ) by
differentiating through the iterates of the algorithm used to solve Problem (1). Iterative
differentiation can be applied using the forward-mode (Wengert 1964; Deledalle et al. 2014;
Franceschi et al. 2017) or the reverse-mode (Linnainmaa 1970; LeCun et al. 1998; Domke
2012). Both rely on the chain rule, the gradient being decomposed as a large product of
matrices, computed either in a forward or backward way. Note that forward and reverse
modes are algorithm-dependent: in this section we illustrate iterative differentiation for
proximal gradient descent (PGD, Lions and Mercier 1979; Combettes and Wajs 2005),
using the forward-mode (Algorithm 1), and the reverse-mode (Algorithm 2).

The most popular method in automatic differentiation is the reverse-mode, a cornerstone
of deep learning (Goodfellow et al., 2016, Chap. 8). Iterative differentiation for hyperpa-
rameter optimization can be traced back to Domke (2012), who derived (for smooth loss
functions) a reverse-mode with gradient descent, heavy ball and L-BFGS algorithms. It
first computes the solution of the optimization Problem (1) using an iterative solver, but
requires storing the iterates along the computation for a backward evaluation of the hy-
pergradient (Algorithm 2). Alternatively, the forward-mode computes jointly the solution
along with the gradient ∇λL(λ). It is memory efficient (no iterates storage) but more com-
putationally expensive when the number of hyperparameters (r) is large; see Baydin et al.
(2018) for a survey.

Resolution of the bilevel Problem (2). From a theoretical point of view, solving
Problem (2) using gradient-based methods is also challenging, and results in the literature
are quite scarce. Kunisch and Pock (2013) studied the convergence of a semi-Newton
algorithm where both the outer and inner problems are smooth. Franceschi et al. (2018)
gave similar results with weaker assumptions to unify hyperparameter optimization and
meta-learning with a bilevel point of view. They required the inner problem to have a
unique solution for all λ > 0 but do not have second-order assumptions on Φ. Recent
results (Ghadimi and Wang, 2018; Ji et al., 2020; Mehmood and Ochs, 2021) have provided
quantitative convergence toward a global solution of Problem (2), but under global joint
convexity assumption and exact knowledge of the gradient Lipschitz constant.

3. Bilevel optimization with non-smooth inner problems

We recalled above how to compute hypergradients when the inner optimization problem is
smooth. In this section we tackle the bilevel optimization Problem (2) with non-smooth
inner optimization Problem (1). Handling non-smooth inner problems requires specific
tools detailed in Section 3.1. We then show how to compute gradients with non-smooth
inner problems using implicit differentiation (Section 3.2) or iterative differentiation (Sec-
tion 3.3). In Section 3.4 we tackle the problem of approximate gradient for a non-smooth
inner optimization problem. Finally, we propose in Section 3.6 an algorithm to solve the
bilevel optimization Problem (2).
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Algorithm 1 Forward-mode PGD

input : λ ∈ Rr, γ > 0, niter ∈ N, β(0) ∈ Rp,
J (0) ∈ Rp×r

// jointly compute coef. & Jacobian

for k = 1, . . . , niter do
// update the regression coefficients

z(k) = β(k−1) − γ∇f(β(k−1)) // GD step

dz(k) = J (k−1) − γ∇2f(β(k−1))J (k−1)

β(k) = proxγg(·,λ)(z
(k)) // prox. step

// update the Jacobian

J (k) = ∂z proxγg(·,λ)(z
(k))� dz(k)

J (k) += ∂λ proxγg(·,λ)(z
(k)) // O(pr)

v = ∇C(βniter)
return βniter ,J niter>v

Algorithm 2 Reverse-mode PGD

input : λ ∈ Rr, γ > 0, niter ∈ N, β(0) ∈ Rp
// computation of β̂

for k = 1, . . . , niter do
z(k)=β(k−1) − γ∇f(β(k−1)) // GD step

β(k) = proxγg(·,λ)

(
z(k)
)

// prox. step
// backward computation of the gradient g

v = ∇C(β(niter)), h = 0Rr

for k = niter, niter − 1, . . . , 1 do
h += v>∂λ proxγg(·,λ)(z

(k)) // O(pr)
v ← ∂z proxγg(·,λ)(z

(k))� v // O(p)
v ← (Id−γ∇2f(β(k)))v // O(np)

return βniter , h
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Figure 2: Regularization paths (coefficient values as a function of λ), on the diabetes
and breast cancer datasets for the Lasso, the elastic net and sparse logistic regression. This
illustrates the weak differentiability of the paths. We used diabetes for the Lasso and the
elastic net, and the 10 first features of breast cancer for the sparse logistic regression.

3.1 Theoretical framework

Differentiability of the regularization path. Before applying first-order methods to
tackle Problem (2), one must ensure that the regularization path λ 7→ β̂(λ) is almost
everywhere differentiable (as in Figure 2). This is the case for the Lasso (Mairal and
Yu, 2012) and the SVM (Hastie et al., 2004; Rosset and Zhu, 2007) since solution paths
are piecewise differentiable (see Figure 2). Results for nonquadratic datafitting terms are
scarcer: Friedman et al. (2010) address the practical resolution of sparse logistic regression,
but stay evasive regarding the differentiability of the regularization path. In the general
case for problems of the form Problem (1), we believe it is an open question and leave it
for future work.
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Differentiability of proximal operators. The key point to obtain an implicit differen-
tiation formula for non-smooth inner problems is to differentiate the fixed point equation
of proximal gradient descent. From a theoretical point of view, ensuring this differentia-
bility at the optimum is non-trivial: Poliquin and Rockafellar (1996, Thm. 3.8) showed
that under a twice epi-differentiability condition the proximal operator is differentiable at
optimum. For the convergence of forward and reverse modes in the non-smooth case, one
has to ensure that, after enough iterations, the updates of the algorithms become differ-
entiable. Deledalle et al. (2014) justified (weak) differentiability of proximal operators as
they are non-expansive. However this may not be a sufficient condition, see Bolte and
Pauwels (2020a,b). In our case, we show differentiability after support identification of the
algorithms: active constraints are identified after a finite number of iterations by proximal
gradient descent (Liang et al., 2014; Vaiter et al., 2018) and proximal coordinate descent,
see Nutini (2018, Sec. 6.2) or Klopfenstein et al. (2020). Once these constraints have been
identified convergence is linear towards the Jacobian (see Theorem 12 and Figures 3, 10
and 11).

For the rest of this paper, we consider the bilevel optimization Problem (2) with the
following assumptions on the inner Problem (1).

Assumption 2 (Smoothness) The function f : Rp → R is a convex, differentiable func-
tion, with a L-Lipschitz gradient.

Assumption 3 (Proper, closed, convex) For all λ ∈ Rr, for any j ∈ [p], the function
gj(·, λ) : R→ R is proper, closed and convex.

Assumption 4 (Non-degeneracy) The problem admits at least one solution:

arg min
β∈Rp

Φ(β, λ) 6= ∅ ,

and, for any β̂ solution of Problem (1), we have

−∇f(β̂) ∈ ri
(
∂βg(β̂, λ)

)
.

To be able to extend iterative and implicit differentiation to the non-smooth case, we need
to introduce the notion of generalized support.

Definition 5 (Generalized support, Nutini et al. 2019, Def. 1) For a solution β̂ ∈
arg minβ∈Rp Φ(β, λ), its generalized support Ŝ ⊆ [p] is the set of indices j ∈ [p] such that
gj is differentiable at β̂j:

Ŝ , {j ∈ [p] : ∂βgj(β̂j , λ) is a singleton} .

An iterative algorithm is said to achieve finite support identification if its iterates β(k)

converge to β̂, and there exists K ≥ 0 such that for all j /∈ Ŝ, for all k ≥ K,β(k)
j = β̂j.
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Examples. For the `1 norm (promoting sparsity), gj(β̂j , λ) = eλ|β̂j |, the generalized
support is Ŝ , {j ∈ [p] : β̂j 6= 0}. This set corresponds to the indices of the non-zero
coefficients, which is the usual support definition. For the SVM estimator, gj(β̂j , λ) =

ι[0,eλ](β̂j). This function is non-differentiable at 0 and at eλ. The generalized support for
the SVM estimator then corresponds to the set of indices such that β̂j ∈]0, eλ[.

