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Abstract: A proton-exchange membrane fuel cell (PEMFC) constitutes today one of the preferred
technologies to promote hydrogen-based alternative energies. However, the large-scale deployment
of PEMFCs is still hampered by insufficient durability and reliability. In particular, the degradation
of the polyelectrolyte membrane, caused by harsh mechanical and chemical stresses experienced
during fuel cell operation, has been identified as one of the main factors restricting the PEMFC
lifetime. An innovative chemical-mechanical ex situ aging device was developed to simultaneously
expose the membrane to mechanical fatigue and an oxidizing environment (i.e., free radicals) in
order to reproduce conditions close to those encountered in fuel cell systems. A cyclic compressive
stress of 5 or 10 MPa was applied during several hours while a degrading solution (H2O2 or a
Fenton solution) was circulated in contact with the membrane. The results demonstrated that both
composite Nafion™ XL and non-reinforced Nafion™ NR211 membranes are significantly degraded by
the conjoint mechanical and chemical stress exposure. The fluoride emission rate (FER) was generally
slightly lower with XL than with NR211, which could be attributed to the degradation mitigation
strategies developed for composite XL, except when the pressure level or the aging duration were
increased, suggesting a limitation of the improved durability of XL.

Keywords: chemical degradation; durability; mechanical fatigue; Nafion™ membranes; PEM fuel cell

1. Introduction

Proton Exchange Membrane Fuel Cells (PEMFCs) are promising clean electricity
generators with numerous applications in stationary and transport domains. However,
even though hydrogen is recognized as an efficient and safe alternative to fossil fuels, the
wide-range commercialization of fuel cells is still hampered by high manufacturing costs
and a restricted lifetime. Numerous studies conducted in recent decades have already
provided key understandings about the aging phenomena and degradation mechanisms of
PEMFC materials, among which is the polyelectrolyte membrane, a crucial component for
their operation [1–4]. In these studies, it has been clearly demonstrated that the membrane
was exposed to harsh conditions during operation, involving significant chemical and
mechanical stresses that could lead to severe degradation of the membrane structure and
properties and, in the worst case, to fuel cell shutdown due to the membrane failure. In the
last few years, the incorporation of inert mechanical reinforcements and/or chemical stabi-
lizers has made it possible to reduce the thickness and the ionic resistivity of membranes
without compromising their mechanical robustness and chemical stability [5].

Nowadays, perfluorosulfonic acid (PFSA) membranes are the most commonly used in
PEMFCs due to their remarkable proton conductivity and chemical-mechanical stability.
Nonetheless, they still suffer from a high degradation rate limiting the fuel cell lifetime [5].
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Membranes indeed experience harsh conditions in fuel cell operation such as an aggressive
chemical environment and important mechanical stress.

This aggressive environment results mostly from the formation of hydrogen peroxide
(H2O2) and its subsequent decomposition into highly reactive oxygen species (hydrogen
H•, hydroxyl HO• and hydroperoxyl HOO• radicals) [5–7]. The radicals can then attack
the most vulnerable sites of the PFSA, leading to the scission of polymer chains (backbone
and/or side chains) [5] and thus to the membrane thinning [8,9]. On the other hand, the
humidity cycling and the stack clamping pressure exerted on the membrane during fuel
cell operation cause important variations in the membrane water content, thus generating
a mechanical fatigue that weakens its structure and can lead to the formation and growth
of cracks and pinholes [10–12]. These days, it is well accepted that the membrane decom-
position results from the synergistic interaction between the mechanical fatigue and the
chemical degradation [1,2,13–15].

The Fenton reaction is a widely–used ex–situ accelerated stress test (AST) enabling
the reproduction of an oxidizing environment close to that observed during fuel cell
operation [16]. It consists of reacting hydrogen peroxide (H2O2) with iron ions (Fe2+/Fe3+)
to form hydroxyl HO• and hydroperoxyl HOO• radicals with an accelerated way to rapidly
evaluate the durability of PFSA membranes against chemical degradations. However, more
complete and elaborate ex situ protocols are required to also consider the mechanical stress
exerted on the membrane in fuel cells.

