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ABSTRACT

One of the major problems in applied aerodynamics re-
mains the representativness of the flow around complex
geometries, especially for unsteady numerical simula-
tions. In this context, Weiss and Deck [26] proposed
to use both Immersed Boundary Conditions (IBC) and
body-fitted (BF) boundary conditions to simulate a full-
space launcher. This approach, named Zonal Immersed
Boundary Conditions (ZIBC), takes advantage of IBC
to add complex geometrical details in simple body-fitted
configurations. So far, this approach has been used with
the IBC formulation presented by Mochel et al. [16]. The
present paper introduces a new IBC formulation inside
the ZIBC framework based on a sharp surface reconstruc-
tion approach. Moreover, a wall model is coupled with
the IBC to reduce the mesh requirements related to accu-
rate prediction of turbulent boundary layers. The purpose
of these additions is to extend the use of IBC for the sim-
ulation of technological details in attached flow regions.
A FG5 missile configuration is computed using ZIBC at
a Mach number of 0.8 and an angle of attack of 10◦. For
this configuration, the fuselage is modelled using a body-
fitted grid, and the wings are introduced with the new IBC
formulation. The accuracy of the current approach is as-
sessed comparing a full body-fitted simulation with the
available experimental data.

1. INTRODUCTION

The generation of a suitable mesh in CFD is still one of
the most challenging and time-consuming tasks for the
simulation of industrial geometries. In addition to the
complexity of the process, the introduction of sharp and
complex geometrical details can result in a grid made
up with highly anisotropic and skewed cells which re-
duce the mesh quality for both structured and unstruc-

tured meshing techniques locally. As a consequence, the
accuracy and the robustness of the CFD simulations can
be dramatically decreased. This issue is even more con-
straining when it comes to unsteady simulations since the
global time step is generally limited by the most skewed
cells to ensure a stable computation.

In this framework, Immersed Boundary Conditions
(IBC) have shown to be a useful tool to simulate com-
plex geometries for compressible turbulent flows. The
wall boundary condition is enforced through the applica-
tion of source terms allowing to uncouple the mesh and
the geometry. Mochel et al. [16] demonstrate the capac-
ity of the zonal use of immersed boundaries, to introduce
a control device on an afterbody flow. Afterwards, the
same methodology, namely the Zonal Immersed Bound-
ary Conditions (IBC), has been used by Weiss and Deck
[26] for the simulation of the Ariane 5 space launcher.
In this latter study the IBC approach is mainly used to
generate a blockage effect in the flow and not to predict
attached flows.

The correct simulation of the near-wall attached flow
would require isotropic mesh refinement around im-
mersed boundaries, which is generally too expensive for
3D compressible flows. As a consequence, wall mod-
els are often coupled with IBC to improve their capa-
bility to simulate attached boundary layers. In the past
years, numerous wall models have been proposed to im-
prove IBC formulation [3, 4]. Among these approaches,
Thin Boundary Layer Equations (TBLE) based wall mod-
els have shown to correctly predict highly compressible
flows and can be coupled with turbulence models.

The object of this paper is to modify the immersed
boundary formulation used in the ZIBC approach to prop-
erly reproduce the effect of complex details on a flow
in which boundary layers may potentially develop. This
IBC is based on a direct forcing approach with a recon-
struction procedure which uses both cell and face forcing.
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Moreover, it is combined with a TBLE-based wall model
including a one-dimensional compressible version of the
Spalart-Allmaras RANS model. These numerical meth-
ods are assessed for the simulation of the external tran-
sonic flow around the FG5 missile configuration with an
angle of attack of 10◦. The results are compared with full
body-fitted simulation and with ONERA’s experiments to
investigate the accuracy of the new IBC approach. The
paper is organized as follows. Section 2 presents the nu-
merical aspects of the flow solver. Section 3 and 4 intro-
duce the compact immersed boundary approach and the
wall model presently used, respectively. Then, section 5
describes the FG5 test case. Finally, section 6 presents
the RANS simulation around the configuration and a dis-
cussion of the results.

