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Acoustic streaming and its induced forces between two spheres

The ability of acoustic microstreaming to cause a pair of particles to attract or repel is investigated. Expanding the flow around two spheres in terms of a small-amplitude parameter measuring the amplitude of the forcing, the leading order is an oscillating flow field with zero mean representing the effect of the applied acoustic field, while the second-order correction contains a steady streaming component. A modal decomposition in the azimuthal direction reduces the problem to a few linear problems in a 2D domain corresponding to the meridional (r, z) plane. The analysis computes both the intricate flow fields and the mean forces felt by both spheres. If the spheres are aligned obliquely with respect to the oscillating flow, they experience a lateral force which realigns them into a transverse configuration. In this transverse configuration, they experience an axial force which can be either attractive or repulsive. At high frequencies the force is always attractive. At low frequencies, it is repulsive. At intermediate frequencies, the force is attractive at large distances and repulsive at small distances, leading to the existence of a stable equilibrium configuration.

Introduction

There is an extensive literature on the motion of particles in a sound field and on the relative motion of particles relative to each other in an acoustic field. The motions of isolated particles are due to the quadratic nonlinearity in the momentum equations, which permits a rectification of a first-order, purely reciprocating flow to create a mean flow at second order [START_REF] Riley | Steady streaming[END_REF]). An examination of the nonlinear term in the momentum equation immediately shows that any streaming motion would become significant when the amplitude of the sound wave is large or the gradient in the acoustic field is large, or both [START_REF] Manasseh | Fundamental aspects of acoustic bubbles, acoustic streaming, and cavitation microstreaming[END_REF].

Where the first-order, linear acoustic field is forced to change over a small distance owing to a different acoustic impedance of the particle relative to the continuous phase, the gradient in the acoustic field becomes large. The resulting physics can be divided into two types of phenomena, each with its own literature. Firstly, there are studies of the 'radiation' forces on single or multiple particles [START_REF] Leong | Ultrasonic separation of particulate fluids in small and large scale systems: a review[END_REF]. Secondly, there are studies of 'microstreaming' fluid flows created around single or multiple particles [START_REF] Manasseh | Fundamental aspects of acoustic bubbles, acoustic streaming, and cavitation microstreaming[END_REF]. Here, the focus is on the microstreaming.

The microstreaming flow around a sphere in an acoustic field was first analysed by [START_REF] Lane | Acooustical streaming in the vicinity of a sphere[END_REF], who followed the original assumption of [START_REF] Rayleigh | On the circulation of air observed in Kundt's tubes, and on some allied acoustical problems[END_REF] that the streaming flow is incompressible, which is locally valid when the wavelength of the acoustic field is much larger than the particle size. Here there is vorticity, and a distinct boundary layer provides the large local gradient to amplify the quadratic nonlinearity in the momentum The whole flow is assumed to be incompressible, valid when the wavelength of the acoustic field is much larger than the size and spacing of the particles. The fluid has density ρ and kinematic viscosity ν.

The flow is governed by two nondimensional parameters, the Reynolds number Re = Ru a /ν and the Stokes number Ω = ωR 2 /ν. With the addition of the geometric parameters L/R and θ, there are four parameters to consider.

The flow is represented by the state vector q = [u; p] which regroups the velocity field u and pressure field p. This flow is governed by the incompressible Navier-Stokes equation which is conveniently written as

Lq = C(q, q) 2 . (2.1)
Here L is a linear operator and C is the nonlinear convection operator, defined as

L[u; p] = ν∆ -∂ t -ρ -1 ∇ ∇ 0 [u; p], (2.2) C([a; p a ], [b; p b ]) = [a • ∇b + b • ∇a; 0] . (2.
3) Far from the spheres (for (r, z) → ∞), the velocity field must match the applied uniform oscillating flow defined as

u ≈ u a [cos θ e z + sin θ e x ] cos ωt (2.4) p ≈ ρu a ω [z cos θ + x sin θ] sin ωt.
(2.5)

Assuming that the spheres are fixed (an hypothesis which will be rediscussed in section 2.3), the velocity field also verifies a no-slip condition u = 0 along their surface.

The forces exerted on each of the spheres (labelled (1) and (2) as in figure 1), are given by

F (1,2) = S1,2 -pn + ν(∇u + ∇u T ) • n dS (2.6)
where S 1,2 is the surface of the corresponding sphere.