Finally, to prove local linear convergence of the Jacobian we assume regularity and
strong convexity on the generalized support.

Assumption 6 (Locally C2 and C3) The map β 7→ f(β) is locally C3 around β̂. For all
λ ∈ Rr, for all j ∈ Ŝ the map gj(·, λ) is locally C2 around β̂j.

Assumption 7 (Restricted injectivity) Let β̂ be a solution of Problem (1) and Ŝ its
generalized support. The solution β̂ satisfies the following restricted injectivity condition:

∇2
Ŝ,Ŝ
f(β̂) � 0 .

Assumptions 2 and 3 are classical to ensure inner problems can be solved using proximal
algorithms. Assumption 4 can be seen as a generalization of constraint qualifications (Hare
and Lewis, 2007, Sec. 1) and is crucial to ensure support identification. Assumptions 6 and 7
are classical for the analysis (Liang et al., 2017) and sufficient to derive rates of convergence
for the Jacobian of the inner problem once the generalized support has been identified.

The next lemma guarantees uniqueness of Problem (1) under Assumptions 4 and 7.

Lemma 8 (Liang et al. 2017, Prop. 4.1) Assume that there exists a neighborhood Λ
of λ such that Assumptions 4 and 7 are satisfied for every λ ∈ Λ. Then for every λ ∈ Λ,
Problem (1) has a unique solution, and the map λ 7→ β̂(λ) is well-defined on Λ.

We first show how implicit and iterative differentiation can be used with a non-smooth
inner problem. Peyré and Fadili (2011) proposed to smooth the inner optimization problem,
Ochs et al. (2015); Frecon et al. (2018) relied on the forward-mode combined with Breg-
man iterations to get differentiable steps. For non-smooth optimization problems, implicit
differentiation has been considered for (constrained) convex optimization problems (Gould
et al., 2016; Amos and Kolter, 2017; Agrawal et al., 2019), Lasso-type problems (Mairal
et al., 2012; Bertrand et al., 2020), total variation penalties (Cherkaoui et al., 2020) and
generalized to strongly monotone operators (Winston and Kolter, 2020).

3.2 Hypergradient computation: implicit differentiation

The exact proof of Theorem 1 cannot be applied when β 7→ Φ(β, λ) is non-smooth, as
Equations (6) and (7) no longer hold. Nevertheless, instead of the optimality condition of
smooth optimization, Equation (6), one can leverage the fixed point iteration of proximal
gradient descent, which we will see in Equation (11). The main theoretical challenge is
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to show the differentiability of the function β 7→ proxγg(β − γ∇f(β)). Besides, taking
advantage of the generalized sparsity of the regression coefficients β̂(λ), one can show that
the Jacobian Ĵ is row-sparse, leading to substantial computational benefits when computing
the hypergradient ∇λL(λ)) for Problem (1),

Theorem 9 (Non-smooth implicit formula) Suppose Assumptions 2, 3 and 6 hold.
Let 0 < γ ≤ 1/L, where L is the Lipschitz constant of ∇f . Let λ ∈ Rr, Λ be a neigh-
borhood of λ, and ΓΛ ,

{
β̂(λ) − γ∇f(β̂(λ)) : λ ∈ Λ

}
. In addition,

(H1) Suppose Assumptions 4 and 7 hold on Λ.

(H2) Suppose λ 7→ β̂(λ) is continuously differentiable on Λ.

(H3) Suppose for all z ∈ ΓΛ, λ 7→ proxγg(·,λ)(z) is continuously differentiable on Λ.

(H4) Suppose ∂z proxγg(·,λ) and ∂λ proxγg(·,λ) are Lipschitz continuous on ΓΛ × Λ.

Let β̂ , β̂(λ) be the solution of Problem (1), Ŝ its generalized support of cardinality ŝ. Then
the Jacobian Ĵ of the inner Problem (1) is given by the following formula,

ẑ = β̂ − γ∇f(β̂), and A , Idŝ−∂z proxγg(·,λ)(ẑ)Ŝ �
(

Idŝ−γ∇2
Ŝ,Ŝ
f(β̂)

)
:

ĴŜc: = ∂λ proxγg(·,λ) (ẑ)Ŝc , (9)

ĴŜ: = A−1
(
∂λ proxγg(·,λ)(ẑ)Ŝ − γ∂z proxγg(·,λ)(ẑ)Ŝ �∇2

Ŝ,Ŝc
f(β̂)ĴŜc

)
. (10)

Proof According to Lemma 8, Assumptions 4 and 7 ensure Problem (1) has a unique
minimizer and λ 7→ β̂(λ) is well-defined on Λ. We consider the proximal gradient descent
fixed point equation:

β̂(λ) = proxγg(·,λ)

(
β̂(λ) − γ∇f(β̂(λ))

)
. (11)

Together with the conclusion of Lemma 8, Assumptions 2 and 6, and given (H2), (H3)
and (H4), we have that λ 7→ ψ

(
β(λ) − γ∇f(β̂(λ)), λ

)
, proxγg(·,λ)

(
β̂(λ) − γ∇f(β̂(λ))

)
is

differentiable at λ. One can thus differentiate Equation (11) with respect to λ, which leads
to:

Ĵ = ∂z proxγg(·,λ)(ẑ)�
(

Id−γ∇2f(β̂)
)
Ĵ + ∂λ proxγg(·,λ) (ẑ) , (12)

with ẑ = β̂ − γ∇f(β̂). In addition to 0 < γ < 1/L ≤ 1/Lj , the separability of g and
Assumptions 2 to 4 and 6 ensure (see Lemma 18) that for any j ∈ Ŝc,

∂z proxγgj(·,λ)

(
β̂j − γ∇jf(β̂)

)
= 0 . (13)
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Plugging Equation (13) into Equation (12) ensures Equation (9) for all j ∈ Ŝc:

Ĵj: = ∂λ proxγgj(·,λ)

(
β̂j − γ∇jf(β̂)

)
. (14)

Plugging Equations (13) and (14) into Equation (12) shows that the Jacobian restricted on
the generalized support Ŝ satisfies the following linear system:(

Idŝ − ∂z proxγg(·,λ) (ẑ)Ŝ �
(
Idŝ − γ∇2

Ŝ,Ŝ
f(β̂)

))
ĴŜ: =

−γ∂z proxγg(·,λ)(ẑ)Ŝ�∇2
Ŝ,Ŝc

f(β̂)ĴŜc: + ∂λ proxg(ẑ)Ŝ: .

Since 0 < γ ≤ 1/L,

‖∂z proxγg(·,λ)(ẑ)Ŝ � (Idŝ−γ∇2
Ŝ,Ŝ
f(β̂))‖2 ≤ ‖∂z proxγg(·,λ)(ẑ)Ŝ‖ · ‖Idŝ−γ∇2

Ŝ,Ŝ
f(β̂)‖2

< 1 . (15)

Since Equation (15) holds, A , Idŝ−∂z proxγg(·,λ)(ẑ)Ŝ � (Idŝ−γ∇2
Ŝ,Ŝ
f(β̂)) is invertible,

which leads to Equation (10).

Remark 10 In the smooth case a p × p linear system is needed to compute the Jacobian
in Equation (8). For non-smooth problems this is reduced to an ŝ× ŝ linear system (ŝ ≤ p
being the size of the generalized support, e.g., the number of non-zero coefficients for the
Lasso). This leads to significant speedups in practice, especially for very sparse vector β̂(λ).

Remark 11 To obtain Theorem 9 we differentiated the fixed point equation of proximal
gradient descent, though one could differentiate other fixed point equations (such as the one
from proximal coordinate descent). The value of the Jacobian Ĵ obtained with different fixed
point equations would be the same, yet the associated systems could have different numerical
stability properties. We leave this analysis to future work.

