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Coherent precipitation of ordered phases is responsible for providing exceptional high 

temperature mechanical properties in a wide range of compositionally complex alloys (CCAs). 

Ordered phases are also essential to enhance the magnetic or catalytic properties of alloyed 

nanoparticles. The present work aims at demonstrating the relevance of Bragg coherent 

diffraction imaging (BCDI) to study bulk and thin film samples or isolated nanoparticles 

containing coherent nanoprecipitates / ordered phases. Crystals of a few tens of nanometres are 

modelled with realistic interatomic potentials and relaxed after introduction of coherent ordered 

nanoprecipitates. Diffraction patterns from fundamental and superstructure reflections are 

calculated in the kinematic approximation and used as input to retrieve the strain fields using 

algorithmic inversion. We first tackle the case of single nanoprecipitates and show that the strain 

field distribution from the ordered phase is retrieved very accurately. Then, we investigate the 

influence of the order parameter S on the strain field retrieved from the superstructure reflections 

and evidence that a very accurate strain distribution can be retrieved for partially ordered phases 

with large and inhomogeneous strains. In a subsequent section, we evaluate the relevance of 

BCDI for the study of systems containing many precipitates and demonstrate that the technique 

is relevant for such systems. Finally, we discuss the experimental feasibility of using BCDI to 

image ordered phases, in the light of the new possibilities offered by the 4th generation 

synchrotron sources. 

 

Keywords: Bragg Coherent Diffraction Imaging, molecular statics, nanoprecipitates, ordering, 
superstructure reflections 
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1. Introduction 

Precipitation strengthening with intermetallic compounds is the most effective approach for the 

enhancement of alloy strength in engineering structural materials, compared with solid-solution 

strengthening, grain-boundary strengthening, or work hardening (Wang et al., 2018; Gladman, 1999). 

For instance, the coherent precipitation of ordered L12-γ’ nanoprecipitates into a disordered face centred 

cubic (FCC)-γ matrix confers to Nickel (Ni)-based superalloys an exceptionally high degree of strength, 

which is retained at high fractions of their melting point (Van Sluytman & Pollock, 2012). These unique 

properties are strongly linked to the microstructure of the Ni-based superalloys: due to the ordered 

nature of the γ’-phase, the dislocations are restricted to the γ-matrix up to a cutting stress. Thereby 

dislocations are confined in the γ-channels which constrains plastic deformation (Reed 2006). Coherent 

intermetallic precipitates, especially the L12-γ’ ordered phase, have also demonstrated their efficiency 

for strengthening and improving thermal stability of Al-alloys (Knipling et al., 2006; Wen et al., 2013). 

Therefore, it is poignant to investigate precipitation in Al alloys to develop new light-weight materials 

that can be applied in high-temperature (HT) environments (>300 °C). In High-Entropy Alloys (HEAs), 

although initially a strong emphasis has been made on alloys with a single solid solution phase structure, 

the presence of an ordered phase in a solid solution matrix has been shown to be beneficial for obtaining 

a good combination of strength (including at high temperatures) and ductility (Senkov et al., 2016; 

Stepanov et al., 2019).  

Coherent precipitation is not only the most efficient approach for the enhancement of alloys strength, 

but also the universal feature shared by all compositionally complex alloys (CCAs) with excellent HT 

mechanical properties. In particular, the perfect coherence between the ordered phase and the solid 

solution matrix is crucial for high temperature creep resistant properties of these alloys. In FCC alloys 

we have seen that the coherent ordered L12-γ’ phase is responsible for the unique HT mechanical 

properties in many systems. It is observed for instance in the form of Ni3Al nanoprecipitates in Ni-based 

binary/ternary alloys (Giamei & Anton, 1985; Reed 2006; Kaufman et al., 1989; Johnson & Voorhees, 

1992), Ni/Co-based superalloys (Pyczak et al., 2005; Ding et al., 2018; Charpagne et al., 2016) and 

HEA alloys (Shun & Du, 2009; Tong et al., 2005) or Al3X (X= Sc, Zr, Er) nanoprecipitates in Al-alloys 

(Marquis & Seidman, 2001; Senkov et al., 2008; Booth-Morrison et al., 2011; Wen et al., 2013; Clouet 

et al., 2006). In other FCC alloys such as Al-Mg-Si (Andersen et al., 1998; Klobes et al., 2011) and Al-

Cu (Biswas et al., 2011) the maximum hardness is achieved in systems containing very fine (2.5 nm) 

fully coherent so-called Guinier-Preston zones (GP-I), sometimes in combination with semi-coherent, 

larger needles b’’ (GP-II) zones (Andersen et al., 1998). In body centred cubic (BCC) alloys on the 

other hand, precipitation strengthening is typically achieved by the introduction of the B2 ordered phase. 

In Fe-based alloys, for instance (Ferritic steels), the B2-phase inserted in the form of coherent NiAl 

nanoprecipitates (Teng et al., 2010; Vo et al., 2014; Jiang et al., 2017; Jiao et al., 2015) confers HT 
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creep-resistant properties of alloys due to the perfect coherence between the ordered phase and the solid 

solution matrix. The excellent mechanical properties of refractory HEAs (Senkov et al., 2016; Jensen 

et al., 2016) or Al-transition metals (TMs) – HEAs (Wang et al., 2016; Ma et al., 2017; Zhang et al., 

2018) can also be attributed to a superalloy-like microstructure: cuboidal B2 NiAl or L21-Ni2AlTi (Song 

et al., 2017) nanoprecipitates coherently embedded in the BCC matrix.  

Not only the volume fraction, size, and distribution of the precipitates but also their shape have a large 

impact on the mechanical properties of these alloys, in particular at elevated temperatures. In coherent 

precipitation, the nanoprecipitates size and shape are highly dependent on the lattice misfit between the 

ordered phase and solid-solution phase. Hence, in the case of coherent precipitation, control of the 

lattice misfit between the ordered phase and its parent solid solution is of vital importance to develop 

high-performance CCAs and improve the resistance to deformation (Wang et al., 2014). In this optic, 

understanding the influence of the lattice misfit and the resulting elastic (coherency) strains in coherent 

nanoprecipitates is essential to understand their shape evolution during ageing. In addition, Cahn et al. 

(Cahn & Lärché, 1982) have shown that the shape of a coherent particle in a solid solution is not only 

controlled by the lattice misfit but also depends on the chemical interface. The particle equilibrium 

shape is therefore given theoretically by minimizing the sum of the interfacial energy Ei and of the 

elastic energy Ee. The former scales with the surface while the latter scales with the volume and is 

therefore prevailing for larger precipitate sizes (Johnson & Voorhees, 1992; Voorhees, 1992; Thompson 

et al., 1994). Therefore, many researchers have been exploring how to maintain the long-term stability 

of coherent precipitates through adjusting the amount of alloying elements or changing element species 

(Zhou, Ro et al., 2004; Lo et al., 2009; Zhou et al., 2017). Ni-based alloys for instance typically possess 

a finite lattice misfit between the ordered γ’ precipitates and the disordered γ matrix. Due to the elastic 

stresses associated with the misfit, precipitates undergo an evolution in shape during elevated 

temperature exposures, Ni3Al precipitates can fission into smaller particles once they reach a critical 

size (Miyazaki et al., 1982; Kaufman et al., 1989; Glatzel & Feller-Kniepmeier, 1989) or change in 

shape with increasing particle size (Ardell & Nicholson, 1966; Doi et al., 1985) in order to minimize 

their elastic energy. The difficulty to obtain cuboidal or spherical morphology of coherent B2 or L21 

precipitates in BCC-based HEAs can also be explained by the large lattice misfit between the B2 and 

BCC phases. In ferritic alloys on the other hand, the spherical shape of the NiAl precipitates, that is 

retained even for large precipitate size, indicates the dominance of the interfacial energy and low misfit 

strain between the matrix and the precipitate (Song et al., 2015). In addition, several theoretical 

investigations (Ardell & Nicholson, 1966; Voorhees, 1992; Thompson et al., 1994) and computer 

simulations (Abinandanan & Johnson, 1993; Wang & Mills, 1992; Goerler et al., 2017) have indicated 

that shape evolution during coarsening is primarily controlled by the minimization of the elastic misfit 

strain (Ee) and of the interfacial energy (Ei) but can also be strongly modified and even impeded by the 

elastic interaction between misfitting precipitates. In order to design stable coherent microstructures in 

different solid-solution matrices it is of great interest to image the elastic strain field created in both; 
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the nanoprecipitates and its matrix, and their evolution during ageing at elevated temperatures. This 

could give further insight for instance in the elastic interaction between the coherent precipitates and 

mobile dislocations which not only control the creep rate of these alloys (Larson, 1952) but is also 

related to the poor ductility of Ni-based alloys at room temperature (Semboshi et al., 2019).  

Coherent ordered precipitates are not only responsible for the unique mechanical properties of CCAs 

but can also have a large impact on the functional (magnetic, catalytic, …) properties of these alloys. 

