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We search for a Gardner transition in glassy glycerol, a standard molecular glass, measuring the

third harmonics cubic susceptibility χ
(3)
3 from slightly below the usual glass transition temperature

down to 10K. According to the mean field picture, if local motion within the glass were becoming

highly correlated due to the emergence of a Gardner phase then χ
(3)
3 , which is analogous to the

dynamical spin-glass susceptibility, should increase and diverge at the Gardner transition temper-

ature TG. We find instead that upon cooling |χ(3)
3 | decreases by several orders of magnitude and

becomes roughly constant in the regime 100K− 10K. We rationalize our findings by assuming that
the low temperature physics is described by localized excitations weakly interacting via a spin-glass
dipolar pairwise interaction in a random magnetic field. Our quantitative estimations show that
the spin-glass interaction is twenty to fifty times smaller than the local random field contribution,
thus rationalizing the absence of the spin-glass Gardner phase. This hints at the fact that a Gard-
ner phase may be suppressed in standard molecular glasses, but it also suggests ways to favor its
existence in other amorphous solids and by changing the preparation protocol.

At low temperatures, glasses display a set of anomalies
compared to their crystalline counterparts. For instance,
the specific heat and thermal conductivity violate the De-
bye law and the vibrational properties are different from
the ones predicted by the Debye theory of phononic exci-
tations [1, 2]. These concomitant phenomena have been
investigated extensively both at the theoretical and ex-
perimental level starting from the 70s’ [3, 4]. The central
physical question underpinning this field of research is
the nature of the excitations that govern the low tem-
perature physics of amorphous solids. One of the main
proposals is that those are associated to disordered in-
dependent two-level systems (TLS) [3, 4]. Although the
TLS theory allows to explain many experimental results,
some puzzles remain unsolved [5], and theoreticians still
wonder on the possible collective nature of the low energy
excitations [5, 6]. The recent solution of simple struc-
tural glass models obtained in the limit of infinite spa-
tial dimensions [7, 8] has introduced a new possibility in
this research effort: amorphous solids may undergo upon
compression or cooling a new kind of phase transition,
called Gardner transition, that changes their nature, in
particular their low temperature properties.

Let us first recall the main results of the infinite dimen-
sional solution that are relevant for the problem we focus
on. Within this approach an amorphous solid is described
in terms of a metabasin of configurations in which the liq-
uid remains trapped at the glass transition. Since within
the mean-field theory (realized in the infinite dimensional
limit) barriers between metabasins are divergent, amor-
phous solids correspond to separate ergodic components
that can therefore be studied using a thermodynamical
formalism [9]. The main result found in studing infinite
dimensional Hard and Harmonic Spheres [7, 10] is that
these systems undergo a Gardner phase transition when
lowering the temperature or increasing the pressure: be-
low the critical temperature/above a critical pressure the

metabasin associated to the solid formed at the glass
transition breaks down in a multitude of glassy states
organized in a hierarchical fashion [11–13]. This hierar-
chy is of the very same nature as that found in the spin
glass state in certain mean field spin glass models [14].
This Gardner phase brings about soft modes [15], diverg-
ing susceptibilities and collective excitations [16, 17], and
therefore is said to be marginal. Remarkably it plays a
central role in the quantitative understanding of the crit-
ical properties of three dimensional packings of spheres
at jamming [18]. It is therefore also a possible candidate
to explain the anomalous low temperature properties of
amorphous solids.

Whether a Gardner transition takes place for generic
model systems is a question that has been investigated
in the past few years. Already at the mean field level it
has been shown that the emergence of a Gardner phase
may depend on the model (interaction potential) and on
the cooling procedure; proximity to jamming favors its
existence [10, 19] while for some interaction potentials,
well annealed glasses do not undergo a Gardner transition
upon cooling [20, 21]. Therefore the emergence of Gard-
ner physics, even at the mean field level, is not generic
and may depend on the physical context, interaction po-
tential and preparation details. Similar results have also
been found in simulations, where evidences of the Gard-
ner transition have been found mainly in Hard Sphere
systems [16, 22–24]. On the experimental side, favor-
able but somewhat indirect evidences have been reported
in granular glasses [25], colloidal glasses [26] and in two
molecular glasses exhibiting a strong Johari-Goldstein β
peak [27]. From the theoretical point of view, going be-
yond the realm of mean-field theory and including finite
dimensional fluctuations is very challenging: the Gard-
ner transition is alike to the spin glass transition in a
field [23, 28], for which renormalization group results are
not conclusive on the possibility of having a transition in
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Figure 1. (Color Online) Temperature dependence of