2. FLOW SOLVER

The simulations are performed with the FLU3M cell-
center finite volume code. The code solves the Navier-
Stokes equations on multi-block structured grids. This
solver has been assessed for various applications and is
primarily used for the simulation of transonic flow around
space launchers such as the Ariane 6 PPH [25]. The
RANS simulations are made with a compressible form
of the Spalart-Allmaras model[26]. A Roe scheme with
the Harten correction is used to compute the convective
fluxes with a MUSCL reconstruction procedure to in-
crease their spatial accuracy. The gradients in the Spalart-
Allmaras RANS model and the diffusive fluxes are eval-
uated using the Green-Gauss method.

The computation of the diffusive fluxes with the
Green-Gauss method can introduce numerical oscilla-
tions when the diffusive terms become dominant over
convective terms. In one dimension, the sum of the dif-
fusive fluxes Fd applied to a given cell i can be written:

2

∑
l=1

(Fd)l,i = Wi−2 ·Ki−2−2 ·Wi ·Ki +Wi+2 ·Ki+2 (1)

Where Ki stands for the volume and surface terms used
to compute the diffusive fluxes with a Green-Gauss ap-
proach in cell i, which are here assumed constant for
each cell as it would be in cartesian grids. W represents
the conservative variable vector. ∑

6
l=2(Fd)l,i does not de-

pend on its direct neighbourhood. As a consequence, a
strong even-odd decoupling oscillation can occur when
the convective fluxes Fc are negligible. This situation
can occur inside turbulent boundary layers or in mixing
layers. In a finite volume context, Chakravarthy [8] pro-
posed to compute the diffusive fluxes with a Green-Gauss
approach centred on each face as presented in fig. 2.
Since the cell-center gradients are still required for the
source terms of the RANS equation, an intermediate ap-
proach is used. First, the cell-center gradients are com-

puted wuth the Green-Gauss approach and stored. These
gradients are required by the constitutive RANS model.
Then a correction term is applied during the computation
of the diffusive flux for each interface to retrieve the face
center gradient of Chakravarthy [8]. This approach only
needs to store the cell-center gradients and removes the
even-odd decoupling phenomena caused by the diffusive
fluxes. The new diffusive fluxes after this correction can
be rewritten as:

2

∑
l=1

(Fd)l,i = Wi−1 ·K′i−1−2 ·Wi ·K′i +Wi+1 ·K′i+1 (2)

Where K′ includes the new volume and surface terms
used to compute the diffusive fluxes with the face cen-
ter gradient of Chakravarthy [8].

Finally, the time discretization is achieved with the
implicit and second-order accurate Gear scheme. This
scheme is associated to a Newton-type iterative algo-
rithm. The discrete finite volume system is defined as
follows:

3
2

Wn+1−2Wn− 1
2

Wn−1 =

−4t
Ω

(
6

∑
l=1

[(Fc)l− (Fd)l ]
n+1− [TRANS]

n+1− [TIBC]
n+1

)
(3)

where Wn is the conservative variable vector at the
iteration n, Ω the volume of a cell and T the source
terms for the IB forcing and the turbulence model. In
the present work, [TIBC]

n+1 is decomposed into two parts

with
[
Tsolid

IBC
]n+1 and

[
Tforcing

IBC

]n+1
which are defined as

follows:[
Tsolid

IBC

]n+1
=t
(

0, tagibc× f n+1
ρui

,0, tagibc× f n+1
ρν̃

)
(4)

[
Tforcing

IBC

]n+1
=t
(

α×
(

Wn−WF

4t
Ω+ fn+1

W

))
(5)