3.3 Hypergradient computation: iterative differentiation

Instead of implicit differentiation, it is also possible to use iterative differentiation on prox-
imal solvers. In section Section 2 we presented forward and reverse modes differentiation
of proximal gradient descent (Algorithms 1 and 2). In this section we study the iterative
differentiation of proximal coordinate descent (Algorithms 3 and 4). To instantiate algo-
rithms easily on problems such as the Lasso, partial derivatives of usual proximal operators
can be found in Table 3.
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Algorithm 3 Forward-mode PCD
input : X ∈ Rn×p, y ∈ Rn, λ ∈ Rr, niter ∈

N, β ∈ Rp, J ∈ Rp×r, γ1, . . . , γp
// jointly compute coef. & Jacobian

for k = 1, . . . , niter do
for j = 1, . . . , p do

// update the regression coefficients

zj ← βj − γj∇jf(β) // CD step

dzj ← Jj: − γj∇2
j:f(β)J

βj ← proxγjgj(·,λ)(zj) // prox. step

// update the Jacobian

// diff. with respect to λ

Jj: ← ∂z proxγjgj(·,λ)(zj)dzj
Jj: += ∂λ proxγjgj(·,λ)(zj)

β(k) = β
J (k) = J

v = ∇C(β)
return βniter ,J >v

Algorithm 4 Reverse-mode PCD
input : X ∈ Rn×p, y ∈ Rn, λ ∈ Rr, niter ∈

N, β ∈ Rp, γ1, . . . , γp
// compute coef.

for k = 1, . . . , niter do
for j = 1, . . . , p do

// update the regression coefficients

zj ← βj − γj∇jf(β) // CD step

βj ← proxγjgj(·,λ)(zj) // prox. step

β(k,j) = β; z
(k)
j = zj // store iterates

// compute gradient g in a backward way

v = ∇C(βniter), h = 0Rr

for k = niter, niter − 1, . . . , 1 do
for j = p, . . . , 1 do

h −= γjvj∂λ proxγjgj(·,λ)

(
z

(k)
j

)
vj ∗= ∂z proxγjgj(·,λ)

(
z

(k)
j

)
v −= γjvj∇2

j:f(β(k,j)) // O(np)
return βniter , h

For coordinate descent, the computation of the iterative Jacobian in a forward way
involves differentiating the following update:

zj ← βj − γj∇jf(β)

βj ← proxγjgj (βj − γj∇jf(β))

Jj: ← ∂z proxγjgj(·,λ)(zj)︸ ︷︷ ︸
∈R

(
Jj: − γj∇2

j:f(β)J
)︸ ︷︷ ︸

∈Rp

+ ∂λ proxγjgj(·,λ)(zj)︸ ︷︷ ︸
∈Rp

.

We address now the convergence of the iterative Jacobian scheme, a question which re-
mained open in Deledalle et al. (2014, Section 4.1). We show next that the forward-mode
converges to the Jacobian in the non-smooth separable setting of this paper. Moreover, we
prove that the iterative Jacobian convergence is locally linear after support identification.

Theorem 12 (Local linear convergence of the Jacobian) Let 0 < γ ≤ 1/L. Sup-
pose Assumptions 2, 3 and 6 hold. Let λ ∈ Rr, Λ be a neighborhood of λ, and ΓΛ ,{
β̂(λ) − γ∇f(β̂(λ)) : λ ∈ Λ

}
. In addition, suppose hypotheses (H1) to (H4) from Theo-

rem 9 are satisfied and the sequence (β(k))k∈N generated by Algorithm 1 (respectively by
Algorithm 3) converges toward β̂.
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Figure 3: Local linear convergence of the Jacobian for the SVM. Distance to
optimum for the coefficients β (top) and the Jacobian J (bottom) of the forward-mode
differentiation of proximal coordinate descent (Algorithm 3) on multiple datasets. One
epoch corresponds to one pass over the data, i.e., one iteration with proximal gradient
descent.

Then, the sequence of Jacobians (J (k))k≥0 generated by the forward-mode differentiation
of proximal gradient descent (Algorithm 1) (respectively by forward-mode differentiation of
proximal coordinate descent, Algorithm 3) converges locally linearly towards Ĵ .

Proof of Theorem 12 can be found in Appendix B.

Comments on Figure 3. We illustrate the results of Theorem 12 on SVM (for the Lasso
and sparse logistic regression, see Figures 10 and 11 in Appendix C) for multiple datasets
(leukemia, rcv1, news20 and real-sim4). The values of the hyperparameters λ are summa-
rized in Table 6. Regression coefficients β̂(λ) were computed to machine precision (up to
duality gap smaller than 10−16) using a state-of-the-art coordinate descent solver imple-
mented in Lightning (Blondel and Pedregosa, 2016). The exact Jacobian was computed via
implicit differentiation (Equation (10)). Once these quantities were obtained, we used the
forward-mode differentiation of proximal coordinate descent (Algorithm 3) and monitored
the distance between the iterates of the regression coefficients β(k) and the exact solution
β̂. We also monitored the distance between the iterates of the Jacobian J (k) and the exact
Jacobian Ĵ . The red vertical dashed line represents the iteration number where support
identification happens. Once the support is identified, Figures 3, 10 and 11 illustrate the
linear convergence of the Jacobian. However, the behavior of the iterative Jacobian before
support identification is more erratic and not even monotone.

4. Data available on the libsvm website: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

15

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


3.4 Hypergradient computation with approximate gradients

As mentioned in Section 2, relying on iterative algorithms to solve Problem (1), one only
has access to an approximation of β̂(λ): this may lead to numerical errors when computing
the gradient in Theorem 9. Extending the result of Pedregosa (2016, Thm. 1), which
states that hypergradients can be computed approximately, we give a stability result for
the computation of approximate hypergradients in the case of non-smooth inner problems.
For this purpose we need to add several assumptions to the previous framework.

Theorem 13 (Bound on the error of approximate hypergradient) For λ ∈ Rr, let
β̂(λ) ∈ Rp be the exact solution of the inner Problem (1), and Ŝ its generalized sup-
port. Suppose Assumptions 2, 3 and 6 hold. Let Λ be a neighborhood of λ, and ΓΛ ,{
β̂(λ) − γ∇f(β̂(λ)) : λ ∈ Λ

}
. Suppose hypotheses (H1) to (H4) from Theorem 9 are satis-

fied. In addition suppose

(H5) The application β 7→ ∇2f(β) is Lipschitz continuous.

(H6) The criterion β 7→ ∇C(β) is Lipschitz continuous.

(H7) Both optimization problems in Algorithm 5 are solved up to precision ε with support
identification: ‖β(λ) − β̂(λ)‖ ≤ ε, A> is invertible, and ‖A−1>∇ŜC(β(λ))− v‖ ≤ ε.

Then the error on the approximate hypergradient h returned by Algorithm 5 is of the order
of magnitude of the error ε on β(λ) and v:

‖∇L(λ)− h‖ = O(ε) .

Proof of Theorem 13 can be found in Appendix B.1. Following the analysis of Pedregosa
(2016), two sources of approximation errors arise when computing the hypergradient: one
from the inexact computation of β̂, and another from the approximate resolution of the
linear system. Theorem 13 states that if the inner optimization problem and the linear
system are solved up to precision ε, i.e., ‖β̂(λ) − β(λ)‖ ≤ ε and ‖A−1>∇SC(β(λ))− v‖ ≤ ε,
then the approximation on the hypergradient is also of the order of ε.

Remark 14 The Lipschitz continuity of the proximity operator with respect to λ (H4) is
satisfied for usual proximal operators, in particular all the operators in Table 3. The Lip-
schitz continuity of the Hessian and the criterion, hypotheses (H5) and (H6), are satisfied
for usual machine learning loss functions and criteria, such as the least squares and the
logistic loss.