For instance chemically ordered L10  alloyed nanoparticles such as FePt (Tzitzios et al., 2005; Klemmer 

et al., 2003), CoPt (Kitakami et al., 2001; Klemmer et al., 2002), NiPt (Cadeville et al., 1986) and FePd 

(Oshima et al., 1988; Klemmer et al., 2002) attracted much attention for high density magnetic storage 

applications. In these alloyed nanoparticles, the transition from a disordered A1 phase to an ordered L10 

can enhance their magnetocrystalline anisotropy by several orders of magnitude (up to 107– 108 

ergs/cm3), the latter being intrinsic to the tetragonal symmetry of the L10 crystal structure. In isolated 

alloyed PtCu3 nanoparticles an enhancement effect of structural ordering for the oxygen reduction 

reaction (ORR) was observed. Improved stability and enhanced activity were achieved in a partially 

ordered catalyst containing a disordered FCC core and a few nanometers thick L12 shell (Hodnik et al., 

2012). 

Ideally, probing the defect state and elastic strain of individual precipitates requires high spatial 

resolution as well as high chemical sensitivity. So far, several techniques have been employed to 

characterise the crystal structure, composition, and crystal orientation of nanoprecipitates. Among them, 

transmission electron microscopy (TEM), (Bhat et al., 1979; Vo et al., 2014; Knipling et al., 2008; 

Zhang et al., 2018) atom probe tomography (APT) (Teng et al., 2010; Jiang et al., 2017; Xu et al., 2015; 

Jiao et al., 2014, 2015), electron backscatter diffraction (EBSD) or X-ray diffraction (XRD) (Wang et 

al., 2016) are the most commonly employed. TEM and APT have the advantage of atomic resolution 

but are hindered by strong experimental constraints on the sample thickness and environment. These 

constraints are relaxed when using positron annihilation spectroscopy (PAS) in combination with ab 

initio calculations to refine the structures (Klobes et al., 2011). This approach has a chemical sensitivity 

and allows to probe the defect state but is not sensitive to the elastic strain field. X-ray diffraction on 

the other hand shows several advantages: it is non-destructive, highly-strain sensitive, can penetrate a 

large amount of matter to probe embedded material and is sensitive to ordered phases. The latter feature 

is essential in order to characterize the strain and defect and strain states of ordered phases. In solid 

solution alloys, the atomic sites are randomly occupied by chemical elements. Long-range order is 

absent, and the scattering from such alloys is like the one from monoatomic crystals. In ordered phase 

alloys on the other hand, a given chemical element occupies one set of positions in the unit cell (for 

instance the corners) and the other element takes the other set of positions (for instance the cube centre 

positions). This long-range order gives rise to additional reflections in diffraction patterns known as 

superstructure reflections. These weak diffraction spots appear between the stronger fundamental 

reflections at the usual anti-Bragg positions (Warren, 1969) (Figure 1). In this work we aim at using 
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these superstructure reflections in order to characterize the strain fields of coherent nanoprecipitates. 

To do so, a possible approach is to use Bragg Coherent Diffraction Imaging (BCDI): a lens less imaging 

technique that uses coherent X-rays in order to reconstruct real space images from the algorithmic 

inversion (Gerchberg, 1972; Fienup, 1982; Marchesini et al., 2003) of high-resolution reciprocal space 

data (Robinson & Harder, 2009). In Bragg geometry the technique gives access to the displacement and 

strain fields of isolated crystals with a good spatial resolution (10 nm) and a very high strain sensitivity 

(few 10-4) (Labat et al., 2015; Cherukara et al., 2018). It has a great potential for the study of coherent 

nanoprecipitates by imaging them using both fundamental and superstructure reflections and answer 

fundamental questions related to the interaction of dislocations with the elastic strain field of coherent 

precipitates.  

A key limitation of BCDI is that it requires crystallographically isolated nano/micro-crystals in the 

range of 50 nm to 1 μm; large enough to give a strong scattering signal, but small enough to match the 

coherence volume of the X-ray beam. Only a small number of materials form crystals that fall into this 

size range, for example isolated metallic nanoparticles (Dupraz et al., 2017) or metal thin films with 

grain size in this range (Yau et al., 2017). The technique has therefore a great potential to image the 

nucleation of ordered phase using both fundamental and superstructure reflection in isolated crystals 

and fine-grained bulk samples. However, imaging of ordered precipitates embedded in a disordered 

matrix, is in principle not possible in single crystal bulk or thin film specimens. Using a FIB-based 

technique (Hofmann et al., 2020), one can manufacture BCDI samples from bulk samples. However, 

in order to avoid a time consuming and delicate sample preparation, another possibility to image the 

shape and strain of precipitates is to measure a superstructure reflection that is only sensitive to the 

ordered phase. If the beam is larger than the precipitates it should be possible to use BCDI to reconstruct 

a single or an assembly of precipitates. 

Here, we use numerical simulations to simulate precipitates embedded inside a matrix and to calculate 

the scattering from fundamental and superstructure reflections. In a first part, the case of a single 

coherent ordered precipitate is investigated in extensive details. The second part of the manuscript aims 

at quantifying the influence of the order parameter S on the strain retrieved from superstructure 

reflections. Finally, the last section aims to demonstrate the capability of Bragg Coherent Diffraction 

Imaging (BCDI) to retrieve from superstructure reflections the strain fields inside coherent 

nanoprecipitates. 

2. Modelling / Tools & methods 

The alloy considered in this study is a red gold alloy used in the jewellery industry (Plumlee, 2014). 

The manufacturing of red-gold components (nominal composition: Au, 43.3% at. Cu and 5.6% at. Ag) 

implies effectively controlling precipitation hardening. During its processing, this alloy typically 

undergoes a disorder-order transition from a chemically disordered FCC A1 phase (space group 𝐹𝑚3̅𝑚) 

to an ordered tetragonal (FCT) L10 phase (space group 𝑃4/𝑚𝑚𝑚) (Garcia-Gonzalez et al., 2019). The 
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L10-ordered structure consists of alternate stacking of Au and Cu atoms along the c-axis of the FCT 

structure. 

Two types of configurations are simulated in this study. Periodic boundary conditions are used for both 

types. The first type of simulation cells consists of spherical nanoprecipitates embedded in a parent 

matrix phase. The case of single precipitates is tackled in the initial part of the results section while 

assemblies of precipitates are considered in the last part of the same section. These nanoprecipitates 

(L10 phase) are coherent with the parent matrix (A1 phase), inducing large misfit strains. The orientation 

relationship between the nanoprecipitates and the matrix is well defined with three possible L10 variants: 

L10  [1 0 1̅] || A1 [1 1̅ 0 ], L10  [1 1̅ 0] || A1 [1 1̅ 0] and L10  [0 1 1̅] || A1 [1 1̅ 0]. In this work, we mostly 

consider the L10  [1 0 1̅] variant but the L10  [1 1̅ 0] variant is also shown in supporting information S1. 

Unless otherwise specified, lattice orientations, which correspond with the axes of the simulation cell, 

are therefore 𝑋𝑝[1 0 1̅], 𝑌𝑝[1 0 1], 𝑍𝑝[0 1̅ 0] and 𝑋𝑚[1 1̅ 0], 𝑌𝑚[1 1 0], 𝑍𝑚[0 0 1] for the L10 and A1 

phases, respectively. This configuration is representative of the early stages of precipitation where both 

the size and spacing of the precipitates are of the order of a few nanometres (Figure 2 & Figure 3). 

Semi-coherent and incoherent precipitates are also investigated in this work. The former are obtained 

by rotating the precipitates around the 𝑍𝑝 axis. Above a critical angle, the elastic strain can no longer 

accommodate the lattice misfit, and interfacial dislocations are formed at the nanoprecipitate/matrix 

interface (Figure S1). In this case, the interface can be described as semi-coherent. Incoherent 

precipitates are inserted by further increasing the misorientation between the L10 and A1 phases 

(supporting information S1). Several crystal sizes are considered in this study. They range from 11 x 

11 x 10.9 nm3 to 66.1 x 66.1 x 65.8 nm3 for the cells containing coherent nanoprecipitates, corresponding 

respectively to 89,600 and 19,360,100 atoms. The radii of nanoprecipitates range from 0.75 nm to 7.5 

nm, which is consistent with the experimental observations (Garcia-Gonzalez et al., 2019).  

The second type of simulation cell in subsection 3.2. The latter contains only the tetragonal L10 AuCu 

phase and is used to characterize the influence of the long-range order parameter, S (Warren, 1969). 

The simulation cell is shown in Figure 4a, the crystallographic directions corresponding with the axes 

of the simulation cell are 𝑋𝑝[1 1̅ 0],  𝑌𝑝[1 1 0], 𝑍𝑝[0 0 1]. We use a 11.2 x 11.2x 30.7 nm3 simulation 

cell, which contains 267200 atoms. Note that these numbers can slightly fluctuate depending on the 

atomic composition of the alloy. 

The interaction between atoms are modelled with two different embedded-atom model (EAM) (Daw & 

Baskes, 1983, 1984) potentials developed by (Foiles et al., 1986) and (Zhou, Johnson et al., 2004). It is 

well established that EAM potentials describe accurately the properties such as lattice and elastic 

constants, cohesive energies, and the vacancy formation energies of FCC metals. From these reliable 

monoatomic potentials, it is then possible to derive alloy potentials by specifically fitting the parameters 

of the potentials to alloy properties (such as the enthalpy of mixing). This approach has been employed 

to develop the EAM potentials used in this study.  