Weakly nonlinear development

In the following, the problem is solved in nondimensional form by setting R = 1, ρ = 1, ν = 1. The assumption that the amplitude of the oscillating field u a is small then implies Re 1, so it is convenient to conduct an asymptotic analysis in terms of this parameter. Retaining up to second order terms, the flow is thus expanded as:

q = Re q 1 + Re 2 q 2 + O(Re 3 ) (2.7)
The force exerted on each sphere can be similarly expanded, such that

F (1,2) = Re F (1,2) 1 + Re 2 F (1,2) 2
, (2.8) which means, in dimensional terms,

F (1,2) ≡ ρνRu a F (1,2) 1 + ρR 2 u 2 a F (1,2) 2
.

(2.9)

Note that the order-one contribution to the force F

(1,2) 1

is the direct response to the harmonic forcing, so it is periodic with frequency ω. The order-two contribution to the force F

(1,2) 2 contains both a steady term and an unsteady term with frequency 2ω. The latter will not be considered here as only the time-average of the force is of interest.

Far away from the spheres (for (r, z) → ∞), the solution at order one must match with the applied uniform oscillating flow given by Eq. (2.4). Using cylindrical coordinates, this takes the following form, for the velocity field:

u 1 ≈ cos θ 2 e z +
sin θ 4 e iϕ + e -iϕ e r + i sin θ 4 e iϕ -e -iϕ e ϕ e iΩt + e -iΩt (2.10)

Therefore the solution at order 1 of the form q 1 = cos θ q A e iΩt + (q A ) * e -iΩt (2.11)

+ sin θ q T + e +iϕ+Ωt + q T -e -iϕ+Ωt + (q T + ) * e -iϕ-iΩt + (q T -) * e +iϕ-iΩt
is sought, where asterixes denote the complex conjugates of the corresponding terms.

Here q A is the first order oscillating flow around two spheres in an axial configuration (θ = 0) while q T + and q T -correspond to the first order oscillating flow in a transverse configuration (θ = π/2). The general solution is a linear superposition of these components.

The first order flow for axial oscillations q A is the solution of the following linear system and associated boundary conditions:

L Ω 0 (q A ) = 0; q A ≈ [0, 0, 1/2, iΩx/2] as (r, z) → ∞, (2.12)
Here L Ω m is the linear operator defined in Eq. ( 2.2), with temporal derivatives replaced by iΩ, ν and ρ by 1, and azimuthal derivatives by im.

Using Eq. 2.6, the first order flow q A contributes to a force on the sphere labelled 1 noted F

(1) 1 = F A e z e iΩt . The force exerted on the sphere labelled (2) can be deduced from symmetry considerations. Namely, the field q A is antisymmetric with respect to the z-axis, which means, for the pressure component, that p A (r, z) = -p A (r, -z). The same is true for the normal stress component entering the expression of the force. Considering that the axial projection of the normal vector is also antisymmetric, namely n z (r, z) = -n z (r, -z), this implies that the force felt by both spheres is he same.

Similarly, the two components describing the first order field for transverse oscillations are the solutions of the following problems and associated boundary conditions :

L Ω 1 (q T + ) = 0; q T + ≈ [1/4, i/4, 0, iΩr/4] as (r, z) → ∞; (2.13) L Ω -1 (q T -) = 0; q T -≈ [1/4, -i/4, 0, iΩr/4] as (r, z) → ∞.
(2.14) Using Eq. 2.6, the field q T + e iϕ + q T -e -iϕ contributes to a force on the sphere labelled 1 noted F

(1) 1 = F T e x e iΩt . The force exerted on the sphere labelled (2) can again be deduced from symmetry considerations. Here, the fields q T ± are symmetric with respect to the z-axis, which means, for the pressure components, p T ± (r, z) = p T ± (r, -z). The x-component of the normal vector being also symmetric, this implies again that the force felt by both spheres is the same.

Gathering all contributions and taking into account the symmetry conditions, the order-one forces exerted on the spheres are thus given by:

F (1) 1 = F (2) 1 = (F A cos θ e z + F T sin θ e x ) e iΩt + c.c.
(2.15)

Note that F A and F T are complex numbers, implying a phase shift between the imposed oscillation and the exerted force. At this point we may also note that the fact that the oscillating force is equal on both spheres implies that, if they were allowed to move, they would oscillate in phase and with the same amplitude under the effect of this order-one force. We will discuss further the possible motion of the sphere in the next subsection.

The second-order term in Eq. 2.7 is obtained by substituting the solution at order 1 into the Navier-Stokes equations. Expressing the solution at order one in cylindrical coordinates allows the solution q 2 ≡ [u 2 , p 2 ] to be found as q 2 = cos 2 θ q 0 AA (2.16) + sin 2 θ q 0 T T + q 2 T T e 2iϕ + (q 2 T T ) * e -2iϕ + cos θ sin θ q 1 AT e iϕ + (q 1 AT ) * e -iϕ + (unsteady terms).