Remark 15 To simplify the analysis, we used the same tolerance for the resolution of the
inner Problem (1) and the resolution of the linear system. Theorem 13 gives intuition on
the fact that the inner problem does not need to be solved at high precision to lead to good
hypergradients estimation. Note that in practice one does not easily control the distance
between the approximate solution and the exact one ‖β(k) − β̂‖: most softwares provide a
solution up to a given duality gap (sometimes even other criteria), not ‖β(k) − β̂‖.
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3.5 Proposed method for hypergradient computation

We now describe our proposed method to compute the hypergradient of Problem (2). In
order to take advantage of the sparsity induced by the generalized support, we propose an
implicit differentiation algorithm for non-smooth inner problem that can be found in Algo-
rithm 5. First, we compute a solution of the inner Problem (1) using a solver identifying the
generalized support (Liang et al., 2014; Klopfenstein et al., 2020). Then, the hypergradient
is computed by solving the linear system in Equation (10). This linear system, as mentioned
in Section 2, can be solved using multiple algorithms, including conjugate gradient or fixed
point methods. Table 4 summarizes the computational complexity in space and time of the
described algorithms.

Table 4: Cost in time and space for each method: p is the number of features, n the number
of samples, r the number of hyperparameters, and ŝ is the size of the generalized support
(Definition 5, ŝ ≤ p and usually ŝ � p). The number of iterations of the inner solver is
noted niter, the number of iterations of the solver of the linear system is noted nsys.

Differentiation Algorithm Space Time

Forward-mode PGD Algorithm 1 O(p r) O(n p r niter)
Reverse-mode PGD Algorithm 2 O(p niter) O(n pniter + n pniter)
Forward-mode PCD Algorithm 3 O(p r) O(n p r niter)
Reverse-mode PCD Algorithm 4 O(p niter) O(n pniter + n p2 niter)
Implicit differentiation Algorithm 5 O(p+ ŝ) O(n pniter + n ŝ nsys)

3.6 Resolution of the bilevel optimization Problem (2)

From a practical point of view, once the hypergradient has been computed, first-order
methods require the definition of a step size to solve the non-convex Problem (2). As the
Lipschitz constant is not available for the outer problem, first-order methods need to rely
on other strategies, such as:

• Gradient descent with manually adjusted fixed step sizes (Frecon et al., 2018; Ji et al.,
2020). The main disadvantage of this technique is that it requires a careful tuning
of the step size for each experiment. In addition to being potentially tedious, it does
not lead to an automatic procedure.

• L-BFGS (as in Deledalle et al. 2014). L-BFGS is a quasi-Newton algorithm that
exploits past iterates to approximate the Hessian and propose a better descent direc-
tion, which is combined with some line search (Nocedal and Wright, 2006). Yet, due
to the approximate gradient computation, we observed that L-BFGS did not always
converge.
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• ADAM (Kingma and Ba, 2014). It turned out to be inappropriate to the present
setting. ADAM was very sensitive to the initial step size and required a careful
tuning for each experiment.

• Iteration specific step sizes obtained by line search (Pedregosa, 2016). While the
approach from Pedregosa (2016) requires no tuning, we observed that it could diverge
when close to the optimum. The adaptive step size strategy proposed in Algorithm 6,
used in all the experiments, turned out to be robust and efficient across problems and
datasets.

Remark 16 (Uniqueness) The solution of Problem (1) may be non-unique, leading to
a multi-valued regularization path λ 7→ β̂(λ) (Liu et al., 2020) and requiring tools such as
optimistic gradient (Dempe et al., 2015, Chap. 3.8). Though it is not possible to ensure
uniqueness in practice, we did not face experimental issues due to potential non-uniqueness.
For the Lasso, this experimental observation can be theoretically justified (Tibshirani, 2013):
when the design matrix is sampled from a continuous distribution, the solution of the Lasso
is almost surely unique.

Remark 17 (Initialization) One advantage of the non-smooth case with the `1 norm is
that one can find a good initialization point: there exists a value λmax (see Table 1) such
that the solution of Problem (1) vanishes for λ ≥ λmax. Hence, a convenient and robust
initialization value can be chosen as eλ = eλmax/100. This is in contrast with the smooth
case, where finding a good initialization heuristic is hard: starting in flat zones can lead to
poor performance for gradient-based methods (Pedregosa, 2016).

4. Experiments

In this section, we illustrate the benefits of our proposed Algorithm 5 to compute hypergra-
dients and Algorithm 6 to solve Problem (2). Our package, sparse-ho, is implemented in
Python. It relies on Numpy (Harris et al., 2020), Numba (Lam et al., 2015) and SciPy (Vir-
tanen et al., 2020). Figures were plotted using matplotlib (Hunter, 2007). The package
is available under BSD3 license at https://github.com/qb3/sparse-ho, with documenta-
tion and examples available at https://qb3.github.io/sparse-ho/. Online code includes
scripts to reproduce all figures and experiments of the paper.

4.1 Hypergradient computation

Comparison with alternative approaches (Figure 4). First, we compare different
methods to compute the hypergradient:

• Forward-mode differentiation of proximal coordinate descent (Algorithm 3).

• Reverse-mode differentiation of proximal coordinate descent (Algorithm 4).
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Algorithm 5 Implicit differentiation
input : λ ∈ R, ε > 0
init : γ > 0
// compute the solution of inner problem

Find β such that: Φ(β, λ)− Φ(β̂, λ) ≤ ε
// compute the gradient

Compute the generalized support S of β,
z = β − γ∇f(β)
JSc: = ∂λ proxγg(·,λ)(z)Sc

s = |S|
A=Ids−∂z proxγg(·,λ)(z)S�(Ids−γ∇2

S,Sf(β))

Find v ∈ Rs s.t. ‖A−1>∇SC(β)− v‖ ≤ ε
B = ∂λ proxγg(·,λ)(z)S
− γ∂z proxγg(·,λ)(z)S �∇2

S,Scf(β)JSc
∇L(λ) = J >Sc:∇ScC(β) + v>B
return L(λ) , C(β),∇L(λ)

Algorithm 6 Gradient descent with
approximate gradient
input : λ ∈ Rr, (εi)
init : use_adaptive_step_size = True
for i = 1, . . . , iter do

λold ← λ
// compute the value and the gradient

L(λ),∇L(λ)← Algorithm 5(X, y, λ, εi)
if use_adaptive_step_size then

α = 1/‖∇L(λ)‖
λ −= α∇L(λ) // gradient step

if L(λ) > L(λold) then
use_adaptive_step_size = False
α /= 10

return λ

Table 5: Characteristics of the datasets used for the experiments.

name # samples n # features p # classes q density
breast cancer 569 30 − 1

diabetes 442 10 − 1
leukemia 72 7,129 − 1

gina agnostic 3,468 970 − 1
rcv1 20,242 19,960 − 3.7× 10−3

real-sim 72,309 20,958 − 2.4× 10−3

news20 19,996 632,983 − 6.1× 10−4

mnist 60.000 683 10 2.2× 10−1

usps 7,291 256 10 1
rcv1 (multiclass) 15,564 16,245 53 4.0× 10−3

aloi 108,000 128 1,000 2.4× 10−1

• cvxpylayers (Agrawal et al., 2019), a software based on cvxpy (Diamond and Boyd,
2016), solving disciplined parametrized programming and providing derivatives with
respect to the parameters of the program. It is thus possible to use cvxpylayers to
compute gradients with respect to the regularization parameters.

Figure 4 compares the time taken by multiple methods to compute a single hypergradient
∇L(λ) for the Lasso (see Table 1), for multiple values of λ. It shows the time taken to
compute the regression coefficients and the hypergradient, as a function of the number of
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Figure 4: Lasso with hold-out criterion: time comparison on the gina dataset to com-
pute a single hypergradient as a function of the number of features, for two values of λ,
eλ = eλmax/10 (left) and eλ = eλmax/100 (right).

columns, sampled from the design matrix from the gina dataset. The columns were selected
at random and 10 repetitions were performed for each point of the curves. In order to aim
for good numerical precision, problems were solved up to a duality gap of 10−6 for the
forward-mode and the reverse-mode. cvxpylayers relies on cvxpy, solving Problem (1)
using a splitting conic solver (O’Donoghue et al., 2019). Since the termination criterion
of the splitting conic solver is not exactly the duality gap (O’Donoghue et al., 2016, Sec.
3.5), we used the default tolerance of 10−4. The hypergradient ∇L(λ) was computed for
hold-out mean squared error (see Table 2).