Journal of Applied Crystallography    research papers 

7 

 

Molecular Statics simulations are carried out with the open-source Large-scale Atomic/Molecular 

Massively Parallel Simulator (LAMMPS) (Plimpton, 1995). The system is relaxed at 0 Kelvin using a 

conjugate gradient algorithm. In this study, we used the Polak-Ribière version of this algorithm: at each 

gradient, the force gradient is combined with the previous iteration information to compute a new search 

direction perpendicular (or conjugate) to the previous search direction.  

The three-dimensional (3D) diffraction patterns are calculated by summing the amplitudes scattered by 

each atom with its phase factor, following a kinematic approximation: 

𝐼(𝒒) = |∑ 𝑓𝑗(𝑞) ∙ 𝑒−2𝜋𝑖𝒒∙𝒓𝑗
𝑗 |

2
       (1) 

where 𝒒 is the scattering vector, 𝑓𝑗(𝑞) and 𝒓𝑗 are respectively the atomic scattering factor and position 

of atom j. Note that the crystallographic convention is used in this manuscript, i. e. the 2𝜋 factor is not 

included in q, which implies that a given q value corresponds to a real space distance d of q = 1/d.  

Equation (1) assumes fully coherent scattering. Absorption and refraction are not considered in this 

study since they are both negligible for simulation cells of few tens of nanometres. 

Given the large number of atoms (104 – 107 atoms) and the similarly large number of points in the 

reciprocal space for which the calculation is performed (105 – 107 points), the computation is performed 

with a graphical processing unit (GPU) using the PyNX scattering package (Favre-Nicolin et al., 2011). 

The calculations are carried out in the vicinity of Bragg positions 𝒈 defined by their Miller indices hkl. 

Note that for all the reciprocal space points of a given reciprocal space map, we made the approximation 

that 𝑓𝑗(𝑞) =  𝑓𝑗(𝒈). For the sake of simplicity, 𝒈, which is a particular case of the generic scattering 

vector 𝒒, will be referred as the scattering vector in the following.  

Both fundamental and superstructure reflections are systematically calculated. We will see in the 

following sections that the former are generally sensitive to both phases, while the latter are only 

sensitive to the ordered L10 phase. This feature can be exploited to characterize the degree of ordering 

of a precipitate (subsection 3.2) and, very interestingly, can also be used to image an assembly of 

precipitates in an extended thin film or bulk specimen (subsection 3.3).  

Figure 1 shows slices of the reciprocal maps calculated from equation (1) for several configurations. 

The sensitivity of the superstructure reflections to the order parameter S is here obvious. The intensity 

of the superstructure reflections decreases with the order parameter (Figures 1d-f) and completely 

vanishes for S =0 (Figure 1f). The size and shape of the ordered phase are also reflected in the intensity 

distribution around the superstructure nodes. A single spherical L10 nanoprecipitate coherently 

embedded in a disordered A1 matrix yields a spherical intensity distribution around the superstructure 

reflections (Figures 1b-c). For a fully ordered FCT L10 cell on the other hand, both fundamental and 

superstructure reflections reflect the tetragonal shape of the simulation cell (Figure 1a,d,e). The average 

strain values reported in section I and supporting information S1 are obtained from the centre of mass 

of high order fundamental reflections (typically g = 0 0 8 and g = 0 0 10) calculated from equation 

(1).The real space displacement field, 𝒖(𝒓), is calculated using two different methods. The first method 
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relies on the calculation of the atomic scattering quantity, 𝜌̃(𝒓), directly from the complex scattered 

amplitude 𝐴̃(𝒒). 𝜌̃(𝒓) is also designated as a complex sample density/object, whose amplitude is the 

real Bragg electronic density, 𝜌(𝒓) and whose phase encodes the projection of the displacement field 

𝒖(𝒓) onto the scattering vector 𝒈. The complex sample density can be obtained by performing a simple 

inverse Fourier transform (FT-1) of the scattered amplitude: 

𝜌̃(𝒓) =  𝜌(𝒓)𝑒2𝜋𝑖𝒈.𝒖(𝒓) = 𝐹𝑇−1(𝐴̃(𝒒)).       (2) 

 

Figure 1 Slices of the reciprocal space intensity maps calculated for different atomistic configurations after 

relaxation (a) Tetragonal simulation cell containing only a fully ordered L10 FCT phase (S = 1) (b) Single ordered 

L10 FCT nanoprecipitate (r = 2.5 nm) embedded into a disordered A1 FCC matrix (c) Same nanoprecipitate (r = 

2.5 nm) without the disordered A1 phase. (d)-(f) Tetragonal simulation cell containing only a partially ordered 

L10 FCT phase: S = 0.5 (d), S = 0.2 (e), S = 0 (f). The reciprocal space volume (RSV) is kept constant in all 

figures and is equal to 11.99x11.99x12.01 nm-3. 

 
The projection of the displacement field 𝒈. 𝒖(𝒓) can then be compared to the atomic displacement field 

directly calculated from the relaxed atomic positions using OVITO (Stukowski, 2009). The strain field 

can then be derived from the displacement field: for instance, 𝜀𝑥𝑥 =  
𝜕𝑢𝑥

𝜕𝑥
 .  

If the complex sample density can be easily derived from the scattered amplitude in simulations, this is 

not the case experimentally, where a scattered intensity is measured on the far-field detector (square 

modulus of the scattered amplitude). However, if the diffraction pattern is sufficiently oversampled, the 

complex sample density may be reconstructed using phase retrieval algorithms (Miao et al., 1999; 

Robinson & Harder, 2009). We aim at demonstrating that this BCDI-based approach is suitable to image 
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the local displacement and strain fields inside and in the vicinity of coherent precipitates. This 

corresponds to the second method used in this paper to calculate the real space displacements.  

The reconstruction of the samples is carried out using the PyNX CDI package (Mandula et al., 2016). 

The initial support, i.e. the real space constraint, is estimated from the real autocorrelation of the 

diffraction intensity. A series of 1200 Relaxed Averaged Alternating Reflections (RAAR (Luke, 2004)) 

is followed by 200 Error-Reduction steps (Gerchberg, 1972; Fienup, 1982). In order to refine the 

support, the shrink-wrap algorithm is used every 20 iterations (Marchesini et al., 2003). Note that the 

threshold is carefully adjusted for each dataset in order to maximize the success rate of the phase 

retrieval procedure (supporting information S8). For each simulated dataset 200 reconstructions with 

random phase start are performed. The quality of each reconstruction is then evaluated by comparing 

the retrieved displacement field component with the atomic displacement calculated from the relaxed 

atomic positions in OVITO. In order to allow a relevant comparison, the latter is averaged over a radius 

corresponding to the real space voxel size of the phase retrieval data. The quality of the reconstruction 

and in particular the accuracy of the displacement field is evaluated by comparing it to the calculations 

obtained from the atomistic positions (OVITO) and from the inverse Fourier transform of the scattered 

amplitude.  

Successfully reconstructing the precipitate requires achieving a high spatial resolution, while satisfying 

the oversampling ratio, so that the phase retrieval algorithms can converge. The very small size of the 

spherical nanoprecipitates (ranging from 0.7 to 7.5 nm) requires a very high spatial resolution in the 

real space and therefore probing a large volume of the reciprocal space around the 𝒈 of interest, 

significantly larger than the one typically measured experimentally (Labat et al., 2015; Dupraz et al., 

2017). This allows generally to retrieve simultaneously the A1 and L10 phases from a fundamental 

reflection. Indeed, despite the large lattice mismatch between both phases, both can be retrieved 

accurately if the Bragg peaks are included in the calculated reciprocal space volume (RSV) (supporting 

information S2). Typically, the scattering is computed on 120x120x120 reciprocal space points (RSPs) 

with a varying sampling partially controlled by the size of the simulation cell. For the largest samples 

(66x66x66 nm3) for instance, the sampling is varied between 1/900 reciprocal lattice units (r.l.u., 

corresponding to 2.84x10-3 nm-1 for the FCC reference lattice, a = 3.901 Å) and 1/240 r.l.u. (1.05x10-2 

nm-1). The reciprocal space volume (RSV) measured is thus equal to 0.34x0.34x0.34 nm-3 for the fine 

sampling and 1.25x1.25x1.25 nm-3 for the coarse sampling. This translates to real space voxel sizes of 

2.95 nm and 0.731 nm and oversampling ratios of 119 and 2.65 respectively. The latter is still fine 

enough to fulfil the oversampling criterion (s > 2) defined by (Miao et al., 1998)  

For the smallest sample (11x11x11 nm3) (subsections 3.1 and 3.3), the Fourier space is probed with 

coarser steps (typically 1/80 r.l.u. or 3.2 x10-2 nm-1). If the scattering is computed on 140x140x140 

RSPs, this gives a RSV of 4.50x4.50x4.50 nm-3, which corresponds to a voxel size of 0.222 nm. Note 
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that this value is smaller than the first neighbour distance in both the A1 and L10 phases (around 0.276 

nm). 

For the case of the FCT L10 configuration (11x11x31 nm3) (subsection 3.2), the sampling is kept 

constant (1/150 r.l.u. or 1.71 x10-2 nm-1 corresponding to s = 46) but the RSV is varied between 

0.827x0.827x1.19 nm-3 and 2.51x2.51x3.64nm-3 corresponding to 50x50x66 and 150x150x200 RSPs 

respectively. These RSVs translate to an average voxel size of 1.09 nm and 0.357 nm, respectively.  