In recent years, mitigation strategies have been developed to enhance the durability
and performances of PFSA membranes. For instance, DuPont de Nemours™ and W.
L. Gore & Associate Inc. have manufactured mechanically reinforced membranes by
introducing a thin microporous layer of polytetrafluoroethylene (PTFE): the Nafion™ XL
and Gore-SELECT® membranes, respectively. This process enables the elaboration of
thinner membranes with a better mechanical endurance while their proton conductivity
remains comparable with their unreinforced analogue [17,18]. Furthermore, it has been
demonstrated that the introduction of radical scavengers based on cerium species efficiently
reduced the PFSA decomposition as a result of the radical attacks [19–21]. However,
despite the presence of mechanical reinforcement and/or radical scavengers, the lifetime of
composite membranes is still limited for long-term fuel cell operation [22,23]. In addition, it
is worth noting that even though mechanical reinforcement and radical scavengers are the
most frequently used mitigation strategies to increase the durability of PFSA membranes
and thus the PEMFC lifetime, other solutions have been proposed in the literature, for
instance, new PFSA ionomers with structural features as well as semi-interpenetrating
polymer networks have been recently developed to enhance membrane properties [24,25]
while a few authors improved the efficiency of the catalyst layers by using a highly dense,
well-ordered and cone-shaped Nafion™ array [26].

Nevertheless, among innumerable studies focusing independently on chemical or
mechanical degradations these past decades, only a few have considered the effect of
combined stresses on PFSA membranes [1,2,13–15]. The present study therefore aims to
study the impact of a conjoint chemical-mechanical stress on composite and non-reinforced
PFSA membranes. For that purpose, a specific home-made device was elaborated in order
to couple mechanical and chemical stress exposure in conditions believed to reproduce
fuel cell operation.

2. Materials and Methods
2.1. Material and Preparation

Two commercial membranes were investigated in this study: the composite Nafion™
XL and the non-reinforced Nafion™ NR211 membranes. They have similar chemical
compositions based on perfluorosulfonic acid (PFSA), similar ion-exchange capacities
(IEC)—0.92 meq/g for XL and 0.98 meq/g for NR211—as well as similar thicknesses of
about 25–30 µm. Nevertheless, unlike NR211, the XL membrane contains an additional
PTFE-rich reinforcement and cerium-based radical scavengers for improved mechanical
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and chemical endurance. These two membranes were compared to study the contribution
of such mitigation strategies with coupled mechanical and chemical degradations. Finally,
the size of the membrane samples used for the various chemical-mechanical aging tests
was approximately 40–45 mm wide and 70–75 mm long.

Prior to aging tests or measurements, the commercial membrane samples were pre-
treated according to a standard procedure close to those already been established by
Xu et al. [27].

2.2. Experimental Setup and Aging Tests Parameters

A specific custom-made device was elaborated in order to reproduce operating condi-
tions close to those exerted on PFSA membranes in fuel cell systems and thus study the
impact of conjoint chemical and mechanical stress on the membrane [2]. The chemical-
mechanical aging experiments consisted of applying a compressive stress on the membrane
while exposed to an oxidizing environment. In this regard, an aging cell composed of two
symmetric half-cells made in 316L stainless steel was machined and a single serpentine
flow channel like those of fuel cell flow field plates was engraved on their surface. The
lands and channels had a width of 1 mm and a depth of 0.7 mm (Figure 1). The effective
area where the membrane was exposed to both mechanical and chemical stresses was
approximately 19.5 × 39.5 mm2 per half-cell.
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Figure 1. Photograph of the chemical-mechanical aging device. The inset focuses on the aging cell
and the adapter specifically designed for this study.

During the aging tests, the membrane was sandwiched between the two half–cells
and the aging cell was then inserted between the clamp of an electromechanical universal
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testing machine (MTS load frame model 312.21,MTS Systems, Créteil, France). In addition,
the aging cell was heated to 80 ◦C thanks to heater cartridges inserted into each half-
cell close to the membrane and an EPDM (ethylene propylene diene monomer) O-ring
gasket was used to guarantee perfect sealing. Prior to each aging test, it was necessary
to determine the minimal pressure required to compress the gasket and thus ensure a
perfect sealing. This minimal pressure corresponded in this study with the 0 MPa reference
pressure level.

The chemical stress was induced by circulating a continuous flow of degrading solu-
tion (H2O2 or Fenton solution) through the flow channel of the aging cell with a flow rate of
3.0 mL/min, which corresponded with a residence time of the solution in contact with the
membrane of about 10 s per half–cell. Based on the literature, mild conditions were repli-
cated by using a 3 vol % H2O2 solution while a Fenton solution containing 3 vol % of H2O2
and 1 ppm of ferrous ions Fe2+ was circulated to provoke more aggressive conditions [2,28].

A mechanical fatigue was applied on the membrane through the channel ribs in order
to reproduce on the one hand the swelling/shrinkage cycles (i.e., by applying a cyclic
compressive stress) or, on the other hand, the stack clamping pressure (i.e., by maintaining
a static compressive stress) experienced by the membrane during fuel cell operation. The
cyclic compressive stress consisted in a sinusoidal profile oscillating between 0 and 5 or
10 MPa [1,29] with a frequency of 0.1 Hz while the static compressive stress was maintained
at constant pressure level.