The forward-mode differentiation of proximal coordinate descent is one order of mag-
nitude faster than cvxpylayers and two orders of magnitude faster than the reverse-mode
differentiation of proximal coordinate descent. The larger the value of λ, the sparser the
coefficients β are, leading to significant speedups in this regime. This performance is in
accordance with the lower time cost of the forward mode in Table 4.

Combining implicit differentiation with state-of-the art solvers (Figures 5 and 6).
We now compare the different approaches described in Section 3:

• Forward-mode differentiation of proximal coordinate descent (Algorithm 3).

• Implicit differentiation (Algorithm 5) with proximal coordinate descent to solve the
inner problem. For efficiency, this solver was coded in Numba (Lam et al., 2015).

• Implicit differentiation (Algorithm 5) with state-of-the-art algorithm to solve the inner
problem: we used Celer (Massias et al., 2020) for the Lasso, and Lightning (Blondel
and Pedregosa, 2016) for the SVM.

Figure 5 shows for three datasets and two values of regularization parameters the absolute
difference between the exact hypergradient and the approximate hypergradient obtained
via multiple algorithms as a function of time. Figure 6 reports similar results for the SVM,
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Figure 5: Lasso with hold-out criterion: absolute difference between the exact hyper-
gradient (using β̂) and the iterate hypergradient (using β(k)) of the Lasso as a function of
time. Results are for three datasets and two different regularization parameters. “Implicit
diff. + Celer)” uses Celer (Massias et al., 2020) instead of our proximal coordinate descent
implementation.

Implicit diff. Implicit diff. + Lightning Forward-mode PCD

0 10 20 30 40 50 60

Time (s)

10−14

10−10

10−6

10−2

rcv1

0 5 10 15 20 25 30 35

Time (s)

real-sim

Figure 6: SVM with hold-out criterion: absolute difference between the exact hyper-
gradient (using β̂) and the iterate hypergradient (using β(k)) of the SVM as a function of
time. “Implicit diff. + Lightning” uses Lightning (Blondel and Pedregosa, 2016), instead
of our proximal coordinate descent implementation.

on the same datasets, except news20, which is not well suited for SVM, due to limited
number of samples.
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First, it demonstrates that implicit differentiation methods are faster than the forward-
mode of proximal coordinate descent (pink). This illustrates the benefits of restricting the
gradient computation to the support of the Jacobian, as described in Section 3.5. Second,
thanks to the flexibility of our approach, we obtain additional speed-ups by combining im-
plicit differentiation with a state-of-the-art solver, Celer. The resulting method (orange)
significantly improves over implicit differentiation using a vanilla proximal coordinate de-
scent (green).

4.2 Resolution of the bilevel optimization problem

In this section we compare multiple methods to find the optimal hyperparameters for the
Lasso, elastic net and multiclass sparse logistic regression. The following methods are
compared:

• Grid-search: for the Lasso and the elastic net, the number of hyperparameters is
small, and grid-search is tractable. For the Lasso we chose a grid of 100 hyperpa-
rameters λ, uniformly spaced between λmax − ln(104) and λmax. For the elastic net
we chose for each of the two hyperparameters a grid of 10 values uniformly spaced
between λmax and λmax − ln(104). The product grid thus has 102 points.

• Random-search: we chose 30 values of λ sampled uniformly between λmax and
λmax−ln(104) for each hyperparameter. For the elastic net we chose 30 points sampled
uniformly in [λmax − ln(104), λmax]× [λmax − ln(104), λmax].

• SMBO: this algorithm is SMBO using as criterion expected improvement (EI) and
the Tree-structured Parzen Estimator (TPE) as model. First it evaluates L using 5
values of λ, chosen uniformly at random between λmax and λmax − ln(104). Then a
TPE model is fitted on the data points (λ(1),L(λ(1))), . . . , (λ(5),L(λ(5))). Iteratively,
the EI is used to choose the next point to evaluate L at, and this value is used to
update the model. We used the hyperopt implementation (Bergstra et al., 2013).

• 1st order: first-order method with exact gradient (Algorithm 6 with constant toler-
ances εi = 10−6), with λmax − ln(102) as a starting point.

• 1st order approx: a first-order method using approximate gradient (Algorithm 6
with tolerances εi, geometrically decreasing from 10−2 to 10−6), with λmax − ln(102)
as a starting point.

Outer criterion. In the Lasso and elastic net experiments, we pick a K-fold CV loss
as outer criterion5. Hence, the dataset (X, y) is partitioned into K hold-out datasets
(Xtraink , ytraink), (Xvalk , yvalk). The bilevel optimization problems then write:

5. In our experiments the default choice is K = 5.
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Figure 7: Lasso with cross-validation criterion: cross-validation loss as a function of λ
(black line, top) and as a function of time (bottom). Lighter markers correspond to earlier
iterations of the algorithm.

arg min
λ=(λ1,λ2)∈R2

L(λ) =
1

K

K∑
k=1

‖yvalk −Xvalk β̂(λ,k)‖22

s.t. β̂(λ,k) ∈ arg min
β∈Rp

1
2n

∥∥ytraink −Xtrainkβ
∥∥2

2
+ eλ1‖β‖1 +

eλ2

2
‖β‖22, ∀k ∈ [K] ,

(16)

while Lasso CV is obtained taking λ2 → −∞ in the former. By considering an extended
variable β ∈ RK×p, cross-validation can be cast as an instance of Problem (2).

Figure 7 represents the cross-validation loss in Lasso CV as a function of the regulariza-
tion parameter λ (black curve, three top rows) and as a function of time (bottom). Each
point corresponds to the evaluation of the cross-validation criterion for one λ value. The top
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rows show cross-validation loss as a function of λ, for the grid-search, the SMBO optimizer
and the first-order method. The lightest crosses correspond to the first iterations of the al-
gorithm and the darkest, to the last ones. For instance, Lasso grid-search starts to evaluate
the cross-validation function with λ = λmax and then decreases to λ = λmax − ln(104). On
all the datasets, first-order methods are faster to find the optimal regularization parameter,
requiring only 5 iterations.

Figure 8 represents the level sets of the cross-validation loss for the elastic net (three
top rows) and the cross-validation loss as a function of time (bottom). One can see that
after 5 iterations the SMBO algorithm (blue crosses) suddenly slows down (bottom) as the
hyperparameter suggested by the algorithm leads to a costly optimization problem to solve,
while first-order methods converge quickly as for Lasso CV. In the present context, inner
problems are slower to solve for low values of the regularization parameters.

Multiclass sparse logistic regression (# classes hyperparameters, Figure 9). We
consider a multiclass classification problem with q classes. The design matrix is noted
X ∈ Rn×p, and the target variable y ∈ {1, . . . , q}n. We chose to use a one-versus-all model
with q regularization parameters. We use a binary cross-entropy for the inner loss:

ψk(β, λk;X, y) , − 1

n

n∑
i=1

(1yi=k ln(σ(Xi:β)) + (1− 1yi=k) ln(1− σ(Xi:β))) + eλk‖β‖1 ,

and a multiclass cross-entropy for the outer criterion:

C
(
β̂(λ1), . . . , β̂(λq);X, y

)
, −

n∑
i=1

q∑
k=1

ln

(
eXi:β̂

(λk)∑q
l=1 e

Xi:β̂
(λl)

)
1yi=k . (17)

With a single train/test split, the bilevel problem to solve writes:

arg min
λ,(λ1,...,λq)∈Rq

C
(
β̂(λ1), . . . , β̂(λq);Xtest, ytest

)
s.t. β̂(λk) ∈ arg min

β∈Rp
ψk(β, λk;X

train, ytrain) ∀k ∈ [q] .
(18)

Figure 9 represents the multiclass cross-entropy (top), the accuracy on the validation set
(middle) and the accuracy on the test set (unseen data, bottom). When the number of
hyperparameter is moderate (q = 10, on mnist and usps), the multiclass cross-entropy
reached by SMBO and random techniques is as good as first-order techniques. This is
expected and follows the same conclusion as Bergstra and Bengio (2012); Frazier (2018):
when the number of hyperparameters is moderate, SMBO and random techniques can be
used efficiently. However, when the number of hyperparameters increases (rcv1, q = 53 and
aloi, q = 1000), the hyperparameter space is too large: zero-order solvers simply fail. On
the contrary, first-order techniques manage to find hyperparameters leading to significantly
better accuracy.
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5. Conclusion

In this work we considered the problem of hyperparameter optimization to select the regu-
larization parameter of linear models with non-smooth objective. Casting this problem as
a bilevel optimization problem, we proposed to use first-order methods. We showed that
the usual automatic differentiation techniques, implicit differentiation, forward and reverse
modes, can be used to compute the hypergradient, despite the non-smoothness of the inner
problem. Experimentally, we showed the interest of first-order techniques to solve bilevel
optimization on a wide range of estimators (`1 penalized methods, SVM, etc.) and datasets.
The presented techniques could also be extended to more general bilevel optimization prob-
lems, in particular implicit differentiation could be well suited for meta-learning problems,
with a potentially large number of hyperparameters.
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Appendix A. Additional lemmas

A.1 Differentiability of the proximal operator

Here we recall results on the differentiability of the proximal operator at the optimum.

