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The ability of acoustic microstreaming to cause a pair of particles to attract or repel
is investigated. Expanding the flow around two spheres in terms of a small-amplitude
parameter measuring the amplitude of the forcing, the leading order is an oscillating
flow field with zero mean representing the effect of the applied acoustic field, while the
second-order correction contains a steady streaming component. A modal decomposition
in the azimuthal direction reduces the problem to a few linear problems in a 2D domain
corresponding to the meridional (r, z) plane. The analysis computes both the intricate
flow fields and the mean forces felt by both spheres. If the spheres are aligned obliquely
with respect to the oscillating flow, they experience a lateral force which realigns them
into a transverse configuration. In this transverse configuration, they experience an axial
force which can be either attractive or repulsive. At high frequencies the force is always
attractive. At low frequencies, it is repulsive. At intermediate frequencies, the force is
attractive at large distances and repulsive at small distances, leading to the existence of
a stable equilibrium configuration.

1. Introduction

There is an extensive literature on the motion of particles in a sound field and on
the relative motion of particles relative to each other in an acoustic field. The motions of
isolated particles are due to the quadratic nonlinearity in the momentum equations, which
permits a rectification of a first-order, purely reciprocating flow to create a mean flow
at second order (Riley 2001). An examination of the nonlinear term in the momentum
equation immediately shows that any streaming motion would become significant when
the amplitude of the sound wave is large or the gradient in the acoustic field is large, or
both (Manasseh 2015).

Where the first-order, linear acoustic field is forced to change over a small distance
owing to a different acoustic impedance of the particle relative to the continuous phase,
the gradient in the acoustic field becomes large. The resulting physics can be divided
into two types of phenomena, each with its own literature. Firstly, there are studies of
the ‘radiation’ forces on single or multiple particles (Leong et al. 2013). Secondly, there
are studies of ‘microstreaming’ fluid flows created around single or multiple particles
(Manasseh 2015). Here, the focus is on the microstreaming.

The microstreaming flow around a sphere in an acoustic field was first analysed by
Lane (1955), who followed the original assumption of Rayleigh (1884) that the streaming
flow is incompressible, which is locally valid when the wavelength of the acoustic field is
much larger than the particle size. Here there is vorticity, and a distinct boundary layer
provides the large local gradient to amplify the quadratic nonlinearity in the momentum
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The whole flow is assumed to be incompressible, valid when the wavelength of the
acoustic field is much larger than the size and spacing of the particles. The fluid has
density ρ and kinematic viscosity ν.

The flow is governed by two nondimensional parameters, the Reynolds number Re =
Rua/ν and the Stokes number Ω = ωR2/ν. With the addition of the geometric parame-
ters L/R and θ, there are four parameters to consider.

The flow is represented by the state vector q = [u; p] which regroups the velocity field u
and pressure field p. This flow is governed by the incompressible Navier-Stokes equation
which is conveniently written as

Lq =
C(q,q)

2
. (2.1)

Here L is a linear operator and C is the nonlinear convection operator, defined as

L[u; p] =

[
ν∆− ∂t −ρ−1∇
∇ 0

]
[u; p], (2.2)

C([a; pa], [b; pb]) = [a · ∇b + b · ∇a; 0] . (2.3)

Far from the spheres (for (r, z)→∞), the velocity field must match the applied uniform
oscillating flow defined as

u ≈ ua [cos θ ez + sin θ ex] cosωt (2.4)

p ≈ ρuaω [z cos θ + x sin θ] sinωt. (2.5)

Assuming that the spheres are fixed (an hypothesis which will be rediscussed in section
2.3), the velocity field also verifies a no-slip condition u = 0 along their surface.

The forces exerted on each of the spheres (labelled (1) and (2) as in figure 1), are given
by

F(1,2) =

∫
S1,2

[
−pn + ν(∇u +∇uT ) · n

]
dS (2.6)

where S1,2 is the surface of the corresponding sphere.