With fn+1
W the sum of the convective and diffusive

fluxes, ∑
6
l=1 [(Fc)l− (Fd)l ]

n+1 and WF the conservative
variable vector given by the IBC formulation to enforce
the boundary condition. The sensor tagibc is equal to
1 inside the immersed solid and 0 outside. Tsolid

IBC cor-
responds to the initial IBC source terms proposed by
Mochel et al. [16]. This source term is computationally
inexpensive and is kept in the current implementation of
the compact IBC to avoid the development of any flow
in the immersed solid. Further details concerning the im-
plementation of Tsolid

IBC , the discretization of the Immersed
Boundary and the FLU3M solver can be found in Weiss
and Deck [26]. The compact IBC approach presented in
this article uses near-wall fluid cells to represent the im-
mersed geometry sharply. Similarly, at tagibc, the sensor
α is equal to 1 on the forcing cells presented in fig. 1 and
0 for the fluid and solid cells.
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3. COMPACT IMMERSED BOUNDARY
CONDITIONS

The present compact IBC is based on the direct forcing
approach introduced by Mohd-Yusof [17]. As proposed
by Fadlun et al. [11] a discrete reconstruction procedure
is carried out on the fluid variable in order to compute WF
and Tforcing

IBC . This procedure is applied to near-wall forc-
ing cells as represented in figure 1 and results in a sharper
representation of the immersed boundary. To proceed to
the reconstruction it is required to retrieve information
from the surrounding flow field. Therefore, for each forc-
ing cell, the conservative variables are reconstructed at an
Interpolation Point (IntP) chosen in the wall normal di-
rection (see fig. 1). A boundary formulation, represented
by fIBC, is used to describe the evolution of the conser-
vative variable between the forcing and the interpolation
points. This function fIBC can be specific for each vari-
able. Commonly, the velocity U is supposed to vary lin-
early between the wall and the Interpolation Points. The
target velocity UF at the forcing point can therefore be
computed using fIBC which is defined as:

UF = fIBC(UIntP) =
dFP

dIntP
UIntP (6)

Where dFP and dIntP are the wall distance at the forcing
point and the interpolation point, respectively. This linear
hypothesis is valid for detached flow configurations or if
the cell size is under y+ = 1. Since the mesh is not espe-
cially adapted to the immersed surface, the linear velocity
interpolation can be inadequate for high Reynolds num-
ber flows. Even with localized refinement techniques, the
mesh requirement can be too restrictive [6]. As a conse-
quence IBC are often coupled with wall models to com-
pute high Reynolds numbers flow configuration at an af-
fordable cost. The wall law used in this present work is
further described in section 4.

The discrete forcing approach usually requires two
layers of forcing cells for classical second-order finite-
volume schemes [20]. Here, the second layer is re-
placed by a face-forcing approach such as the one used
in [3, 5, 22] in the specific context of Cartesian finite-
volume solvers. For curvilinear grids, the computation
of the viscous fluxes requires the variables at each adja-
cent cell to the face as presented in figure 2. Thus, the
first layer of near-wall cells is used to ensure a correct
computation of the gradient in the first fluid cells with-
out having to adapt the numerical schemes applied in the
fluid domain.

The face forcing approach is designed to modify the
MUSCL reconstruction before the computation of the
convective fluxes. In the vicinity of the wall, the recon-
structed quantities at the cell faces are replaced by the
information given by the immersed boundary function
fIBC. As presented in figure 3, the reconstructed values

Figure 1: Representation of the forcing procedure for
IBC. : Fluid cell / : Forcing cell / : Forcing face /

: Solid cell / : Interpolation Point.

Figure 2: Scheme of the viscous flux computation in the
vicinity of the wall. The black square represents the sur-
face used to compute the gradients with a Green-Gauss
approach and the associated quadrature points. The
cell nomenclature is the same as in fig. 1.

are changed on the solid side of the cell face. This proce-
dure considerably increases the robustness of the IBC.