Lemma 18 (Klopfenstein et al. 2020, Lemmas 2 and 3) Let 0 < γj ≤ 1/Lj. Let
λ ∈ Rr and Λ a neighborhood of λ. Consider a solution β̂ ∈ arg minβ∈Rp Φ(β, λ) and Ŝ its
generalized support. Suppose

1. Assumptions 2, 3 and 6 hold.

2. Assumption 4 hold on Λ.

Then, for all j ∈ Ŝ, the map β 7→ proxγjgj(·,λ) is differentiable at β̂Ŝ. Moreover, for all j ∈
Ŝc, proxγjgj(·,λ) is constant around β̂j − γj∇jf(β̂). Thus, β 7→ proxγjgj(·,λ)(βj − γj∇jf(β))

is differentiable at β̂ with gradient 0.

A.2 Linear convergence

We now detail the following result: an asymptotic vector autoregressive sequence, with an
error term vanishing linearly to 0, converges linearly to its limit. In a more formal way:

Lemma 19 Let A ∈ Rp×p, b ∈ R with ρ(A) < 1. Let (J (k))k∈N be a sequence of Rp such
that:

J (k+1) = AJ (k) + b+ ε(k) , (19)

with (ε(k))k∈N a sequence which converges linearly to 0, then (J (k))k∈N converges linearly
to its limit Ĵ , (Id−A)−1b.

Proof Assume (ε(k))k∈N converges linearly. Then, there exists c1 > 0, 0 < ν < 1 such that:

‖ε(k)‖ ≤ c1ν
k .

Applying a standard result on spectral norms (see (Polyak, 1987, Chapter 2, Lemma 1))
yields a bound on ‖Ak‖2. More precisely, for every δ > 0 there is a constant c2(δ) = c2

such that

‖Ak‖2 ≤ c2(ρ(A) + δ)k .

Without loss of generality, we consider from now on a choice of δ such that ρ(A) + δ < 1.
Since Ĵ = (Id−A)−1b the limit Ĵ of the sequence satisfies:

Ĵ = AĴ + b . (20)

Taking the difference between Equations (19) and (20) yields:

J (k+1) − Ĵ = A(J (k) − Ĵ ) + ε(k) . (21)
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Unrolling Equation (21) yields J (k+1) − Ĵ = Ak+1(J (0) − J ) +
∑k

k′=0A
k′ε(k−k

′). Taking
the norm on both sides and using the triangle inequality leads to

‖J (k+1) − Ĵ ‖2 ≤ ‖Ak+1(J (0) − J )‖2 +
k∑

k′=0

‖Ak′‖2‖ε(k−k
′)‖

≤ ‖Ak+1‖2 · ‖J (0) − Ĵ ‖2 + c1

k∑
k′=0

‖Ak′‖2 · νk−k
′

≤ c2(ρ(A) + δ)k+1 · ‖J (0) − Ĵ ‖2 + c1

k∑
k′=0

c2(ρ(A) + δ)k
′
νk−k

′

We can now split the last summand in two parts and obtain the following bound, reminding
that ρ(A) + δ < 1:

‖J (k+1) − Ĵ ‖2 ≤ c2(ρ(A) + δ)k+1 · ‖J (0) − Ĵ ‖2

+ c1c2

 k/2∑
k′=0

(ρ(A) + δ)k
′
νk−k

′
+

k∑
k′=k/2

(ρ(A) + δ)k
′
νk−k

′


≤ c2(ρ(A) + δ)k+1 · ‖J (0) − Ĵ ‖2 +

c1c2(ρ(A) + δ)

1− ρ(A)− δ
√
ν
k

+
c1c2ν

1− ν
√

(ρ(A) + δ)
k
.

Thus, (J (k))k∈N converges linearly towards its limit Ĵ .

Appendix B. Proof of Theorem 12

Theorem 12 (Local linear convergence of the Jacobian) Let 0 < γ ≤ 1/L. Sup-
pose Assumptions 2, 3 and 6 hold. Let λ ∈ Rr, Λ be a neighborhood of λ, and ΓΛ ,{
β̂(λ) − γ∇f(β̂(λ)) : λ ∈ Λ

}
. In addition, suppose hypotheses (H1) to (H4) from Theo-

rem 9 are satisfied and the sequence (β(k))k∈N generated by Algorithm 1 (respectively by
Algorithm 3) converges toward β̂.

Then, the sequence of Jacobians (J (k))k≥0 generated by the forward-mode differentiation
of proximal gradient descent (Algorithm 1) (respectively by forward-mode differentiation of
proximal coordinate descent, Algorithm 3) converges locally linearly towards Ĵ .

Proof We first prove Theorem 12 for proximal gradient descent.
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Proximal gradient descent case. Solving Problem (1) with proximal gradient de-
scent leads to the following updates:

β(k+1) = proxγg(·,λ)(β
(k) − γ∇f(β(k))︸ ︷︷ ︸

z(k)

) . (22)

Consider the following sequence (J (k))k∈N defined by:

J (k+1) = ∂z proxγg(·,λ)(z
(k))�

(
Id−γ∇2f(β(k))

)
J (k) + ∂λ proxγg(·,λ)(z

(k)) . (23)

Note that if proxγg(·,λ) is not differentiable with respect to the first variable at z(k) (respec-
tively with respect to the second variable λ), any weak Jacobian can be used. When (H3)
holds, differentiating Equation (22) with respect to λ yields exactly Equation (23).

Assumptions 2 to 4 and 6 and the convergence of (β(k)) toward β̂ ensure proximal
gradient descent algorithm has finite identification property (Liang et al., 2014, Thm. 3.1):
we note K the iteration when identification is achieved. As before, the separability of g,
Assumptions 2 to 4 and 6 ensure (see Lemma 18) ∂z proxγg(·,λ)(z

k)Ŝc = 0, for all k ≥ K.
Thus, for all k ≥ K,

J (k)

Ŝc:
= ĴŜc: = ∂λ proxγg(·,λ)(z

(k))Ŝc: .

The updates of the Jacobian then become:

J (k+1)

Ŝ:
= ∂z proxγg(·,λ)(z

(k))Ŝ �
(

Id−γ∇2
Ŝ,Ŝ
f(β(k))

)
J (k)

Ŝ:
+ ∂λ proxγg(·,λ)(z

(k))Ŝ: .

From Assumption 6, we have that f is locally C3 at β̂, g(·, λ) is locally C2 at β̂ hence
proxg(·,λ) is locally C2. The function β 7→ ∂z proxγg(·,λ)(β − γ∇f(β))Ŝ � (Id−γ∇2

Ŝ,Ŝ
f(β))

is differentiable at β̂. Using (H4) we have that β 7→ ∂λ proxγg(·,λ)(β − γ∇f(β))Ŝ: is also
differentiable at β̂. Using the Taylor expansion of the previous functions yields:

J (k+1)

Ŝ:
= ∂z proxγg(·,λ)(ẑ)Ŝ �

(
Id−γ∇2

Ŝ,Ŝ
f(β̂)

)
︸ ︷︷ ︸

A

J (k)

Ŝ:
+ ∂λ proxγg(·,λ)(ẑ)Ŝ:︸ ︷︷ ︸

b

+ o(‖β(k) − β̂‖)︸ ︷︷ ︸
ε(k)

.