The integrated amplitudes and intensities are calculated by summing the intensities of each RSP over 

RSVs of 0.827x0.827x1.19nm-3 (50x50x66 RSPs) or smaller 0.413x0.413x0.593nm-3 (25x25x33 

RSPs), centred around the centre of mass of the considered reciprocal space nodes. This range was 

selected because of the excellent agreement with the theoretical values given by Eqs. (8) and (9). Further 

increasing the RSV for the integration tends to worsen the agreement with the theory (supporting 

information S4-S6). The integrated electron densities (ρint) are calculated by summing the amplitude of 

each voxel in the real space image. Only the voxels whose density is larger than an arbitrary fraction of 

the maximum of electron density in the crystal are considered for the calculation. Therefore, varying 

the threshold can affect the value of ρint, in particular for a small voxel size and can influence the value 

of ρint for the superstructure reflections (supporting in formation S5). In this work, the threshold is 

typically set between 25% and 40% of the maximum electron density for the small RSV and between 

12.5% and 25% for the large RSV. Finally, the accuracy of the strain fields retrieved from the 

superstructure reflections is assessed by calculating the Pearson correlation coefficients of the latter 

with the strain fields retrieved from the fundamental reflections that probe the same strain component.  

 

3. Results 

3.1. Imaging of a single coherent nanoprecipitate 

In this first section, we consider the case of a single L10 precipitate coherently embedded in the 

disordered A1 matrix phase. Figure 2a shows a slice taken at the centre of the simulation cell containing 

a nanoprecipitate of radius r = 1.755 nm. The slice is oriented along the [0 1̅ 0] direction of the A1 

matrix phase. In the initial configuration, the nanoprecipitate is inserted with two distincts crystal 

structures: in the first case hereafter referred as the FCC configuration, a = c = 3.901 Å, i. e. the average 

lattice parameter of the solid solution (A1 phase) and in the second  case, hereafter referred as the FCT 

configuration, a = 3.95 Å and c = 3.65 Å. This case gives a  
𝑐

𝑎
 ratio, also known as the degree of 

tetragonality, of 0.92. This value corresponds to the equilibrium value in undeformed bulk specimens 

reported in the literature (Volkov, 2004). Figure 2b shows the z-component of the atomic strain tensor 

(zz) after energy minimization for the FCT configuration. This direction corresponds to the [0 0 1] 

crystallographic direction of the A1 matrix phase (zz =001) and is aligned with the c-axis of the L10 
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nanoprecipitate (i.e. the [0 1̅ 0] crystallographic direction). In the following 001 always refers to the 

strain component along the c-axis of both L10  (nanoprecipitate) and A1 phases. As seen from Figure 

2b, an homogeneous tensile strain builds up during relaxation in the nanoprecipitate region (𝜀001̅̅ ̅̅ ̅ = 

+4.1%), associated to an increase of the 
𝑐

𝑎
 ratio from 0.92 to 0.96. The magnitude of this tensile strain 

is in reasonably good agreement with the experimental values measured by X-ray diffraction (Garcia-

Gonzalez et al., 2019; Garcia-Gonzalez et al., 2020), where 𝜀001̅̅ ̅̅ ̅  reaches a maximum value of 3.5% 

(supporting information S11). In the surrounding A1 matrix phase, alternating regions of compressive 

and tensile strain are observed. These strain fluctuations are associated to local variations of the atomic 

composition, since the atoms are distributed randomly on the FCC lattice sites. The average lattice 

parameter of the A1 matrix phase remains constant during the relaxation, therefore the average strain 

value in the matrix is close to zero (𝜀001̅̅ ̅̅ ̅  ≈ 0). In contrast, Figure 2c shows the 001 atomic strain 

component after relaxation for the FCC configuration. The strain distribution in the A1 matrix phase is 

identical to the FCT configuration, except in the close vicinity of the precipitate; in both cases the initial 

reference lattice is the disordered A1 FCC phase which results in the same strain distribution after 

relaxation. On the other hand, the strain distribution in the nanoprecipitate after relaxation differs 

significantly from the FCT configuration. Interestingly, in contrast with the FCT configuration, a 

compressive strain builds up during relaxation  (𝜀001̅̅ ̅̅ ̅  ≈ −2.6%). The latter corresponds to a decrease 

of the 
𝑐

𝑎
 ratio from 1 to 0.96 and illustrates the importance of the choice of the reference lattice for the 

calculation of the atomic strain. At first glance, one could indeed conclude that the relaxed strain state 

of the FCC nanoprecipitate differs from the FCT nanoprecipitate, however, this interpretation is not 

correct as revealed by the computation of 001 strain maps from Eqs. (1-2) for the FCC and FCT 

configurations (Figures 2d-i). Figures 2d-e show the 001 component for the FCC and FCT 

configurations, respectively, before energy minimization. The real space voxel size is set to 0.225 nm 

by tuning the size of the RSV. For both configurations, the 001 strain component is retrieved from the 

fundamental Bragg reflection (g = 0 0 2) and the same reference FCT lattice (a = 3.95 Å and c = 3.65 

Å) is used to calculate 001. As illustrated in Figures S3c,d, using the FCT reference implies that the 

RSV is centred around the intensity scattered by the spherical nanoprecipitate. Since the c-parameter of 

the A1  FCC phase is much larger than the reference c-parameter of the FCT reference lattice (3.901 Å 

vs 3.65 Å), a large tensile strain phase (𝜀001̅̅ ̅̅ ̅  ≈ 6.9%) is observed in both cases in the A1 matrix. The 

latter is consistent with the lattice mismatch between the c-axes of the FCT and FCC lattices. In the 

precipitate region, the strain state depends on the crystal structure of the precipitate. The FCC - 

precipitate, whose c-parameter is the same as the surrounding matrix, exhibits the same high tensile 

strain as the matrix (6.9%, Figure 2d). On the other hand, the lattice parameter of the FCT precipitate 

is set to the reference FCT lattice, therefore 𝜀001̅̅ ̅̅ ̅  = 0 in the initial configuration (Figure 2e). Using a 

superstructure reflection (g = 0 0 1) on the same configuration leads to similar observations in the FCT 
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L10 precipitate region (𝜀001̅̅ ̅̅ ̅  = 0, Figure 2f). On the other hand, the scattered amplitude (𝐴̃(𝒒)) from 

the disordered A1 matrix is very weak. Hence 𝜌̃(𝒓), the inverse Fourier transform of 𝐴̃(𝒒), is also very 

weak and the strain is not retrieved accurately in the matrix region, whereas it is well retrieved in the 

precipitate region. Figure 2g-i show the  strain distribution for the same configurations after energy 

minimization. Again the same FCT reference lattice is used for both FCC and FCT configurations. 

 

Figure 2 (a) Atomistic configuration showing a L10 nanoprecipitate coherently embedded in the A1  parent matrix 

The brown, yellow and silver atoms correspond to Cu, Au and Ag, respectively. (b)-(c) 001 atomic strain 

component after energy minimization (relaxation) of a simulation cell containing a FCT (FCC) precipitate 

respectively. (d)-(e) 001 retrieved from equation (2) for an unrelaxed configuration containing a FCC and FCT 

precipitate, respectively. Both strain maps are calculated using a fundamental reflection g = 0 0 2. (f) 001 before 

relaxation for  the FCT precipitate. The strain map is retrieved from a superstructure reflection g = 0 0 1. (g)-(h) 

001 after relaxation for the FCC and FCT precipitates, respectively, using  g = 0 0 2. (i) 001 after relaxation for 

the FCT precipitate using g = 0 0 1. The strain maps shown in panels (d)-(i) are calculated from equation (2) and 

use the perfect FCT lattice (a = 3.95 Å and c = 3.65 Å) as a reference for the calculation. For all strain maps, the 

calculations are performed on a RSV of 4.50x4.50x4.50 nm-3, which corresponds to a voxel size of 0.222 nm. 

 

Interestingly, and in contrast to the calculations from the relaxed atomic positions, the strain distribution 

is not only identical in the A1 matrix region but also in the L10 nanoprecipitates (Figures 2g,h). For g 

= 0 0 2  average strain values of 𝜀001̅̅ ̅̅ ̅ ≈ +4.1% and 𝜀001̅̅ ̅̅ ̅  ≈ 6.9% are found for both configurations in 
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the L10 and A1 phases, respectively. Both the magnitude and strain distribution are consistent with the 

one calculated directly from the relaxed atomic position of the FCT configuration. In the A1 matrix 

region, the average c-parameter remains constant and equal to the c-parameter of the FCC lattice, 

explaining the large tensile strain with respect to the reference FCT lattice. For the superstructure 

reflection (g = 0 0 1), the calculation of 𝜀001̅̅ ̅̅ ̅  gives the same value of +4.1% (Figure 2i) with a strain 

distribution very consistent with the one obtained from the fundamental reflection. Similarly to the 

unrelaxed state (Figure 2f), the strain is not retrieved accurately in the matrix region. 

 

 

Figure 3 (a) 001 atomic strain component after energy minimization of a simulation cell containing a FCC 

nanoprecipitate. (b)-(c) 001 after relaxation for the FCC and FCT precipitates respectively using  g = 0 0 2. (d) 

001 after relaxation for the FCT precipitates using  g = 0 0 1. The strain maps shown in panels (b)-(d) are calculated 

from equation (2) and use the perfect FCC lattice (a = 3.901 Å and c = 3.901) as a reference for the calculation. 