2.2. Weakly nonlinear development

In the following, the problem is solved in nondimensional form by setting R = 1, ρ = 1,
ν = 1. The assumption that the amplitude of the oscillating field ua is small then implies
Re� 1, so it is convenient to conduct an asymptotic analysis in terms of this parameter.
Retaining up to second order terms, the flow is thus expanded as:

q = Req1 +Re2 q2 +O(Re3) (2.7)

The force exerted on each sphere can be similarly expanded, such that

F(1,2) = ReF
(1,2)
1 +Re2 F

(1,2)
2 , (2.8)

which means, in dimensional terms,

F(1,2) ≡ ρνRua F(1,2)
1 + ρR2u2

a F
(1,2)
2 . (2.9)

Note that the order-one contribution to the force F
(1,2)
1 is the direct response to the

harmonic forcing, so it is periodic with frequency ω. The order-two contribution to the

force F
(1,2)
2 contains both a steady term and an unsteady term with frequency 2ω. The

latter will not be considered here as only the time-average of the force is of interest.
Far away from the spheres (for (r, z)→∞), the solution at order one must match with
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the applied uniform oscillating flow given by Eq. (2.4). Using cylindrical coordinates, this
takes the following form, for the velocity field:

u1 ≈
(

cos θ

2
ez +

sin θ

4

[
eiϕ + e−iϕ

]
er +

i sin θ

4

[
eiϕ − e−iϕ

]
eϕ

)(
eiΩt + e−iΩt

)
(2.10)

Therefore the solution at order 1 of the form

q1 = cos θ
[
qAe

iΩt + (qA)∗e−iΩt
]

(2.11)

+ sin θ
[
qT+e

+iϕ+Ωt + qT−e
−iϕ+Ωt + (qT+)∗e−iϕ−iΩt + (qT−)∗e+iϕ−iΩt

]
is sought, where asterixes denote the complex conjugates of the corresponding terms.
Here qA is the first order oscillating flow around two spheres in an axial configuration
(θ = 0) while qT+ and qT− correspond to the first order oscillating flow in a trans-
verse configuration (θ = π/2). The general solution is a linear superposition of these
components.

The first order flow for axial oscillations qA is the solution of the following linear
system and associated boundary conditions:

LΩ
0 (qA) = 0; qA ≈ [0, 0, 1/2, iΩx/2] as (r, z)→∞, (2.12)

Here LΩ
m is the linear operator defined in Eq. (2.2), with temporal derivatives replaced

by iΩ, ν and ρ by 1, and azimuthal derivatives by im.
Using Eq. 2.6, the first order flow qA contributes to a force on the sphere labelled

1 noted F
(1)
1 = FAeze

iΩt. The force exerted on the sphere labelled (2) can be deduced
from symmetry considerations. Namely, the field qA is antisymmetric with respect to the
z-axis, which means, for the pressure component, that pA(r, z) = −pA(r,−z). The same
is true for the normal stress component entering the expression of the force. Considering
that the axial projection of the normal vector is also antisymmetric, namely nz(r, z) =
−nz(r,−z), this implies that the force felt by both spheres is he same.

Similarly, the two components describing the first order field for transverse oscillations
are the solutions of the following problems and associated boundary conditions :

LΩ
1 (qT+) = 0; qT+ ≈ [1/4, i/4, 0, iΩr/4] as (r, z)→∞; (2.13)

LΩ
−1(qT−) = 0; qT− ≈ [1/4,−i/4, 0, iΩr/4] as (r, z)→∞. (2.14)

Using Eq. 2.6, the field qT+e
iϕ +qT−e

−iϕ contributes to a force on the sphere labelled

1 noted F
(1)
1 = FTexe

iΩt. The force exerted on the sphere labelled (2) can again be
deduced from symmetry considerations. Here, the fields qT± are symmetric with respect
to the z-axis, which means, for the pressure components, pT±(r, z) = pT±(r,−z). The
x-component of the normal vector being also symmetric, this implies again that the force
felt by both spheres is the same.

Gathering all contributions and taking into account the symmetry conditions, the
order-one forces exerted on the spheres are thus given by:

F
(1)
1 = F

(2)
1 = (FA cos θ ez + FT sin θ ex) eiΩt + c.c. (2.15)

Note that FA and FT are complex numbers, implying a phase shift between the imposed
oscillation and the exerted force. At this point we may also note that the fact that the
oscillating force is equal on both spheres implies that, if they were allowed to move, they
would oscillate in phase and with the same amplitude under the effect of this order-one
force. We will discuss further the possible motion of the sphere in the next subsection.

The second-order term in Eq. 2.7 is obtained by substituting the solution at order
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1 into the Navier-Stokes equations. Expressing the solution at order one in cylindrical
coordinates allows the solution q2 ≡ [u2, p2] to be found as

q2 = cos2 θ q0
AA (2.16)

+ sin2 θ
[
q0
TT + q2

TT e
2iϕ + (q2

TT )∗e−2iϕ
]

+ cos θ sin θ
[
q1
AT e

iϕ + (q1
AT )∗e−iϕ

]
+ (unsteady terms).