(24)

Thus, for 0 < γ ≤ 1/L,

ρ(A) ≤ ‖A‖2 ≤ ‖∂z proxγg(·,λ)(ẑ)Ŝ‖︸ ︷︷ ︸
≤1 (non-expansiveness)

· ‖Id−γ∇2
Ŝ,Ŝ
f(β̂)‖2︸ ︷︷ ︸

<1 (Assumption 7 and 0 < γ ≤ 1/L)

< 1 . (25)

The inequality on the derivative of the proximal operator comes from the non-expansiveness
of proximal operators. The second inequality comes from Assumption 7 and 0 < γ ≤ 1/L.
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Assumptions 2 to 4, 6 and 7 and the convergence of (β(k)) toward β̂ ensure (β(k))k∈N
converges locally linearly (Liang et al., 2014, Thm. 3.1). The asymptotic autoregressive
sequence in Equation (24), ρ(A) < 1, and the local linear convergence of (ε(k))k∈N, yield
our result using Lemma 19.

We now prove Theorem 12 for proximal coordinate descent.

Proximal coordinate descent. Compared to proximal gradient descent, the analysis of
coordinate descent requires studying functions defined as a the composition of p applica-
tions, each of them only modifying one coordinate.

Coordinate descent updates read as follows:

β
(k,j)
j = proxγjgj(·,λ)

(
β

(k,j−1)
j − γj∇jf(β(k,j−1))

)
︸ ︷︷ ︸

,z(k,j−1)
j

. (26)

We consider the following sequence:

J (k,j)
j: = ∂z proxγjgj(·,λ)(z

(k,j−1)
j )

(
J (k,j−1)
j: − γj∇2

j:f(β(k,j−1))J (k,j−1)
)

+ ∂λ proxγjgj(·,λ)(z
(k,j−1)
j ) . (27)

Note that if proxγg(·,λ) is not differentiable with respect to the first variable at z(k) (respec-
tively with respect to the second variable λ), any weak Jacobian can be used. When (H3)
holds, differentiating Equation (26) with respect to λ yields exactly Equation (27).

Assumptions 2 to 4 and 6 and the convergence of (β(k))k∈N toward β̂ ensure proximal
coordinate descent has finite identification property (Klopfenstein et al., 2020, Thm. 1):
we note K the iteration when identification is achieved. Once the generalized support Ŝ
(of cardinality ŝ) has been identified, we have that for all k ≥ K, β(k)

Ŝc
= β̂Ŝ and for any

j ∈ Ŝc, ∂z proxγjgj(·,λ)(z
(k,j−1)
j ) = 0. Thus J (k,j)

j: = ∂λ proxγjgj(·,λ)(z
(k,j−1)
j ). Then, we have

that for any j ∈ Ŝ and for all k ≥ K:

J (k,j)
j: = ∂z proxγjgj(·,λ)(z

(k,j−1)
j )

(
J (k,j−1)
j: − γj∇2

j,Ŝ
f(β(k,j−1))J (k,j−1)

Ŝ:

)
+ ∂λ proxγjgj(·,λ)(z

(k,j−1)
j )− γj∂z proxγjgj(·,λ)(z

(k,j−1)
j )∇2

j,Ŝc
f(β(k,j−1))J (k,j−1)

Ŝc:
.

Let e1, . . . , eŝ be the vectors of the canonical basis of Rŝ. We can consider the applications

Rp → Rŝ

β 7→ ∂z proxγjgj(·,λ) (βj − γj∇jf(β))
(
ej − γj∇2

j,Ŝ
f(β)

)
,

and

Rp → Rŝ×r

β 7→ ∂λ proxγjgj(·,λ) (βj − γj∇jf(β))− γj∂z proxγjgj(·,λ) (βj − γj∇jf(β))∇2
j,Ŝc

f(β)ĴŜc: ,
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which are both differentiable at β̂ using Assumption 6 and (H4). The Taylor expansion of
the previous functions yields:

J (k,j)
j: = ∂z proxγjgj(·,λ) (ẑj)

(
ej − γj∇2

j,Ŝ
f(β̂)

)
J (k,j−1)

Ŝ:

+ ∂λ proxγjgj(·,λ) (ẑj)− γj∂z proxγjgj(·,λ) (ẑj)∇2
j,Ŝc

f(β̂)J (k,j−1)

Ŝc:

+ o(||β(k,j−1) − β̂||) .

Let j1, . . . , jŝ be the indices of the generalized support of β̂. When considering a full epoch
of coordinate descent, the Jacobian is obtained as the product of matrices of the form

A>s =
(
e1 . . . es−1 vjs es+1 . . . eŝ

)
∈ Rŝ×ŝ ,

where vjs = ∂z proxγjsgjs (ẑjs)
(
es − γjs∇2

js,Ŝ
f(β̂)

)
∈ Rŝ. A full epoch can then be written

J (k+1)

Ŝ:
= AŝAŝ−1 . . . A1︸ ︷︷ ︸

A

J (k)

Ŝ:
+ b+ ε(k) ,

for a certain b ∈ Rŝ.
The spectral radius of A is strictly bounded by 1 (Klopfenstein et al., 2020, Lemma 8):

ρ(A) < 1. Assumptions 2 to 4 and 6 and the convergence of (β(k))k∈N toward β̂ ensure
local linear convergence of (β(k))k∈N (Klopfenstein et al., 2020, Thm. 2). Hence, we can
write the update for the Jacobian after an update of the coordinates from 1 to p:

J (k+1)

Ŝ:
= AJ (k)

Ŝ:
+ b+ ε(k) , (28)

with (ε(k))k∈N converging linearly to 0.
Recalling ρ(A) < 1, Lemma 19 and the last display yield our result using.

B.1 Proof of Theorem 13 (approximate hypergradients)

Theorem 13 (Bound on the error of approximate hypergradient) For λ ∈ Rr, let
β̂(λ) ∈ Rp be the exact solution of the inner Problem (1), and Ŝ its generalized sup-
port. Suppose Assumptions 2, 3 and 6 hold. Let Λ be a neighborhood of λ, and ΓΛ ,{
β̂(λ) − γ∇f(β̂(λ)) : λ ∈ Λ

}
. Suppose hypotheses (H1) to (H4) from Theorem 9 are satis-

fied. In addition suppose

(H5) The application β 7→ ∇2f(β) is Lipschitz continuous.

(H6) The criterion β 7→ ∇C(β) is Lipschitz continuous.
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(H7) Both optimization problems in Algorithm 5 are solved up to precision ε with support
identification: ‖β(λ) − β̂(λ)‖ ≤ ε, A> is invertible, and ‖A−1>∇ŜC(β(λ))− v‖ ≤ ε.

Then the error on the approximate hypergradient h returned by Algorithm 5 is of the order
of magnitude of the error ε on β(λ) and v:

‖∇L(λ)− h‖ = O(ε) .

Proof

Overview of the proof. Our goal is to bound the error between the approximate hy-
pergradient h returned by Algorithm 5 and the true hypergradient ∇L(λ). Following the
analysis of Pedregosa (2016), two sources of approximation errors arise when computing
the hypergradient:

• Approximation errors from the inexact computation of β̂. Dropping the dependency
with respect to λ, we denote β the approximate solution and suppose the problem is
solved to precision ε with support identification (H7):{

βŜc = β̂Ŝc

‖βŜ − β̂Ŝ‖ ≤ ε .

• Approximation errors from the approximate resolution of the linear system, using
(H7) yields:

‖A−1>∇ŜC(β)− v‖ ≤ ε .