For all strain maps, the calculations are performed on a RSV of 4.50x4.50x4.50 nm-3, which corresponds to a 

voxel size of 0.222 nm.  

 

Figure 3a displays 001 after energy minimization for the FCC configuration. The slice is oriented along 

the [1 0 0] crystallographic direction of the A1 matrix phase. Note that in order to obtain a smoother 

representation of the atomic strain, the latter is averaged over a radius of 0.7 nm much larger than the 

0.3 nm cut-off radius used in Figures 2b-c. As seen in Figure 3a, this larger averaging volume tends to 

emphasize the regions in tension above and below the nanoprecipitate along the [0 0 1] crystallographic 

direction. As already observed in Figure 2c, in order to reach the equilibrium 
𝑐

𝑎
 ratio, the c-axis of the 

L10 nanoprecipitate must go into compression during the energy minimization ( 𝜀001̅̅ ̅̅ ̅  ≈ −2.6% ). 

Figures 3b-c show the  strain distribution after energy minimization for the FCC and FCT 

configurations respectively, computed from the fundamental reflection g = 0 0 2, this time taking the 

perfect FCC lattice as the reference for the strain calculation in both configurations. In contrast to the 

FCT reference, the RSV is in this case centred around the intensity scattered by the disordered FCC A1 

matrix (Figure S3f). In order to obtain a strain distribution consistent with the one obtained in the 
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atomistic configuration, the retrieved  strain component is also averaged over the first five 

neighboring voxels in all 3 directions of space (Figures 3c-d). Hence, the averaging volume is very 

similar to the one used in atomistic calculations (1.423 nm3 for atomistic simulation vs 1.436 nm3 for 

retrieved strain). Using the FCC reference lattice confirms that the strain distribution is identical for the 

two configurations, not only for the A1 phase but also in the L10  nanoprecipitate (𝜀001̅̅ ̅̅ ̅  ≈ −2.6%). The 

strain distribution is also very consistent with the atomic strain calculated from the relaxed atomic 

positions in the FCC configuration (Figure 3a). This confirms that the relaxed state of the 

nanoprecipitate does not depend on its initial (FCC or FCT) crystal structure: both FCC and FCT 

precipitate reach an optimum 
𝑐

𝑎
 ratio of 0.96 after energy minimization. The discrepancy between the 

strain states directly obtained from the atomic positions for the FCT and FCC configurations can 

therefore be explained by the different reference lattices used for the calculations. After relaxation, a 

tensile strain (Figures 2g,i) is obtained for both configurations of nanoprecipitate with the FCT 

reference, while a compressive strain (Figures 3b-c) is observed in both cases with the FCC reference. 

For the superstructure reflection (g = 0 0 1), one also obtains an average strain value of −2.6% for the 

nanoprecipitate (Figure 3d), while the matrix region is not retrieved accurately, a result in good 

agreement with the calculations performed with the reference FCT lattice (Figure 2i).  

From these calculations, one can conclude that the strain distribution retrieved from the diffraction 

pattern (see Eqs. (1) and (2)) is very accurate and consistent with the direct calculations from the atomic 

positions. Fundamental and superstructure reflections give similar results for the ordered phase, while 

the strain is retrieved accurately only for the fundamental reflection in the disordered matrix. The 

equilibrium configuration of the precipitate is independent of its initial crystal structure: the strain 

distribution after relaxation is identical for the FCT and FCC precipitates, but one needs to be careful 

when selecting the reference lattice in order to correctly interpret the strain distribution in the 

nanoprecipitate. The case of semi-coherent and incoherent precipitates is discussed in supporting 

information S1. 

3.2. Influence of the order parameter on the reconstructed data from a superstructure reflection 

In the previous section, we consider fully ordered and defect free precipitates. However, this is not 

necessarily the case experimentally, in particular at the early stages of the ordering, where a large 

number of defects such as antiphase boundaries are observed (Warren, 1969). A convenient approach 

to characterize the degree of ordering is the long range order parameter defined by (Warren, 1969): 

𝑆 = 𝑟𝛼 − 𝑤𝛾 =  𝑟𝛾 − 𝑤𝛼 ,       (3) 

where 𝑟𝛼 and 𝑟𝛾 are the fraction of α and γ atomic sites occupied by the right atoms, while 𝑤𝛼 and 𝑤𝛾  are 

the fraction of α and γ sites occupied by the wrong atoms. From this definition, it comes that S = 1 

corresponds to a fully ordered crystal with a stoichiometric composition, while S = 0 corresponds to a 

completely random arrangement of atoms. The structure factors F for the superstructure reflections are 
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proportional to S and therefore a S2 parameter can be derived from the measured intensity during 

experiment.  

We consider here that for a completely ordered alloy with ideal stoichiometry, all the α sites are 

occupied by Cu atoms, while all the γ sites are occupied by the Au atoms. The sample composition is 

the sum of the atom fractions 𝑛𝐶𝑢 + 𝑛𝐴𝑢 = 1. The structure factor for a partially ordered alloy can be 

obtained by summing over all atomic positions in the unit cell. For a fundamental reflection such as the 

0 0 2 it is given by: 

𝐹0 0 2 =  2[𝑓𝐴𝑢{𝑟𝛾 + 𝑤𝛼} + 𝑓𝐶𝑢{𝑟𝛼 + 𝑤𝛾}]  = 4(𝑓𝐴𝑢𝑛𝐴𝑢 + 𝑓𝐶𝑢𝑛𝐶𝑢),  (4) 

where 𝑓𝐴𝑢 and 𝑓𝐶𝑢  are the Thompson scattering factors. 

For a superstructure reflection such as the 0 0 1, the structure factor is given by: 

𝐹0 0 1 =  2[𝑓𝐴𝑢{𝑟𝛾 − 𝑤𝛼} + 𝑓𝐶𝑢{−𝑟𝛼 + 𝑤𝛾}]  = 2𝑆(𝑓𝐴𝑢 − 𝑓𝐶𝑢).   (5) 

It comes that the integrated intensity of the 0 0 2 fundamental reflection is equal to: 

𝐼002 = 16𝑐𝑉002(𝑓𝐴𝑢𝑛𝐴𝑢 + 𝑓𝐶𝑢𝑛𝐶𝑢)2 ,      (6) 

where V002 is the volume of the region at the Bragg condition and c are the scattering constants. A similar 

expression can be derived for the 0 0 1 superstructure reflection: 

𝐼001 = 4𝑐𝑉001𝑆2(𝑓𝐴𝑢 − 𝑓𝐶𝑢)2.        (7) 

Assuming that the intensities are measured from a region of reciprocal space with equal volume (V001 = 

V002) one can derive the order parameter from the ratio between integrated intensities: 

𝐼001

𝐼002
=

𝑆2(𝑓𝐴𝑢−𝑓𝐶𝑢)2

4(𝑓𝐴𝑢𝑛𝐴𝑢+𝑓𝐶𝑢𝑛𝐶𝑢)2 
,       (8) 

which gives 

𝑆 =  √
𝐼001

𝐼002
 
2(𝑓𝐴𝑢𝑛𝐴𝑢+𝑓𝐶𝑢𝑛𝐶𝑢)

(𝑓𝐴𝑢−𝑓𝐶𝑢)
=  

𝐴001

𝐴002
 
2(𝑓𝐴𝑢𝑛𝐴𝑢+𝑓𝐶𝑢𝑛𝐶𝑢)

(𝑓𝐴𝑢−𝑓𝐶𝑢)
    (9) 

In order to evaluate the influence of the order parameter S on the reconstructed data, the latter was 

varied in two different ways: 

- by modifying the chemical composition of the cell, i.e. a fraction of the Au atoms on the γ sites is 

replaced by Cu atoms (hereafter referred as varying composition), 

- by keeping constant the stoichiometric composition (𝑛𝐴𝑢 =  𝑛𝐶𝑢 = 0.5), a fraction of the Cu atoms 

occupies the γ sites, while the same fraction of Au atoms occupies the α sites (hereafter referred as fixed 

composition). Doing so the stoichiometric composition is kept constant but the order parameter S 

decreases as the fraction of Au atoms (resp. Cu atoms) increases on the α sites (resp. γ sites).  

Figure 4 shows the case of a fully ordered cell (S = 1) with a stoichiometric composition: all the Au 

atoms are located on the γ sites, while all the Cu atoms are on the α sites. The scattered amplitudes are 

calculated from equation (1) for a superstructure reflection (g = 0 0 1) and for a fundamental reflection 

(g = 0 0 2) using a small (50x50x66 RSPs) and a large (150x150x200 RSPs) RSV. The calculations are 

performed on a relaxed configuration. The complex sample densities are then derived from equation - 
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Figure 4 (a) Atomistic configuration for an ordered FCT L10 phase (S = 1). u001 displacement in the (1 1 0) plane 

calculated from a superstructure reflection, g = 0 0 1 for a small (0.357 nm / RSV(2.51x2.51x3.64 nm-3)) (b) and 

a large (1.09 nm / RSV(0.827x0.827x1.19 nm-3)) (d) voxel size. Same u001 displacement calculated from a 

fundamental reflection, g = 0 0 2 for a small (c) and a large (e) voxel size. The voxels, for wich   < 0.2  max, are 

set to zero. 