According to these operating conditions, one hour of a conjoint mechanical-chemical
aging test could be considered as roughly equivalent to one year of daily operation with
one startup/shutdown per day (i.e., 360 swelling/shrinkage cycles). Table 1 summa-
rizes the main operating conditions in which the various chemical-mechanical aging tests
were performed.

Table 1. Summary of the operating conditions used for the ex situ mechanical-chemical aging tests.

Mechanical Strength Chemical Conditions Duration Number of Tests

5 MPa cycling H2O2 solution 8 h 2
5 MPa cycling Fenton solution 8 h 3
Static 5 MPa Fenton solution 8 h 1

10 MPa cycling Fenton solution 8 h 2
5 MPa cycling Fenton solution 20 h 1
Static 5 MPa Fenton solution 20 h 1

After each test, the membrane samples were extracted from the cell, immersed in dis-
tilled water and treated to eliminate cationic contaminants. For that purpose, the samples
were soaked in a complexing solution of EDTA-Na2 (0.01 mol/L) at room temperature
overnight before being boiled in a nitric acid HNO3 solution (1 mol/L) at 80 ◦C for 2 h and
rinsed in distilled water at 80 ◦C, again for 2 h. Finally, the samples were dried in an oven
at 60 ◦C for 20 h before being analyzed. The solutions that circulated through the aging cell
were collected and stored for (possible) further analysis.

2.3. Quantification of the Fluoride Emission Rates

The emission of fluoride ions, one of the most monitored PFSA degradation products,
is frequently considered as a reliable indicator of the PFSA chemical degradation and can
be easily assessed using, in our case, a fluoride-ion selective electrode (DX219, Mettler
Toledo, Viroflay, France). The electrode was calibrated over the 0.057–19 ppm range using
various calibration solutions prepared from a commercial standard solution (ISE standard
F 1000 ppm, Mettler Toledo, Viroflay, France). The fluoride emission rate (FER) is expressed
here in mg of fluoride ions released per gram of dry membrane per hour (mg/gNafion/h).
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3. Results
3.1. Impact of a Cyclic Compressive Stress

First, accelerated stress tests coupling mechanical and chemical stresses were per-
formed by applying a cyclic compressive stress to mimic the swelling/shrinkage sequences
generated by the water content changes of the membrane during a transient fuel cell
operation. A 5 MPa pressure was exerted on the membrane while a degrading solution
was circulated through the aging cell for 8 h: a 3 vol % H2O2 solution for mild conditions
and a Fenton solution with an optimal concentration of Fenton’s reagents for aggressive
conditions [2,28]. The fluoride emission rates (FER) were evaluated by analyzing the circu-
lating solutions collected at the end of each aging test and compared with those measured
for pure chemical stress tests to estimate the impact of mechanical fatigue on the polymer
chemical decomposition (Figure 2).
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Figure 2. Fluoride emission rates (FER) of Nafion™ XL and NR211 membranes after chemical aging (to the left) and after
chemical-mechanical aging (to the right).

As observed in the case of ex situ chemical stress tests, the degradation rate obtained
after mechanical-chemical stress tests for both XL and NR211 membranes was higher with
a Fenton solution exposure than with the H2O2 solution exposure, which indicated that the
mechanical fatigue did not predominate over the chemical degradation, i.e., shifting from
hydrogen peroxide to the Fenton solution had a higher impact than adding a mechanical
stress. Nonetheless, coupling mechanical and chemical stresses accelerated the membrane
degradation because a FER twice to thrice higher was obtained for both membranes by
applying a 5 MPa compression while circulating a Fenton solution instead of exposing
membranes to the Fenton solution only. Furthermore, the XL membrane was significantly
degraded by the conjoint chemical and mechanical stress exposure despite the presence
of an additional mechanical reinforcement and radical scavengers in comparison with its
non-reinforced analogue, the NR211 membrane.

Supplementary experiments were then carried out by increasing the pressure level
from 5 to 10 MPa and the aging duration from 8 to 20 h to evaluate the degradation behavior
of XL and NR211 membranes in more severe conditions (Table 2). These new tests were
carried out using Fenton solutions only.

The degradation rate of both membranes increased significantly when the pressure
level was doubled: the FER of XL was almost twice higher while a slight increase of 22% was
noticed for NR211. Furthermore, by extending the aging duration from 8 to 20 h, the FER
was considerably amplified for both XL and NR211 membranes, indicating an acceleration
of the degradation. Moreover, when more severe operating conditions were applied
on the membranes, the results showed that both membranes were degraded in equal
proportion, which could suggest that the mitigation strategies to improve XL durability
were insufficient to effectively prevent the chemical decomposition of the polymer at a
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higher pressure level or after long-term aging. It is thus possible that the PTFE–based
reinforcement layer and/or the cerium-based radical scavengers were no longer able to
inhibit the chemical decomposition of the polymer when the mechanical fatigue became
too important, thus leading to a degradation behavior through fluoride emission rates
similar to that of the non-reinforced NR211 membrane. However, in the light of our current
results, it cannot be concluded definitely if one strategy prevailed over the other or whether
both were involved in preventing the membrane from degradation.