The exact solution of the exact linear system v̂ satisfies:

v̂ = Â−1>∇ŜC(β̂) ,

with

A , Id|Ŝ|− ∂z proxγg(·,λ) (β − γ∇f(β))Ŝ︸ ︷︷ ︸
,C

(
Id|Ŝ|−γ∇2

Ŝ,Ŝ
f(β)

)
︸ ︷︷ ︸

,D

,

Â , Id|Ŝ|− ∂z proxγg(·,λ)

(
β̂ − γ∇f(β̂)

)
Ŝ︸ ︷︷ ︸

,Ĉ

(
Id|Ŝ|−γ∇2

Ŝ,Ŝ
f(β̂)

)
︸ ︷︷ ︸

,D̂

.

• Using the last two points, the goal is to bound the difference between the exact hyper-
gradient and the approximate hypergradient, ‖∇L(λ) − h‖. Following Algorithm 5,
the exact hypergradient reads

∇L(λ) = B̂v̂ + Ĵ >
Ŝc:
∇ŜcC(β̂) ,
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and similarly for the approximate versions:

h = Bv + J >
Ŝc:
∇ŜcC(β) ,

with

B , ∂λ proxγg(·,λ) (β − γ∇f(β))Ŝ: − γ∂z proxγg(·,λ) (β − γ∇f(β))Ŝ �
(
∇2
Ŝ,Ŝc

f(β)
)
ĴŜc:

B̂ , ∂λ proxγg(·,λ)

(
β̂ − γ∇f(β̂)

)
Ŝ:
− γ∂z proxγg(·,λ)

(
β̂ − γ∇f(β̂)

)
Ŝ
�
(
∇2
Ŝ,Ŝc

f(β̂)
)
ĴŜc: .

We can exploit these decompositions to bound the difference between the exact hy-
pergradient and the approximate hypergradient:

‖∇L(λ)− h‖ = ‖B̂v̂ −Bv + Ĵ >
Ŝc:
∇ŜcC(β̂)− Ĵ >

Ŝc:
∇ŜcC(β)‖

≤ ‖B̂v̂ −Bv‖+ ‖Ĵ >
Ŝc:
∇ŜcC(β̂)− Ĵ >

Ŝc:
∇ŜcC(β)‖

≤ ‖B̂v̂ −Bv̂ +Bv̂ −Bv‖+ ‖Ĵ >
Ŝc:

(∇ŜcC(β̂)−∇ŜcC(β))‖
≤ ‖v̂‖ · ‖B̂ −B‖+ ‖B‖ · ‖v̂ − v‖+ LC‖Ĵ >Ŝc:‖ · ‖β − β̂‖ . (29)

Bounding ‖v̂ − v‖ and ‖B̂ −B‖ in Equation (29) yields the desired result which is bound-
ing the difference between the exact hypergradient and the approximate hypergradient
‖∇L(λ)− h‖.
Bound on ‖v̂−v‖. We first prove that ‖A−Â‖ = O(ε). Let LH be the Lipschitz constant
of the application β 7→ ∇2f(β), then we have:

‖A− Â‖2 = ‖CD − ĈD̂‖2
≤ ‖CD − CD̂‖2 + ‖CD̂ − ĈD̂‖2
≤ ‖C‖2︸ ︷︷ ︸
≤1 (non-expansiveness)

‖D − D̂‖2︸ ︷︷ ︸
≤LH‖β−β̂‖ using (H5)

+ ‖D̂‖2︸ ︷︷ ︸
≤1

‖C − Ĉ‖2︸ ︷︷ ︸
O(‖β−β̂‖) using (H4)

≤ LH‖β − β̂‖+O(‖β − β̂‖)
= O(‖β − β̂‖) . (30)

Let ṽ be the exact solution of the approximate system A>ṽ , ∇ŜC(β). The following
conditions are met:

• v̂ is the exact solution of the exact linear system and ṽ is the exact solution of the
approximate linear system

Â>v̂ , ∇ŜC(β̂)

A>ṽ , ∇ŜC(β) .
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• One can control the difference between the exact matrix in the linear system Â and
the approximate matrix A.

‖A− Â‖2 ≤ δ‖β − β̂‖ ,
for a certain δ > 0 (Equation (30)).

• One can control the difference between the two right-hand side of the linear systems

‖∇ŜC(β)−∇ŜC(β̂)‖ ≤ LC‖β − β̂‖ ,
since β 7→ ∇C(β) is LC-Lipschitz continuous (H6).

• One can control the product of the perturbations

δ · ‖β − β̂‖ · ‖Â−1‖2 ≤ ρ < 1 .

Conditions are met to apply the result by Higham (2002, Thm 7.2), which leads to

‖ṽ − v̂‖ ≤ ε

1− ε‖Â−1‖δ

(
LC‖Â−1‖+ ‖v̂‖ · ‖Â−1‖δ

)
≤ ε

1− ρ
(
LC‖Â−1‖+ ‖v̂‖ · ‖Â−1‖δ

)
= O(ε) . (31)

The bound on ‖ṽ− v̂‖ finally yields a bound on the first quantity in Equation (3), ‖v− v̂‖:
‖v − v̂‖ = ‖v − ṽ + ṽ − v̂‖

≤ ‖v − ṽ‖+ ‖ṽ − v̂‖
≤ ‖A−1A(v − ṽ)‖+ ‖ṽ − v̂‖
≤ ‖A−1‖2 × ‖A(v − ṽ)‖︸ ︷︷ ︸

≤ε (H7)

+ ‖ṽ − v̂‖︸ ︷︷ ︸
O(ε) (Equation (31))

= O(ε) . (32)

Bound on ‖B − B̂‖2. We now bound the second quantity in Equation (3) ‖B − B̂‖2:
‖B − B̂‖2 ≤ ‖∂λ proxγg(·,λ)(β − γ∇f(β))Ŝ: − ∂λ proxγg(·,λ)(β̂ − γ∇f(β̂))Ŝ:‖2

+ γ‖∂z proxγg(·,λ)(β̂ − γ∇f(β̂))Ŝ∇2
Ŝ,Ŝc

f(β̂)ĴŜc: − ∂z proxγg(·,λ)(β − γ∇f(β))Ŝ∇2
Ŝ,Ŝc

f(β)ĴŜc:‖2
≤ L1‖β − γ∇f(β)Ŝ: − β̂ + γ∇f(β̂)‖ using (H4)

+ L2‖β̂ − β‖ · ‖ĴŜc:‖ using (H4) and Assumption 6

= O(‖β̂ − β‖) . (33)

Plugging Equations (32) and (33) into Equation (3) yields the desired result: ‖∇L(λ)−h‖ =
O(ε).
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Figure 10: Local linear convergence of the Jacobian for the Lasso. Distance to
optimum for the coefficients β (top) and the Jacobian J (bottom) of the forward-mode
differentiation of proximal coordinate descent (Algorithm 3) on multiple datasets.

Table 6: Dataset characteristics and regularization parameters used in Figures 3, 10 and 11.

Datasets leukemia rcv1 news20 real-sim
# samples n = 38 n = 20,242 n = 19,996 n = 72,309
# features p = 7,129 p = 19,959 p = 632,982 p = 20,958

Lasso eλ = 0.01 eλmax eλ = 0.075 eλmax eλ = 0.3 eλmax eλ = 0.1 eλmax

Logistic regression eλ = 0.1 eλmax eλ = 0.25 eλmax eλ = 0.8 eλmax eλ = 0.15 eλmax

SVM eλ = 10−5 eλ = 3× 10−2 eλ = 10−3 eλ = 5× 10−2

Appendix C. Additional experiments

Figures 10 and 11 are the counterparts of Figure 3 for the Lasso and sparse logistic regres-
sion. It shows the local linear convergence of the Jacobian for the Lasso, obtained by the
forward-mode differentiation of coordinate descent. The solvers used to determine the exact
solution up to machine precision are Celer (Massias et al., 2018, 2020) for the Lasso and
Blitz (Johnson and Guestrin, 2015) for the sparse logistic regression. Table 6 summarizes
the values of the hyperparameters λ used in Figures 3, 10 and 11.
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Figure 11: Local linear convergence of the Jacobian for sparse logistic regres-
sion. Distance to optimum for the coefficients β (top) and the Jacobian J (bottom) of
the forward-mode differentiation of proximal coordinate descent (Algorithm 3) on multiple
datasets.
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