 

 

Figure 5 (a) Atomistic configuration for a partially ordered FCT L10 phase (S = 0.5). u001 displacement in the (1 

1 0) plane calculated from a superstructure reflection, g = 0 0 1 for a small (0.357 nm / RSV(2.51x2.51x3.64 nm-

3)) (b) and a large (1.09 nm nm / RSV(0.827x0.827x1.19 nm-3)) (d) voxel size. Same u001 displacement calculated 

from a fundamental reflection, g = 0 0 2 for a small (c) and a large (e) voxel size. The voxels, for wich r  < 0.2 r 

max, are set to zero. 
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- (2). Figures 4b-e show the displacement field component along the c-axis, u0 0 1, calculated for g  = 0 

0 1, (Figures 4b,d) and g = 0 0 2 (Figures 4c,e). The calculations performed on the small (Figures 

4d,e) and large (Figures 4b,c) RSVs both reveal an excellent agreement between the two reflections: 

the calculation of the Pearson correlation coefficient gives a 99.4% and 99.8% agreement for the small 

and large RSV, respectively (Table 1). This excellent agreement is consistent with the theory as both 

reflections are sensitive to the same component of the displacement field. 

In contrast, Figure 5 shows the case of a partially ordered cell (S = 0.5), where 25% of the α sites are 

occupied by Au atoms and 25% of the γ sites are occupied by Cu atoms. The calculation of u0 0 1 for a 

relaxed configuration reveals some discrepancies between the superstructure and the fundamental 

reflections. This is especially true for the large RSV, where the voxel size (0.357 nm) is just slightly 

larger than the first neighbour distance (0.276 nm, Figures 5b,c). Since the Au (resp. Cu) atoms are 

placed randomly on the α (resp. γ) sites, the local ordering varies significantly depending on the location 

in the crystal. In some regions, the signal from the superstructure reflection is very weak, resulting in 

an extremely low electron density. In these regions, the u0 0 1 is not retrieved accurately as shown in 

Figure 5b. For the small RSV (voxel size 1.09 nm) on the other hand (Figures 5d,e), the agreement 

between the fundamental and the superstructure reflection remains excellent. Because each voxel 

contains on average 90 atoms (only 3 atoms per voxel for the large), the local ordering is less dependent 

on the atomic position and the retrieved electron density is reasonably high and homogeneous 

everywhere in the crystal. As a consequence, u0 0 1   is still retrieved accurately for g = 0 0 1 (Figure 5d). 

The calculation of the Pearson correlation confirms the visual interpretation with calculated correlations 

of 91.5% and 59.6% for the small and large windows, respectively (see also Figure 9 & Table S14). In 

order to quantify the accuracy of the strain and displacement retrieved from the superstructure 

reflections, we calculated the evolution of the ratio of the integrated electron density retrieved in the 

real space (ρint_001 / ρint_002), and the ratios of the integrated scattered amplitude (Aint_001 / Aint_002) and 

intensities (Iint_001 / Iint_002) in the reciprocal space as a function of the order parameter S. These values 

are compared with the theoretical ratio (Ith_001 / Ith_002) and (Ath_001 / Ath_002) calculated from equation (8) 

(see Tables S3-S8). As a reminder, the amplitudes and intensities are typically integrated over 

25x25x33 and/or 50x50x66 RSPs centred around the maximum of intensity of the calculated Bragg 

reflection. For the integrated electron densities, three thresholds are considered (25%, 32.5% and 40% 

of the maximum electron density). 

Figure 6 shows the evolution of the intensities integrated over 25x25x33 RSPs for a varying and a fixed 

composition, respectively. The results for the large RSV, where the integration can be performed over 

larger RSVs (up to 150x150x200), are presented in supporting information S4-S6. The calculations for 

the varying composition reveal an excellent agreement with the theory for both relaxed and unrelaxed 

configurations (Figure 6a & Table S3). One can also note that (Iint_001 / Iint_002) is mostly independent 

of the selected RSV for integration. The agreement remains very good for a fixed composition; however, 
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one can notice that larger deviations are observed for a low order parameter (S ≤ 0.2), where the ratio 

of integrated intensities is significantly larger than the theoretical value (Figure 6b & Table S4). 

 

 

Figure 6 Evolution of (Iint_001 / Iint_002) and (Ith_001 / Ith_002) for relaxed and unrelaxed configurations as a function 

of the order parameter S for a varying composition (a) and a fixed composition (b). In both cases, the calculations 

are carried out on the small RSV (50x50x66 RSPs) and the integrations are performed over 25x25x33 and 

50x50x66 RSPs.  

 

Interestingly, these deviations are more pronounced for the unrelaxed configurations. In addition, Iint_001 

/ Iint_002 shows a larger dependence to the size of the RSV, the smaller RSV showing the best agreement 

with the theory. We assume that the larger deviations for the unrelaxed configurations are most likely 

related to artefacts caused by the finite size of the simulation box. 

 

Figure 7 Evolution of (Aint_001 / Aint_002), (Ath_001 / Ath_002) and (ρint_001 / ρint_002) as a function of the order parameter 

S for a varying atomic composition before (a) and after (b) relaxation. Same ratios as a function of S for the fixed 

composition before (c) and after (d) relaxation. In both cases, the calculations are carried out on the small RSV 

(50x50x66 RSPs) and the integrations are performed over 25x25x33 and 50x50x66 RSPs.  
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Similar observations can be drawn from the calculation of (Aint_001 / Aint_002), which enables a direct 

comparison with (ρint_001 / ρint_002) (Figure 7). As shown in Figures 7a-b and Tables S5-S8, the (ρint_001 

/ ρint_002) and (Aint_001 / Aint_002) ratios are almost in perfect agreement for the varying composition. This 

can be understood from mathematical considerations since the electron density is the modulus of the 

Fourier transform of the scattered amplitude (equation (2)). Logically, they are also in very good 

agreement with the theoretical ratio (Ath_001 / Ath_002); the small deviations already reported for the 

integrated intensities for low S values (S ≤ 0.15) are here well visible, in particular for the unrelaxed 

configurations (Figure 7a). We also note that the results are extremely robust since they are mostly 

independent of the integration volume for the scattered amplitude and of the threshold used for the 

integration of the electron density. 

For the fixed composition, (ρint_001 / ρint_002) and (Aint_001 / Aint_002) are also in very good agreement 

(Figures 7c-d & Table S6). However, the (ρint_001 / ρint_002) ratio shows a larger dependence to the 

integration threshold than for the varying composition: the larger is the threshold, the smaller is the 

(ρint_001 / ρint_002) ratio. The smaller is the RSV, the smaller is the (Aint_001 / Aint_002) ratio. The trends 

observed for (ρint_001 / ρint_002) are similar to the ones observed for the integrated intensities and 

amplitudes; the largest deviations are observed at low S, the ratios calculated for the unrelaxed 

configurations are significantly larger than the theory (Ath_001 / Ath_002), while a better agreement is 

obtained for the relaxed configurations. In addition, a much better agreement is obtained for the small 

RSV / large voxel size (Figure 7c-d & Table S6) than for the large RSV / small voxel size (Figures 

S5c,d & Table S8). 

 

Figure 8 Evolution of the order parameter calculated from the ratio of the integrated intensities (Scalc , equation 

(9)) as a function of the theoretical order parameter (Stheo , equation (3)) for the varying (a) and fixed (b) 

compositions. In both cases, the calculation is performed on the small RSV (50x50x66 RSPs) and the integrations 

are performed over 25x25x33 RSPs. 

 

Another way to interpret these results consists in using equation (9), in order to calculate the order 

parameter (Scalc) and compare it with its theoretical value (Stheo) obtained from equation (3). As expected, 

Scalc is in almost perfect agreement with the theoretical value for a varying composition, despite a small 
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deviation for the smaller value of S (Figure 8a & Tables S6a,c). For a fixed composition, the agreement 

between Scalc and Stheo is significantly better for the relaxed configurations than for the unrelaxed, Scalc 

being overestimated for the latter. In addition, the largest deviations are observed in both cases for small 

S values (Figure 8b & Tables S9,S11). 

Finally, Figure 9 and Tables S10,S12 show the evolution of the Pearson correlation r between the  

strain calculated from the fundamental and superstructure reflections as a function of the order 

parameter. In good agreement with our previous observations, this parameter largely depends on the 

real space voxel size. Indeed, for a large voxel size (small RSV), r remains high even for a very low 

order parameter, while r drops rapidly with S for a small voxel size (large RSV). This trend is well 

visible for the varying composition for both relaxed and unrelaxed configurations (Figure 9a & Table 

S13). For the large voxel size, r remains above 90% in the range 0.1 < S < 1, while for a small voxel 

size it drops from nearly 100% (S = 1) to around 30% for S = 0.1 (34% and 28% for the relaxed and 

unrelaxed configurations, respectively). Interestingly for the small voxel size in the range 0.0002 < S < 

0.1, r remains very high and above 90% for the unrelaxed configuration, while a sharp drop is observed 

for the relaxed configurations (from r = 92.3% for S = 0.1 to r = 48.9% for S = 0.0002). The origin of 

this discrepancy remains unclear and could be caused by artificial ordering in the unrelaxed 

configuration due to the small size of the simulation box. Similar trends are observed for the fixed 

composition, although r shows less dependence to the order parameter, even for the small voxel size, 

where r drops by only 20%, when decreasing S from 0.5 to 0 (Figure 9b & Table S14). Similarly, to 

the varying composition, for a large voxel size and for the unrelaxed configurations, r remains very 

high (~ 90%) and mostly independent on the order parameter. In contrast, for the relaxed configurations 

r drops significantly (by ~ 20%) for low S values.  