Since the second row of fluid cells is removed, the in-
terpolation points can be positioned closer to the inter-
face. Compared with a two-layer IB approach, the wall
distance is approximately reduced by 40 %. The wall
distance of the interpolation points determines the valid-
ity of the boundary condition assumptions. Hence this
approach improves this aspect without using a mesh re-
finement method.
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Figure 3: Scheme of the modified state reconstruction for
the computation of the inviscid fluxes. (The coefficients
correspond to a third-order MUSCL reconstruction.)

Some considerations are required for the interpolation
procedure used to reconstruct the variables at the Inter-
polation Points. A Weighted Least SQuare (WLSQ) ap-
proach is used as described in [18]. For Cartesian meshes
the inversion of the systems which is required to compute
the WLSQ coefficients is simple and well-conditioned.
Yet, for curvilinear grids the inversion of the systems
has shown to cause robustness issues. Early works show
that the inversion system is far more stable using Singu-
lar Value Decomposition (SVD). The matrix A of size
N ×N, representing the WLSQ system, is first decom-
posed through SVD as follows :

A =U ·S ·V T (7)

Where U and V are orthogonal matrices of size N×N and
S is a diagonal matrix composed of the singular values.
Since the inverse of an orthogonal matrix is its transpose
matrix, the inversion of the matrix A is directly given by:

A−1 =V ·S−1 ·UT (8)

It is worth noticing that this procedure is exclusively
made once during the preprocessing operations. The re-
sulting coefficients are stored and used to compute the
conservative quantities at the interpolation points. The
fluid cells used for the reconstruction procedure are the
eight cells surrounding the Interpolation Points. Due to
the curvilinearity of the mesh, the identification of these
fluid cells can be time-consuming. To speed up this pro-
cess, it is only carried out in the first 10 layers of cells
surrounding the immersed boundaries and a kd-tree ar-
chitecture [24] is used to get the closest cells of the Inter-
polation Points.

4. THIN BOUNDARY LAYER EQUA-
TIONS BASED WALL MODEL

In this study, an equilibrium wall model based on TBLE
is employed as a boundary formulation for the immersed
boundaries. TBLE based wall models have encoun-
tered a growing interest and success in the past decades
[2, 3, 4, 12]. In contrast with analytical wall models,
where the tangential velocity is directly linked to the wall
distance, TBLE wall models require to solve simplified
RANS equations in the wall-normal direction. Although
their computational cost is more expensive [7], the hy-
potheses are less restraining than with analytical laws.
As an example, analytical wall models do not take into
account the compressibility effects happening in the tur-
bulent boundary layer. This effect can be partially taken
into account with van Driest’s transformed and tempera-
ture laws as the one proposed by Crocco-Busemann [27].
Nonetheless, these effects are taken into account with
TBLE based wall models (see eq (10)).

The present compressible TBLE wall model is based
on a set of three diffusion equations :

∂

∂n

[
(µ +µt)

∂u
∂n

]
= 0 (9)

∂

∂n

[
u(µ +µt)

∂u
∂n

+(κ +κt)
∂T
∂n

]
= 0 (10)

cb1S̃ρν̃−ρcw1 fw

(
ν̃

d

)2

+

1
σ

(
∂

∂n

(
(µ +ρν̃)

∂ ν̃

∂n

)
+ cb2

∂ ν̃

∂n
∂ρν̃

∂n

)
= 0

(11)

These equations describe the evolution of the tangen-
tial velocity u, the temperature T and ν̃ in the wall-normal
direction n, respectively. The use of simplified RANS
models in addition to TBLE wall models was introduced
by Bond and Blottner [2] and has shown to greatly im-
prove the results in comparison with the classical mixing
length model. It is worth noticing that the compressible
Spalart-Allmaras formulation used in the TBLE formu-
lation (eq (11)) is the same as the one used in the flow
solver. During the simulation, the equations (9)-(11) are
solved on a one-dimensional mesh (see Fig. 4). Given the
wall condition and the flow information at the Interpola-
tion Points the equations (9)-(11) are solved dynamically
in order to provide the forcing information leading to the
immersed boundary condition.