δχ
(3)
3 (T ) ≡ χ

(3)
3 (T ) − χ(3)

3 (30K) where χ
(3)
3 is the third har-

monics cubic susceptibility of glassy glycerol, here measured
at an electrical frequency f = 9.878Hz. The left axis is for
the real part data, while the right axis is for the opposite of
the Imaginary part data. Inset : Temperature evolution of

|δχ(3)
3 (T, f)| for T ≤ 25K, where f = 9.878Hz (squares) or

f = 530Hz (triangles). The solid line is an example of the
1/T 2 dependence expected for non interacting TLS’s.

three dimensions [28–31].

All in all, whether standard molecular glasses display
a Gardner phase, or at least some signature of it, remains
an open question. The aim of this paper is to address this
issue by combining experiments and theory. At variance
with previous experiments [25–27], we measure the low
temperature behavior of the third harmonic susceptibil-
ity of glassy glycerol, which is a direct smoking gun of the
transition and is expected to diverge in correspondence of
the Gardner point (see below). We do not find any hint
of such behavior, therefore excluding the possibility of a
transition, at least down to 10K. In parallel, from a the-
oretical point of view, we rationalize our findings using
a phenomenological approach: at variance with previ-
ous theoretical approaches that investigated numerically
the Gardner transition in finite dimension [20, 21], we
build up a phenomenological model of the transition it-
self and we show that within the assumptions considered
in this framework, we cannot expect a Gardner transition
in standard fragile molecular glasses, at least in typical
experimental conditions.

We start by presenting the results of the experiments

on third harmonics cubic susceptibility χ
(3)
3 in glassy

glycerol from 180K ' Tg − 8K, Tg being the usual glass
transition temperature, down to 10K. At low temper-

ature local excitations have a dipolar moment, χ
(3)
3 at

fixed angular frequency ω is expected to probe spin-glass
order [32] and therefore to diverge upon cooling if there

is a Gardner transition [33]. Indeed χ
(3)
3 is the dielec-

tric equivalent of the dynamical spin glass susceptibility.
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Figure 2. (Color Online) Zoom onto the low T part of Fig.1.

More precisely, dynamical critical theory leads to [34–36]:

χ
(3)
3 (ω) =

(
TG

|T − TG|

)ν(2df−d)

g

(
ω

ω0

(
TG

|T − TG|

)zν)
(1)

where ω0 is the microscopic frequency, ν and z are the
critical exponents related to the correlation length and
to the relaxation time respectively, g a scaling func-
tion and df the fractal dimension of correlated regions
(d is the spatial dimension). Using dynamical scaling,
one finds that approaching TG the third harmonics cu-

bic susceptibility χ
(3)
3 should increase when probed at a

fixed frequency and it should reach a maximal value of

χ
(3)
3 (ω) ∼ (ω0/ω)(2df−d)/z at T = TG.

Henceforth we shall report δχ
(3)
3 (T ) ≡ χ

(3)
3 (T ) −

χ
(3)
3 (30K). The reason for this substraction is that at

low temperatures the value of |χ(3)
3 | is typically 104 times

smaller than around the glass transition temperature, i.e.
it is so small that the residual spurious third harmonics

V
(3)
source of the voltage source competes with the third har-

monics signal of the glycerol sample. Using the fact that
the spurious third harmonics does not depend on T , we
can cancel it out by subtracting the value at the refer-
ence temperature T = 30K. In the Supplemental Mate-
rial [37] we present more details and tests that show the
efficiency of our experimental procedure.

In Fig. 1 we show the behavior of δχ
(3)
3 for a frequency

9.878Hz as a function of T -note that |χ(3)
3 (30K)| = (1.0±

0.5) × 10−19m2/V2. Our results show a decrease from
180K to 100K. Close to the glass transition temperature

Tg, |χ(3)
3 | probes correlated particle motion [35, 38].