 

Figure 9 Pearson correlation between the  retrieved from the superstructure (g = 0 0 1) and the fundamental 

(g = 0 0 2) reflections as a function of the order parameter S for the varying (a) and fixed (b) compositions for the 

relaxed and unrelaxed configurations and different integrated RSVs. 

Similar trends are observed for the fixed composition, although r shows less dependence to the order 

parameter, even for the small voxel size, where r drops by only 20%, when decreasing S from 0.5 to 0 

(Figure 9b & Table S14). Similarly, to the varying composition, for a large voxel size and for the 
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unrelaxed configurations, r remains very high (~ 90%) and mostly independent on the order parameter. 

In contrast, for the relaxed configurations r drops significantly (by ~ 20%) for low S values.  

In summary, one can conclude that the larger is the voxel size, the better is the accuracy of the retrieved 

strain. For a voxel size larger than 1 nm, the strain retrieved for low order parameter is still in excellent 

agreement with the calculations from the relaxed atomic positions, even S drops to low values. This is 

especially true when the decrease of the order parameter is induced by a variation of the composition. 

In addition, a better agreement is generally obtained for relaxed configurations compared to unrelaxed 

configurations. These two results are encouraging and promising in the optic of an experimental 

validation of the method:  

- The resolution achieved experimentally is approximately one order of magnitude larger than 

the voxel size range used in these simulations. The accuracy of the retrieved strain should 

greatly benefit from this larger averaging volume. 

-  The relaxed configurations, where large and inhomogeneous strains are observed in the 

precipitate and in the matrix, are more representative of the experimental samples.  

For these two reasons the technique appears to be suitable not only for perfect/ideal samples but also 

for realistic defective/strained nanoprecipitates with a low order parameter which are found in many 

systems.  

3.3. Imaging of an assembly of nanoprecipitates 

In the first two subsections, we have seen that the real space displacement and strain fields can be 

retrieved very accurately by performing an inverse Fourier transform on the complex scattered 

amplitude (equation (2)). A perfect agreement is obtained with the atomic strains calculated directly 

from the relaxed atomic positions (Figure 2 & Figure 3). Moreover, the influence of the order parameter 

on the reconstructed data was evaluated quantitively (subsection 3.2). It was established that the 

accuracy of the retrieved strain from the superstructure reflections benefits from large averaging 

volumes (voxel size) and is also usually better for relaxed configurations; two important results if one 

aims at using the method on experimental samples. However, if the complex sample density can be 

easily derived from the scattered amplitude in simulations, using equation (2), this is not the case 

experimentally, where a scattered intensity is measured on the far-field detector. The present section 

aims at establishing the ability of phase retrieval algorithms to recover the complex sample density from 

high resolution diffraction patterns measured in the vicinity of a superstructure reflection. To do so, we 

considered several crystals with a varying number N of L10 nanoprecipitates (N varying from 1 to 48) 

coherently embedded in the A1 matrix phase. As indicated in the methods section and as shown in Table 

1, the crystals size range from 11x11x11 nm3 to 66x66x66 nm3 and the sampling conditions in the 

reciprocal space are adjusted accordingly to fulfil the oversampling conditions. Figure 10a shows a 



Journal of Applied Crystallography    research papers 

22 

 

66x66x66 nm3 crystal containing an assembly of 24 FCT L10 nanoprecipitates randomly distributed in 

the matrix solid solution. The radii of the precipitates vary between 1.5 and 2.8 nm. Note that some 

nanoprecipitates are rotated by few degrees around their c-axis and are therfore not fully coherent with 

the matrix. The atoms of the A1 matrix phase are removed in order to allow better visualization of the 

nanoprecipitates. Figure 10b shows the evolution of the 001 atomic strain component after energy 

minimization. One can notice the large and local strain variations at the matrix/nanoprecipitates 

interfaces. The scattered intensity from this relaxed configuration (including the A1 matrix atoms) was 

calculated using equation (1) in the vicinity of the 0 0 1 superstructure reflection (g = 0 0 1) and used 

as input to evaluate the ability of BCDI to reconstruct the complex image of an assembly of precipitates.  

 

Figure 10 (a) Simulation cell containing an assembly of 24 L10 nanoprecipitates (r varying from 1.5 to 2.8 nm). 

The atoms from the A1 matrix phase are not shown in order to facilitate the visualization. (b) Evolution of  

after relaxation. (c-d) Isosurface of the reconstructed Bragg electron density in the vicinity of the 0 0 1 

superstructure reflection (RSV: 1.25x1.25x1.25 nm-3 / real space voxel size: 0.731 nm). The threshold for the 

isosurface is set to 42% of the maximum of the Bragg electron density. (c) is a zoom of (d). (e) Reconstructed 

Bragg electron density for the same reflection (g = 0 0 1) and a smaller RSV / larger voxel size 

(RSV:0.339x0.339x0.339 nm-3 / real space voxel size: 2.91 nm). The threshold for the isosurface is set to 45% of 

the maximum of the Bragg electron density 
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Figure 11 (a)  atomic strain component displayed on a 1 nm thick (4 atomic layers) (0 0 1) slice taken at the 

centre of the relaxed configuration. A 0.365 nm cut-off radius is selected for the averaging, so that the averaging 

volume matches the voxel size of the phase retrieval data. The atoms from the A1 matrix are discarded to ease the 

visualization of the data (b) (0 0 1) slice of the reconstructed   strain component retrieved from the 0 0 1 

superstructure reflection (RSV: 1.25x1.25x1.25 nm-3 / real space voxel size: 0.731 nm). 

A close-up view of the intensity scattered by a varying number in the vicinity of (g = 0 0 1) is shown in 

supporting information S9. The result of the phase retrieval using the procedure detailed in the methods 

section is show in Figures 10c-e. Figures 10c-d show the retrieved Bragg electron density for a 0.731 

nm voxel size: a perfect agreement is found with the atomistic configuration indicating that the complex 

electron density was succesfully retrieved.  

 

Table 1 Influence of the number of precipitates, oversampling conditions, and voxel size on the success rate of 

the phase retrieval. The lines in black refer to the conditions with a high oversampling ratio ( >80) while the 

ones in red indicate conditions with a low oversampling ratio ( < 32) 
 

N precipitates RSV (nm-3) Crystal size (nm3) Oversampling Radius precipitates (nm) Voxel size (nm) Success rate (%) 

Unrelaxed 1 3.354x3.354x3.630 11x11x11 82 1.755 0.291 96 

 

1 2.264x2.264x2.264 11x11x11 256 1.755 0.442 100 

 

1 2.684x2.684x2.904 33x33x33 5.5 5.265 0.363 90 

 

1 1.004x1.004x1.087 44x44x44 17.8 7.5 0.971 84 

 

1 0.508x0.508x0.508 44x44x44 140.5 7.5 1.95 100 

 

2 2.236x2.236x2.420 22x22x22 31 2.5 0.436 99 

 

2 1.359x1.359x1.359 22x22x22 145 2.5 0.736 89 

 

3 1.359x1.359x1.359 22x22x22 145 2.5 0.736 85 

 

4 2.034x2.034x2.034 22x22x22 18.7 2.5 0.492 84 

 

5 2.034x2.034x2.034 22x22x22 18.7 2.5 0.492 87 

 

8 2.034x2.034x2.034 22x22x22 18.7 2.5 0.492 88 

 

24 1.004x1.004x1.087 66x66x66 5.2 1.5-2.8 0.971 84 
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48 0.872x0.872x0.872 66x66x66 8.4 1.5-2.8 1.15 82 

 

48 0.339x0.339x0.339 66x66x66 138.7 1.5-2.8 2.95 89 

Relaxed 1 3.354x3.354x3.630 11x11x11 82 1.755 0.291 94 

1 2.264x2.264x2.264 11x11x11 255 1.755 0.442 85 

2 1.359x1.359x1.359 22x22x22 144 2.5 0.736 100 

3 1.359x1.359x1.359 22x22x22 144 2.5 0.736 87 

4 2.034x2.034x2.034 22x22x22 18.4 2.5 0.492 96 

5 2.034x2.034x2.034 22x22x22 18.4 2.5 0.492 99 

8 2.034x2.034x2.034 22x22x22 18.4 2.5 0.492 92 

24 1.004x1.004x1.087 66x66x66 5.2 1.5-2.8 0.971 87 

48 0.872x0.872x0.872 66x66x66 8.4 1.5-2.8 1.15 75 

48 0.339x0.339x0.339 66x66x66 138.7 1.5-2.8 2.95 83 

 

As illustrated in Figure 11, which shows a (0 0 1) slice at the centre of the same configuration, the 

strain magnitude and distribution in the precipitates (Figure 11b) is also very consistent with the atomic 

strain computed from the relaxed atomic positions (Figure 11a). The same procedure was repeated on 

a smaller RSV (0.339x0.339x0.339 nm-3) corresponding to a real space voxel size of 2.95 nm. Such 

voxel size is of the same order of magnitude, although slightly smaller, as the resolution accessible 

experimentally (Labat et al., 2015;  Cherukara et al., 2018). Using this large voxel size does not have a 

negative impact on the success rate of the phase retrieval procedure (Table 1). 