The unsteady terms regroup into terms with temporal dependance e±2iωt and azimuthal
dependance e0, e±iϕ and e±2iϕ. They are neglected as only the steady part of the second-
order flow and associated steady forces are of interest.

The first term q0
AA in Eq. 2.16 corresponds to the nonlinear interaction of the first-

order axial flow qA with itself. This flow is the solution of the following linear problem:

L0
0(q0

AA) = C0,0(qA, (qA)∗) (2.17)

where Cma,mb
(qa,qb) is as defined in Eq. (2.3) but with azimuthal derivatives of qa

replaced by ima and azimuthal derivatives of qb replaced by imb.
This term q0

AA contributes to a force on the sphere (1) directed in the axial (z) di-
rection and noted FAA. Note that the forcing term C1,−1(qA, (qA)∗) is symmetrical with
respect to the z-axis, so the field q0

AA verifies the same property, i.e. for the pressure
field pAA(r, z) = pAA(r,−z). Reminding that nz(r, z) = −nz(r,−z), this means that the
force exerted on sphere (2) is opposite to that on sphere (1).

The terms in the second line of Eq. 2.16 correspond to the corresponds to the nonlinear
interaction of the first-order transverse flow qT± with itself. Note that the solution to
this problem involves both an axisymmetric (with azimuthal wavenumber 0) and a non-
axisymmetric contribution (with azimuthal wavenumber ±2), respectively given by

L0
0(q00

TT ) = C1,−1(qT+, (qT+)∗) + C−1,1(qT−, (qT−)∗) (2.18)

L0
2(q20

TT ) = C1,1(qT+, (qT+)∗). (2.19)

As the integrals of any term with azimuthal dependency e±2iϕ along the surfaces of
the spheres vanish, only the axisymmetric contribution to the field q00

TT contributes to a
force. The latter is exerted in the axial (z) direction and noted FTT for sphere (1). The
field q00

TT verifying the same symmetry properties as q0
AA, the force exerted on sphere

(2) is again opposite to that on sphere (1).
The last term in Eq. 2.16 corresponds to an interaction between the axial and transverse

parts of the solution at order one, and hence is present in any oblique configuration
θ 6= (0, π/2). It is given by the solution of

L0
1(q1

AT ) = C0,1(qA, (qT−)∗) + C0,1((qA)∗,qT+) (2.20)

This last term contributes to a force in the transverse (x) direction, noted FAT for the
sphere labelled (1). Noting that q1

AT is antisymmetric and that the x-component of the
normal is symmetric, this implies that the force on sphere (2) is opposite to that on
sphere (1).

Gathering all these results, we are now in position to give an expression for the time-

averaged force felt by the spheres F(1,2). As given by 2.9, this corresponds to the steady

part of F
(1,2)
2 , which contain three contributions noted FAA, FTT and FAT . Taking into

account the symmetry considerations discussed above, and reverting to dimensional form,
we end up with the following expression:
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F(1) = −F(2) = ρR2u2
a

[
cos2 θ FAA ez + sin2 θ FTT ez + cos θ sin θ FAT ex

]
(2.21)

2.3. Discussion : generalization to oscillating spheres

The whole derivation presented above was done under the assumption that the spheres
are fixed and embedded in an external oscillating flow of amplitude ua. Before showing
results, we discuss here the more general case where the spheres are oscillating in phase
with each other with a velocity amplitude ub.

Let us consider first the most simple case where the spheres are driven in oscillation in a
quiescent medium (ub 6= 0, ua = 0). Working in a relative frame moving with the particles,
the equations of motions are the same as in the problem otherwise considered here, except
for an additional uniform term ∂ub/∂t corresponding to the relative acceleration of the
non-inertial frame. This term modifies the pressure field of the order-one solution, and
hence the unsteady force (2.15) is modified by the presence of an added-mass contribution.
On the other hand, it has no effect on the steady order-two solution which remains exactly
the same as written in the previous section.

In the more general case where the particles are moving under the effect of the acoustic
forcing (ua 6= 0 ; ub 6= 0), the argument remains valid. In particular, the steady force
exerted on the spheres is still given by Eq. (2.21), except that the overall scaling is the
square of the relative velocity |ub − ua|2 instead of u2

a.
In practice, if the spheres are freely moving, ub has to be deduced from the forcing

ua by a dynamic equation relating the acceleration of the spheres to the forces exerted
on them (given by 2.15 and including an added-mass contribution). Resolution of this
problem clearly depends upon the mass of the spheres. Since the main focus of the present
paper is on the steady streaming and steady forces, we leave a more detailed discussion
of unsteady motion of spheres of arbitrary masses under the effect of acoustic forcing for
a future study.