The unsteady terms regroup into terms with temporal dependance e ±2iωt and azimuthal dependance e 0 , e ±iϕ and e ±2iϕ . They are neglected as only the steady part of the secondorder flow and associated steady forces are of interest.

The first term q 0 AA in Eq. 2.16 corresponds to the nonlinear interaction of the firstorder axial flow q A with itself. This flow is the solution of the following linear problem:

L 0 0 (q 0 AA ) = C 0,0 (q A , (q A ) * ) (2.17)
where C ma,m b (q a , q b ) is as defined in Eq. ( 2.3) but with azimuthal derivatives of q a replaced by im a and azimuthal derivatives of q b replaced by im b .

This term q 0 AA contributes to a force on the sphere (1) directed in the axial (z) direction and noted F AA . Note that the forcing term C 1,-1 (q A , (q A ) * ) is symmetrical with respect to the z-axis, so the field q 0 AA verifies the same property, i.e. for the pressure field p AA (r, z) = p AA (r, -z). Reminding that n z (r, z) = -n z (r, -z), this means that the force exerted on sphere ( 2) is opposite to that on sphere (1).

The terms in the second line of Eq. 2.16 correspond to the corresponds to the nonlinear interaction of the first-order transverse flow q T ± with itself. Note that the solution to this problem involves both an axisymmetric (with azimuthal wavenumber 0) and a nonaxisymmetric contribution (with azimuthal wavenumber ±2), respectively given by L 0 0 (q 00 T T ) = C 1,-1 (q T + , (q T + ) * ) + C -1,1 (q T -, (q T -) * ) (2.18)

L 0 2 (q 20 T T ) = C 1,1 (q T + , (q T + ) * ).

(2.19)

As the integrals of any term with azimuthal dependency e ±2iϕ along the surfaces of the spheres vanish, only the axisymmetric contribution to the field q 00 T T contributes to a force. The latter is exerted in the axial (z) direction and noted F T T for sphere (1). The field q 00 T T verifying the same symmetry properties as q 0 AA , the force exerted on sphere (2) is again opposite to that on sphere (1).

The last term in Eq. 2.16 corresponds to an interaction between the axial and transverse parts of the solution at order one, and hence is present in any oblique configuration θ = (0, π/2). It is given by the solution of

L 0 1 (q 1 AT ) = C 0,1 (q A , (q T -) * ) + C 0,1 ((q A ) * , q T + ) (2.20)
This last term contributes to a force in the transverse (x) direction, noted F AT for the sphere labelled (1). Noting that q 1 AT is antisymmetric and that the x-component of the normal is symmetric, this implies that the force on sphere (2) is opposite to that on sphere (1).

Gathering all these results, we are now in position to give an expression for the timeaveraged force felt by the spheres F (1,2) . As given by 2.9, this corresponds to the steady part of F (1,2) 2 , which contain three contributions noted F AA , F T T and F AT . Taking into account the symmetry considerations discussed above, and reverting to dimensional form, we end up with the following expression:

F (1) = -F (2) = ρR 2 u 2
a cos 2 θ F AA e z + sin 2 θ F T T e z + cos θ sin θ F AT e x (2.21) 2.3. Discussion : generalization to oscillating spheres

The whole derivation presented above was done under the assumption that the spheres are fixed and embedded in an external oscillating flow of amplitude u a . Before showing results, we discuss here the more general case where the spheres are oscillating in phase with each other with a velocity amplitude u b .

Let us consider first the most simple case where the spheres are driven in oscillation in a quiescent medium (u b = 0, u a = 0). Working in a relative frame moving with the particles, the equations of motions are the same as in the problem otherwise considered here, except for an additional uniform term ∂u b /∂t corresponding to the relative acceleration of the non-inertial frame. This term modifies the pressure field of the order-one solution, and hence the unsteady force (2.15) is modified by the presence of an added-mass contribution. On the other hand, it has no effect on the steady order-two solution which remains exactly the same as written in the previous section.

In the more general case where the particles are moving under the effect of the acoustic forcing (u a = 0 ; u b = 0), the argument remains valid. In particular, the steady force exerted on the spheres is still given by Eq. (2.21), except that the overall scaling is the square of the relative velocity |u b -u a | 2 instead of u 2 a . In practice, if the spheres are freely moving, u b has to be deduced from the forcing u a by a dynamic equation relating the acceleration of the spheres to the forces exerted on them (given by 2.15 and including an added-mass contribution). Resolution of this problem clearly depends upon the mass of the spheres. Since the main focus of the present paper is on the steady streaming and steady forces, we leave a more detailed discussion of unsteady motion of spheres of arbitrary masses under the effect of acoustic forcing for a future study.