Table 2. Evolution of the fluoride emission rate as a function of the severity of conjoint mechanical and chemical stress
exerted on Nafion™ XL and NR211 membranes. Part of the data presented here has been already published in a previous
work [2] but the values have been corrected here by taking into account the parasitic contribution of the TISAB II solution
used for the measurements.

FER (µg/gNafion/h) Cyclic 5 MPa + Fenton
Solution (8 h)

Cyclic 10 MPa + Fenton
Solution (8 h)

Cyclic 5 MPa + Fenton
Solution (20 h)

XL membrane 167 ± 44 316 ± 44 465
NR211 membrane 264 ± 157 324 ± 79 492

3.2. Impact of a Static Compressive Stress

In a second phase, a static compressive stress was applied to mimic the stack clamping
pressure exerted on membranes during fuel cell operation. In that purpose, two aging
tests similar to those previously presented were carried out by maintaining a constant
pressure level of 5 MPa on membranes while circulating the Fenton solution during 8 or
20 h. Figure 3 illustrates the evolution of the FER after these two static aging tests for both
XL and NR211 membranes in comparison with the results obtained in the case of cyclic
aging tests. Similarly, an acceleration of the membrane decomposition was observed by
extending the aging duration as a FER increase of about 30 % and 50 % for XL and NR211
membranes, respectively, after combined static compressive stress and Fenton solution
exposure. In addition, and as previously observed for cyclic compression exposure, both
membranes were degraded in a very similar proportion when the aging duration was
increased from 8 to 20 h, which could indicate that maintaining a constant pressure level
on the XL membrane also restricted its improved durability.
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Furthermore, the application of a static 5 MPa compression seemed slightly more
aggressive than that of a cyclic 5 MPa compression for both membranes in the case of
the short-term aging tests (8 h). However, this trend was not observed after long-term
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aging (20 h), which could indicate that, at an equal pressure level, applying a quite severe
cyclic compressive stress was more detrimental for Nafion™ membranes than maintaining
a constant compression.

4. Conclusions

The degradation behavior of both composite Nafion™ XL and non-reinforced Nafion™

NR211 membranes was investigated after various chemical-mechanical aging tests. In
this regard, an innovative device able to couple mechanical fatigue and an aggressive
chemical environment exposure to the membrane was elaborated in order to mimic fuel
cell operating conditions with an ex situ approach. It is therefore required to develop new
accelerated stress tests coupling mechanical and chemical stresses to evaluate efficiently and
rapidly the durability of PFSA membranes in conditions close to those experienced during
fuel cell operation. This study is believed to offer new understandings about the impact of
conjoint mechanical and chemical stresses on the degradation of Nafion™ membranes.

The first results demonstrated that the degradation behavior of both XL and NR211
membranes was not modified when chemical stress was coupled to a mechanical stress: the
FER remained higher by exposing the membrane to the Fenton solution instead of the H2O2
solution only. However, adding a mechanical fatigue to the chemical stress significantly
accelerated the polymer decomposition.

The comparison of XL and NR211 degradation behaviors seemed to indicate that XL
was slightly more stable than NR211 against conjoint chemical and mechanical stresses.
This discrepancy could be attributed to the presence of an additional PTFE-based reinforce-
ment providing a better mechanical strength and dimensional stability to the membrane
and/or to the presence of radical scavengers preventing the polymer decomposition against
radical attacks. Nevertheless, the mitigation strategies developed for XL did not prevent the
polymer decomposition after the application of severe mechanical solicitations (i.e., long-
term aging or a high pressure level) because the degradation rates of XL were comparable
with those obtained with the non-reinforced NR211.

The custom-made device and the associated accelerated aging protocols presented in
this study constitute a first step towards larger investigations to provide new insights about
the chemical-mechanical aging of PFSA membranes and opens up various perspectives.
For instance, introducing gas diffusion layers (GDL) between the flow field plates and the
membrane in our aging cell or modifying the operating procedure to expose the membrane
to a gaseous H2O2 environment instead of an aqueous solution could better mimic the
mechanical constraint exerted on membranes during fuel cell operation. Finally, one can
also imagine lengthening the aging duration to more than a few tens of hours to further
test the membrane durability.
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