As stated before, a major drawback of the TBLE ap-
proach lies in the resolution cost of each ordinary differ-
ential equation (ODE). Initially, Bond and Blottner [2]
proposed to solve the TBLE in a decoupled manner with
a relaxation factor equal to 0.25. Each system is tridiag-
onal and can be inverted using Thomas’s algorithm [23] ,
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Figure 4: TBLE wall model one-dimensional mesh ( :
IB-Forcing Point / Interpolation Point)

Table 1: List of acronyms used for the different resolution
approaches tested and shown in figures 5 and 6

Abbreviation Resolution approach
FC Fully coupled system

FC-A Fully coupled system with an adaptive Fourier number
FD Fully decoupled system
SC Separated-Coupling

SC-A Separated-Coupling with an adaptive Fourier number

avoiding to store a full matrix for each TBLE wall model
equations. Around four iterations are required to provide
a good convergence of the systems for each iteration [4].
Nonetheless, at the initialization of the computation, the
convergence of the system requires many iterations. An-
other possibility relies on the resolution of the fully cou-
pled system. This approach improves the convergence
rate of the system greatly but is by far more costly.

The two approaches were tested to assess their con-
vergence properties. The conservative variables from
a RANS body-fitted simulation of a flat plate at Mach
2.0 were used as an external boundary condition for the
TBLE systems. Figures 5 and 6 present the convergence
of the velocity friction and the wall temperature, respec-
tively. As expected, the convergence rate of the fully cou-
pled approach is far better than with the decoupled ap-
proach. Nonetheless, the system is by far more costly to
solve (see fig. 7).

The main bottleneck, relies on the convergence of
equation (10) as it can be seen on the evolution of the
wall temperature (see fig. 6). Hence, a new coupling
strategy has been adopted in order to improve the conver-
gence rate. The main idea is to uncouple equation (10)
while keeping equations (9) and (11) coupled.

Therefore u and ν̃ are considered constant during the
resolution of equation (10). It should also be noted that µ ,
µt , κ and κt depend on the temperature. However, their

Figure 5: Convergence of the velocity friction and the
wall temperature of the TBLE system for different reso-
lution techniques at a Mach number of 2. The symbols
show the last iteration of their corresponding method.

: FC-A / : FC / : SC-A / :
SC / : FD.

Figure 6: Convergence of the wall temperature of the
TBLE system for different resolution techniques at a
Mach number of 2. The symbols show the last iteration
of their corresponding method. : FC-A / :
FC / : SC-A / : SC / : FD.

variations can be neglected during the inner iterations of
the system resolution. As a consequence, the equation
(10) can be rewritten:

∂

∂n

[
Cu +Cκ

∂T
∂n

]
= 0 (12)

Where Cκ and Cu are two constants that only depend on
the wall distance. These simplifications lead to a linear
formulation of equation (10). Therefore, it can be solved
without inner iterations with a simple tridiagonal ma-
trix inversion with Thomas’s algorithm. This Separated-
Coupling (SC) resolution has shown to improve consid-
erably the convergence rate of the TBLE system (fig. 5
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and 6) while reducing its computational cost (see fig. 7).
In addition to the present solving strategies, a local and

adaptive time step methodology has been used to improve
stability during the resolution. Since the TBLE systems
only represent the diffusive part of the RANS equations,
the Fourier number is used as a stability condition.

Fo =
(µ +ρν̃)∆t

ρ∆x2 (13)

The Fourier number is set to 5 during the first inner it-
eration. Afterwards, it becomes a function of the residual:

Fon = max
(

Fo,Fo
(

R0

Rn

))
(14)

Where R0 and Rn are respectively the residuals at the
first and the current iteration n. This adaptive Fourier
approach allows keeping control on the convergence of
the system without reducing the convergence properties
of the resolution approach (fig. 5 and 6).