2.4. Numerical methods

All of the problems introduced are of the form Lω
m[u, p] = (VF, 0) where VF is a volu-

metric forcing term. These problems are solved using finite elements. The equations are
multiplied by test functions [v, q] and integrated over the domain. Integration by parts is
used for the Laplacian and pressure gradient terms which naturally leads to a no-traction
condition −pn + µ∇u · n = 0 on the boundaries of the computational domain.

To impose the velocity u = ub on some boundary Γ of the domain, penalization
terms are added of the form 1/ε

∫
Γ
(u − ub) · v rds with ε ≈ 10−10 to the variational

formulation. Such penalization terms are required at the surfaces of the sphere to impose
the no-slip condition for all problems, and at the outer boundary of the domain for the
order-one problems to impose matching with the outer oscillating flow. For the order-two
problems, no penalization terms are introduced, leading to a no-traction condition which
is less restrictive than a no-slip condition.

A mesh was generated by triangulation over a circular domain (typically 40R) embed-
ding the spheres. The mesh was refined in the vicinity of the spheres with typical grid
size 0.03R. Mesh dependence was checked over various combinations of domain sizes and
mesh densities, comprising of a refined inner circular region close to the sphere(s), and
a coarser outer one further away. The results vary by < 1% across all the meshes, when
measuring forces FTT , FAA and FAT for all the range of Ω tested.

The approach was validated in the case of a single sphere by comparing to the classical
solution of Stokes (1851) for the oscillating flow, and the asymptotic solutions of Riley
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Figure 7. Distance between the sphere centers for the stable equilibrium in transverse
configuration.

enough frequencies (Ω > 20.1), there is no equilibrium position and the force remains
attractive up to the point where the spheres touch each other (L/R = 2). In the limit of
small frequencies, on the other hand, the equilibrium distance tends to infinity and the
results can be fitted with the law L/R ≈ K/Ω where K ' 16.5. Note that this asymptotic
trend is similar to that observed in the experiment and numerical simulations of Klotsa
et al. (2007), but in this latter work the constant was K ' 6.5 (when expressed in the
nondimensionalisation of this paper) during experiments, and K ' 9 in simulations. This
difference may be attributed to the fact that in the experimental work the spheres were
rolling upon a solid bottom, while here they are fully immersed in the fluid. In the nu-
merical simulations of Klotsa et al. (2007), the domain in the z−direction was restricted
to only 6R top to bottom, while here a domain of around 80R has been employed. It
is likely that the difference in the result is due to the significant blockage effect in the
simulations of Klotsa et al. (2007).

4. Conclusion

In this work, the flow around two spheres subjected to a uniformly oscillating flow has
been investigated using a perturbation method. The leading-order flow is oscillating, while
the second-order flow contains a steady component referred to as the steady streaming
flow. The structure of this flow has been described for axial, transverse and oblique
configuration and is characterized by intricate patterns due to the interaction of the flows
generated by each sphere. The mean forces exerted on the sphere have been characterized
as a function of the Stokes number and the distance. In oblique configurations, the spheres
are subjected to a torque which always tends to realign them perpendicularly to direction
of oscillation. In this transverse configuration, the force is always attractive in the high-
Stokes regime and repulsive in the low-Stokes regime. For intermediate frequencies, there
exists an equilibrium configuration where the force is zero. We emphasize that, although
the analysis has been presented in the case where the spheres are assumed fixed in space,
the general results of the study remain valid when taking into account their oscillatory
motion due to the direct effect of the forcing.

For future studies, several extensions of the perturbation approach and the numerical
method developed in this work present themselves. First, the whole approach is directly
applicable to single nonspherical particles such as ellipsoids or cylinders, and to pairs
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of particles of unequal size. In the first case, one expects the microstreaming to exert a
torque which tends to align the particle perpendicularly to the direction of oscillation.
In the second case, one can expect the existence of an equilibrium state in which the
two particles stay at a fixed distance from each other but migrate laterally. Secondly, in
cases where the acoustic wavelength is comparable to the size of the particles and/or the
amplitude of the acoustic field is large, the approach should be repeated in a compressible
framework. This future analysis would allow description within a single approach of both
the radiation forces responsible for primary migration of the particles within an acoustic
field and the interaction forces due to microstreaming. Finally, the method can be applied
to assess the motion and interaction of bubbles in an acoustic field.
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