Numerical methods

All of the problems introduced are of the form L ω m [u, p] = (VF, 0) where VF is a volumetric forcing term. These problems are solved using finite elements. The equations are multiplied by test functions [v, q] and integrated over the domain. Integration by parts is used for the Laplacian and pressure gradient terms which naturally leads to a no-traction condition -pn + µ∇u • n = 0 on the boundaries of the computational domain.

To impose the velocity u = u b on some boundary Γ of the domain, penalization terms are added of the form 1/ Γ (u -u b ) • v rds with ≈ 10 -10 to the variational formulation. Such penalization terms are required at the surfaces of the sphere to impose the no-slip condition for all problems, and at the outer boundary of the domain for the order-one problems to impose matching with the outer oscillating flow. For the order-two problems, no penalization terms are introduced, leading to a no-traction condition which is less restrictive than a no-slip condition.

A mesh was generated by triangulation over a circular domain (typically 40R) embedding the spheres. The mesh was refined in the vicinity of the spheres with typical grid size 0.03R. Mesh dependence was checked over various combinations of domain sizes and mesh densities, comprising of a refined inner circular region close to the sphere(s), and a coarser outer one further away. The results vary by < 1% across all the meshes, when measuring forces F T T , F AA and F AT for all the range of Ω tested.

The approach was validated in the case of a single sphere by comparing to the classical solution of [START_REF] Stokes | On the effect of the internal friction of fluids on the motion of pendulums[END_REF] for the oscillating flow, and the asymptotic solutions of Riley enough frequencies (Ω > 20.1), there is no equilibrium position and the force remains attractive up to the point where the spheres touch each other (L/R = 2). In the limit of small frequencies, on the other hand, the equilibrium distance tends to infinity and the results can be fitted with the law L/R ≈ K/Ω where K 16.5. Note that this asymptotic trend is similar to that observed in the experiment and numerical simulations of [START_REF] Klotsa | Interaction of spheres in oscillatory fluid flows[END_REF], but in this latter work the constant was K 6.5 (when expressed in the nondimensionalisation of this paper) during experiments, and K 9 in simulations. This difference may be attributed to the fact that in the experimental work the spheres were rolling upon a solid bottom, while here they are fully immersed in the fluid. In the numerical simulations of [START_REF] Klotsa | Interaction of spheres in oscillatory fluid flows[END_REF], the domain in the z-direction was restricted to only 6R top to bottom, while here a domain of around 80R has been employed. It is likely that the difference in the result is due to the significant blockage effect in the simulations of [START_REF] Klotsa | Interaction of spheres in oscillatory fluid flows[END_REF].

Conclusion

In this work, the flow around two spheres subjected to a uniformly oscillating flow has been investigated using a perturbation method. The leading-order flow is oscillating, while the second-order flow contains a steady component referred to as the steady streaming flow. The structure of this flow has been described for axial, transverse and oblique configuration and is characterized by intricate patterns due to the interaction of the flows generated by each sphere. The mean forces exerted on the sphere have been characterized as a function of the Stokes number and the distance. In oblique configurations, the spheres are subjected to a torque which always tends to realign them perpendicularly to direction of oscillation. In this transverse configuration, the force is always attractive in the high-Stokes regime and repulsive in the low-Stokes regime. For intermediate frequencies, there exists an equilibrium configuration where the force is zero. We emphasize that, although the analysis has been presented in the case where the spheres are assumed fixed in space, the general results of the study remain valid when taking into account their oscillatory motion due to the direct effect of the forcing.

For future studies, several extensions of the perturbation approach and the numerical method developed in this work present themselves. First, the whole approach is directly applicable to single nonspherical particles such as ellipsoids or cylinders, and to pairs of particles of unequal size. In the first case, one expects the microstreaming to exert a torque which tends to align the particle perpendicularly to the direction of oscillation. In the second case, one can expect the existence of an equilibrium state in which the two particles stay at a fixed distance from each other but migrate laterally. Secondly, in cases where the acoustic wavelength is comparable to the size of the particles and/or the amplitude of the acoustic field is large, the approach should be repeated in a compressible framework. This future analysis would allow description within a single approach of both the radiation forces responsible for primary migration of the particles within an acoustic field and the interaction forces due to microstreaming. Finally, the method can be applied to assess the motion and interaction of bubbles in an acoustic field.
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 7 Figure 7. Distance between the sphere centers for the stable equilibrium in transverse configuration.
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