 

Figure 12 Evolution of the phase retrieval success rate as a function of the number of nanoprecipitates. The 

squares / triangles correspond to reconstructions performed with a low ( < 32) / high ( > 80) oversampling 

respectively. 
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Figure 12 illustrates the success rate of the phasing as a function of the number of nanoprecipitates in 

the simulation cell. Interestingly, the success rate remains high (> 75%) even for configurations 

containing a large number of precipitates (Figure 12 & Table 1). However, it is also clear from Table 

S15 that a successful phasing can only be achieved if the threshold for shrink-wrap is set properly. As 

shown from the negative slope of the linear fit, the success rate is not completely independent of the 

number of nanoprecipitates and is in fact a decreasing function of the latter. However, the current work 

features only a limited number of data points, especially for large N (as illustrated in Figure 12 where 

26 simulations/data points were computed in total but only 6 for N > 10). To conclude on the dependence 

of the success rate on the number of precipitates would require performing a more systematic study 

with at least one order of magnitude more data points.  

Finally, Table 1 allows to evidence that the success rate is mostly independent on the oversampling 

ratio: a similar success rate is obtained for  < 32 (90 %) and for  > 80 (90.9 %). Additionally, a 

similar success rate is obtained for the relaxed (89.8%) and for the unrelaxed (90.9%) configurations. 

The large strains induced during the relaxation are therefore not detrimental for the phasing.  

In conclusion of this section we have shown that: 

- Superstructure reflections can be used to perform BCDI. 

- The success rate of phasing remains high even for a large number of precipitates. 

These two results are important since to the best of our knowledge, BCDI using superstructure 

reflections has never been demonstrated experimentally, and more importantly BCDI is typically 

employed on isolated single objects. In the present work, we demonstrated that it can also be 

successfully employed to image an assembly of nanoobjects which could open new avenues for the 

technique. 

4. Discussion 

Coherent precipitation and more generally ordered phases are beneficial not only for the HT mechanical 

properties of CCAs but can also enhance the magnetic or catalytic properties of alloyed nanoparticles. 

In bulk CCAs, not only the volume fraction, size and distribution of the nanoprecipitates but also their 

shape have a large influence on the mechanical properties of these alloys. Because the misfit strain 

strongly influences the HT properties, the detailed knowledge of the precipitate shape and 3D elastic 

strain and of their dynamical evolution during ageing is of crucial importance for the development of 

new alloys. The good spatial resolution and extremely high strain sensitivity of BCDI make it the only 

technique suitable to image the 3D field of nanoprecipitates in the size range where they are still in 

perfect coherency with the matrix. More importantly the technique is particularly adapted for in situ 

and operando experiments (Dupraz et al., 2017; Kim et al., 2018) foreseeing the possibility to image 

the evolution of the shape and strain fields in real time during ageing at HT. Such knowledge would 
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help understanding how to design stable microstructures that retain excellent mechanical properties at 

HT. Going one step further, one could perform in situ deformation of bulk or thin film specimens. Such 

experiments would allow investigating the interaction of dislocation with the elastic strain field of 

precipitates and better understand how the latter affect the mobility of dislocations.  

BCDI would be also particularly relevant for the study of ordered particles where both fundamental and 

superstructure reflections can be used to gain further in the 3D strain distribution of isolated 

nanoparticles. Moreover, the possibility to use the technique in situ and operando makes it a potentially 

powerful tool to monitor the nucleation of the ordered phase and the kinetics of ordering during the 

coarsening of the ordered phase. In such systems, superstructure and fundamental reflections can 

provide very complementary information. The former can be used to precisely locate and investigate 

potential defect structure in the ordered phase such as anti-phase boundaries that are quite common in 

the early stage of ordering. Indeed, only superstructure reflections are sensitive to these phase defects 

(Warren, 1969).The fundamental reflections on the other hand would provide information on the extent 

of the strain field of the precipitates in the disordered matrix. In catalytic nanoparticles such as PtCu3 

the technique could contribute to improve our knowledge on the relationship between strain, crystal 

defects and catalytic activity which is essential in order to design better catalysts.  

Most of the aforementioned experiments in bulk CCAs or in ordered nanoparticles require spatial 

resolution of a few nanometres. Such values correspond roughly to the current limits of the technique. 

In addition, the imaging of the local strains in L10 spherical nanoprecipitates presented in this study 

requires to achieve a spatial resolution of the order of 1 nm. Currently out-of-reach for state of the art 

BCDI which can only achieve a spatial resolution at best 5 times higher, next generation synchrotron 

sources will look to bridge the gap. However, the results presented in this work can be generalized to 

larger precipitates sizes that are routinely encountered in many systems (Ni-based superalloys, Fe-based 

alloys, HEAs, …). In such systems, coherency is generally retained for a precipitate size up to 500 nm. 

Their typical size of few hundreds of nanometres is already perfectly suitable for the current capabilities 

of BCDI. Additionally, the technique will benefit from the upgrades of the 3rd generation synchrotron 

that was initiated this year with the ESRF-EBS (Extremely Brilliant Source) upgrade. Taking advantage 

of the increase of the brilliance and coherence of the X-ray beams, one can expect to gain at least a 

factor of three in resolution which would open new experimental avenues. In addition, we have seen 

that the success rate of the phase retrieval is independent of the voxel size: precipitates which contains 

very few voxels can still be reconstructed accurately. 

The limited experimental coherent flux also questions the ability to reconstruct displacement and strain 

fields from superstructure reflections. The scattered intensity from superstructure reflections, is indeed 

much weaker than the scattering from fundamental reflections. Because of that, BCDI on superstructure 

will greatly benefit from the EBS upgrade which will allow to investigate new systems and tackle new 

fundamental questions. Still, some samples are more suitable to the technique than others. For a given 

order parameter, the superstructure reflections are much more intense for the L10 and B2 ordered phases 
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than for the L12. In addition, alloys containing elements with large difference in their atomic number Z 

(which implies a large difference in the Thompson scattering factor) are more suitable for the technique. 

For instance, at 8keV a strong scattering can be expected from a fully ordered (S = 1) PtNi L10 phase: 

𝐼001

𝐼002
=

𝑆2(𝑓𝑃𝑡 − 𝑓𝑁𝑖)2

4(𝑓𝑃𝑡𝑛𝑃𝑡 + 𝑓𝑁𝑖𝑛𝑁𝑖)2 
= 0.23 

On the other, the scattering from the ordered Ni3Fe L12 phase is extremely weak and would be 

challenging to measure experimentally even for S = 1: 

𝐼001

𝐼002
=

𝑆2(𝑓𝐹𝑒 − 𝑓𝑁𝑖)2

16(𝑓𝐹𝑒𝑛𝐹𝑒 + 𝑓𝑁𝑖𝑛𝑁𝑖)2 
= 0.00049 

Finally, similarly to other diffraction techniques, BCDI is a non-destructive technique which takes 

advantage of the large penetration of X-rays in the matter to image the strain and displacement fields 

without requiring extensive sample preparation like TEM or APT. In this respect, it does not suffer from 

the free surfaces boundary conditions that can favour deformation mechanisms not representative of the 

bulk samples in TEM lamella. That being said, an extensive sample preparation is still required if one 

wants to reconstruct the strain field of bulk samples with a grain size larger than 1 mm using 

fundamental reflections (Hofmann et al., 2020). We have seen in this work that the use of superstructure 

reflections could relax this constraint since the finite size of the nanoprecipitates can help the 

convergence of the phase retrieval algorithms. However, for single crystal and coarse-grained samples, 

the longitudinal coherence length of the X-ray beam will most likely constitute the upper limit for the 

maximum thickness of the sample accessible experimentally. If the latter exceeds the coherence length 

of the sample, partial coherence effects will probably be difficult to handle by phase retrieval algorithm. 

Quantifying this partial coherence effects and their influence on the success rate of the phase retrieval 

algorithms could be the object of a future work. Despite these limitations, a sample thickness 

comparable to the longitudinal coherence length ( 0.5 m at 8 keV on the ID01 beamline of the ESRF 

for instance) is still one order magnitude larger than the typical thickness of TEM lamella, implying 

that the deformation mechanisms should be much more representative of the bulk samples.  

5. Conclusion 

We carried out a detailed numerical analysis aimed at evaluating the relevance of BCDI to image 

coherent precipitates and more generally ordered phase. We have first shown that a fully accurate strain 

distribution can be retrieved from both fundamental (in ordered and disordered phases) and 

superstructure (only in ordered phases) reflections. We have also demonstrated that the strain 

distribution retrieved from superstructure reflections is still very precise for partially ordered phases 

with large and inhomogeneous strains, in particular for voxel sizes (averaging volume) comparable to 

the spatial resolution experimentally achievable. In the last section, we have also seen that 

superstructure reflections can be used to perform BCDI on samples containing a large number (up to 

50) of nanoprecipitates. The success rate of phase retrieval was mostly independent of the number of 
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nanoprecipitates for the samples considered in this study. This could open new avenues for the 

technique as BCDI is typically used on single isolated objects.  

Finally, the technique will definitely benefit from the multiple upgrades currently being carried out or 

planned at several third-generation sources. Next-generation sources will provide improved brilliance 

and thus coherent flux which makes it very feasible to transpose our simulation results to the 

experiment. These new capabilities could open the door to BCDI as a microscopy tool to study complex 

real-word materials. 
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