The resolution of the TBLE required the generation of
one-dimensional meshes to solve equations (9)-(11). In
the present simulations, the distance of the first off-wall
point and the number of cells are given by the user. Then,
an iterative process is used to compute a constant geomet-
ric progression between the wall and the IBC Interpola-
tion Point. The mesh generation is not fully automated
and requires prior knowledge of the y+ values. However,
such an approach allows reducing the number of points
used in the systems while assuring the y+ criterion for all
TBLE systems.

Figure 7: Ratio of the computational cost for one iteration
of the TBLE system in function of the cost of the FD
approach in function of the number of points used for the
one-dimensional TBLE mesh. : FC / :
SC.

5. PRESENTATION OF THE TEST CASE

The ”FG5” case is a generic body-tail missile configu-
ration of diameter D and with a length of 16D. The
nose follows a parabolic profile and the fins have a thick-
ness ratio of 6% and a length of 4/3D as described in
[13, 19, 21]. The sting used in ONERA’s experiments has
been reproduced in the numerical simulation as presented
in figure 8. The freestream Mach number is M∞ = 0.8,
and the Reynolds number based on D is ReD = 1.3×106

to match ONERA’s experiments. The configuration is
inclined by an angle of attack of 10◦ and with a roll
angle of 22.5◦. These angles introduce a dissymetrical
flow around the fins, making it a particularly complex test
case.

Figure 8: Contour lines of the non-dimensional total pres-
sure for different planes along the FG5 missile configu-
ration of a zonal immersed boundary RANS simulation
(grey part: Body-fitted boundary, green part: Immersed
Boundary)

Two numerical simulations were conducted on this
configuration. The first-one is a full body-fitted simula-
tion with a structured multi-block grid strategy. For each
fin, the grid is based on an O-H topology represented in
figure 9. This particular topology is designed to avoid
a mesh degeneration that could cause significant stabil-
ity problems. Moreover, this type of topology allows a
better resolution of turbulent structures for unsteady sim-
ulations. Since the next step of the present work consists
of the ZDES [9] simulation of the configuration, this grid
topology has been retained. Nonetheless, this grid topol-
ogy introduces locally twisted cells in the mesh which
leads to numerical errors.

The second simulation uses the ZIBC strategy to im-
prove the mesh quality around the fins. As presented
in figure 8, these sharp geometric details are introduced
with the immersed boundary approach presented in sec-
tion 3. An O-grid topology has been used to refine the
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Figure 9: Mesh topology of the full body-fitted grid
around the fins

mesh around the fins as presented in figure 10. This strat-
egy significantly reduces the time devoted to the mesh-
ing process for this structured grid while improving the
mesh quality considerably. Nonetheless, the mesh refine-
ment obtained around the fins is not sufficient to meet the
y+ = 1 requirement to simulate the turbulent boundary
layer development accurately. As a consequence, the wall
model developed in section 4 is used to improve the IBC
reconstruction. It is worth noticing that the wall model is
only used on the fins. The body and the sting have been
meshed with a body-fitted approach with y+ < 1.

Figure 10: Topology of the grid used around the fins for
the simulation using ZIBC

6. RESULTS AND DISCUSSION

The first goal of theses simulations is to quantify the im-
pact of the ZIBC strategy on the global load and mo-
mentum applied on the configurations. The second ob-
jective is to assess the impact of the IBC on the wall pres-
sure field for the entire configuration. Since the flow is
transonic, any modification of the flow configuration can
change the overall results.

The surface pressure coefficient CP along the FG5 con-
figuration is plotted with the experimental data for the
windward and the leeward side of the configuration, in
figures 12 and 11, respectively. In both cases, a good

agreement is obtained with the experiments data for the
full body-fitted and the ZIBC simulations.

Figure 11: Pressure coefficient along the FG5 configu-
ration at the leeward side. Body-fitted : / ZIBC
: / Experiment : .

Figure 12: Pressure coefficient along the FG5 configura-
tion at the windward side. : Body-fitted /
: ZIBC / : Experiment.

The pressure coefficient in the azimuthal direction at
x/D = 9 is presented in figure 13. Φ = 0◦ coincides
with the leeward side and consequently Φ = 180◦ with
the windward side. At Φ ' 25◦ a small discrepancy is
obtained between the experiment and the simulations. As
depicted in figure 8, a separation is obtained all along the
configuration. The vortices induced by this phenomenon
are the main cause of the pressure drop at Φ' 25◦. Even
if the point of separation is well predicted, a secondary
separation occurred in the experiment which is not re-
trieved with the present RANS model.

No experimental data were available around the fins.
Nonetheless, the main discrepancies between the experi-
ments and the simulations come from the RANS model.
As a consequence the ZIBC simulation is supposed to
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Figure 13: Pressure coefficients at the wall at x/D = 9
on the FG5 configuration. Pressure coefficients along the
FG5 configuration at the leeward side. : Body-
fitted / : ZIBC / : Experiment.

give at best the same results. Therefore a comparison
between the two simulations gives information on the ac-
curacy of the present IBC formulation. A visualization
of the normalized total pressure Pt has been plotted at
x/D = 15.75 in figures 14 and 15 for the ZIBC and the
body-fitted strategies, respectively. This location is close
to the end of the configuration. Consequently, the slice at
x/D = 15.75 allows to assess the interaction of the wings
and the incident flow. Here again, the agreement between
the body-fitted and the immersed boundary is satisfying.
The main flow features can be observed for both simula-
tions. Moreover, wingtip vortices can be observed for the
leeward and the windward fins. Since the mesh quality of
the ZIBC strategy is higher than with the full body-fitted
simulation, these vortices are less diffused with the ZIBC
mesh.

The computation of aerodynamic forces has been as-
sessed on the body-tail configuration (i.e. without the
sting) for both simulations. The computation of the load
applied on immersed boundaries is far from being trivial
[1]. In practice the results depicted in figure 16, are com-
puted using the approach presented in [14] and detailed
in [15]. An overall good agreement is found between the
body-fitted approach and the ZIBC strategy. The load
and momentum components present a relative difference
lower than 4%. The greatest gap is on the axial force
coefficient (CA), which is mainly influenced by the fric-
tion coefficient. Finally, the main discrepancies with the
experiments come with the yawing moment coefficient.
The RANS hypothesis fails to be representative of this
phenomenon. Nonetheless, the relevant quantities such
as the aerodynamic coefficients are well reproduced with
both the present ZIBC strategy and a body-fitted strategy.

Figure 14: Slice of the total pressure normalized with the
freestream value at x/D=15.75 for the ZIBC simulation

Figure 15: Slice of the total pressure normalized with
the freestream value at x/D=15.75 for the full body-fitted
simulation

7. CONCLUSION

A FG5 missile configuration with an angle of attack of
10◦ and a roll angle of 22.5◦ has been simulated. The
transonic RANS simulation has been performed with a
zonal application of IBC to simplify the mesh generation
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Figure 16: Plot of the aerodynamic load and momentum
coefficients for the FG5 configuration

process on this configuration. In particular, a new com-
pact IBC formulation coupled with a TBLE wall model
incorporating the S-A model has been used in the ZIBC
numerical strategy to improve the simulation of com-
pressible turbulent boundary layers. This approach has
shown to adequately generate the effect of the fins in the
simulation. Moreover, the strategy developed in [14] has
allowed to correctly compute the aerodynamic load and
momentum on the entire configuration. In future work,
this configuration with the same mesh strategies will be
simulated using a Zonal Detached Eddy Simulation ap-
proach [9, 10] to investigate the new IBC approach for
unsteady simulations.
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