The decrease below Tg is explained as a progressive
depletion of mobile regions inside the glass matrix, and
does not provide any hint of a Gardner transition. Fig.
2 focuses on temperatures below 100K. In this regime

|χ(3)
3 | is essentially constant. A computation of its value

based on the assumption of independent local excitations
is presented in the Supplemental Material [37] and leads
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to a value 0.9× 10−19m2/V 2 which agrees well with the
one found by experiments [39]. Note that in the regime

[10K; 16K], one sees a very small increase of |δχ(3)
3 (T, f)|

upon cooling. This phenomenon, which is hardly above
our experimental uncertainty, see the errors bars given
in the inset of Fig. 1, was systematically found in the
several experiments that we carried out either by varying
the value of the electric field E or the angular frequency
ω. It can be explained using TLS theory, which predicts

a behavior |δχ(3)
3 (T, f)| ∝ 1/T 2, see the solid line in the

inset of Fig. 1 and the Supplemental Material [37] for
more detail. All in all, our experimental results do not
show any evidence of a Gardner transition from Tg down
to 10K, and they are quantitatively compatible with a
scenario based on independent local excitations. Because
we are limited to T ≥ 10K, we cannot strictly exclude
that some Gardner transition might happen at a critical
temperature below 8K.

In order to rationalize these findings we use a real space
approach. Our main assumption is that thermal fluctu-
ations in glasses are due to localized excitations corre-
sponding to partial local atomic motion within the frozen
glass matrix [40]. This description naturally connects to
the one put forward in the past for the low temperature
properties of molecular glasses, which is based on two
level systems (TLS) [3, 5] as well as to many theories of
rheology of amorphous solids, which are based on local-
ized soft spots of particles that are prone to rearrange-
ment [41, 42]. Besides, recent simulations exhibit local-
ized excitations in models of molecular glasses [21]. The
interaction between excitations is mediated by the elec-
tric and the elastic fields. Since the local conformations
corresponding to the excitations are random the resulting
couplings are random. From this real space perspective,
the Gardner phase would be a spin-glass phase arising
from the interaction of local excitations.

In order to study the Gardner phase, we model the
localized excitations as N degrees of freedom located in
random positions in space. Their density is ρ = N/V ,
where V the total volume of the system. Each one of
them will be denoted σx, where x is the correspond-
ing position. Each localized excitation can be in mx

(x-dependent) states, which correspond to the possible
conformations of the localized excitation, i.e of the local
atomic positions belonging to the excitation. For simplic-
ity, in the following we take mx = 2 for any x as done
for TLS, and use a notation where σx ∈ {−1, 1} corre-
spond respectively to the low and high energy state of the
local excitations. Our arguments and conclusions carry
over straightforwardly for mx > 2. The corresponding
Hamiltonian reads

H = −U0

∑
i 6=j

1

|xi − xj |3
uijσxi

σxj
− 1

2

N∑
i=1

εiσxi (2)

We have decomposed the interaction between the local
excitations in an amplitude, which decreases as the cube
of the distance between excitations, and in a random adi-

mensional coupling uij , which depends on the local stress
tensors and electric dipoles corresponding to the different
states of the local excitations, see e.g. [3–5] for a similar
modelling for TLS. U0 is the energy scale of the inter-
action (measured in temperature times unit of volume).
The fact that local excitations can be in states with dif-
ferent local energies is encoded in the random positive
εis. The model is effectively a spin glass since the cou-
plings uij are characterized by an even distribution. This
follows from the fact that uij is bi-linear in the dipolar
electric moments and the strain tensors associated to the
interacting local excitations [3–5]. Since their distribu-
tion in space is statistically symmetric under rotation, in
particular under a change of sign, the probability of uij
and −uij are identical. Note that there are correlations
between couplings uij associated to the same excitations,
i.e. uij , uik are correlated random variables. The local
positive energies εi are assumed to be independent ran-

dom variables with a density distribution 1
∆ typ

f
(
ε
∆ typ

)
,

where ∆typ is the typical value of εi for a localized exci-
tation. We expect, although it is not a crucial ingredient
for what follows, that ∆typ is of the order of the typical
effective barrier for β relaxation below the glass transi-
tion temperature, i.e. thousands of Kelvins.

Our aim here is not to construct the precise phase di-
agram of this model, for which a precise characterization
of the probability distribution of the uijs and εis would
be required, but instead we want to investigate the pos-
sible existence of the Gardner phase based on order of
magnitude estimations. In order to do that, one of the
key ingredient is the amount of local excitations per unit
volume, which can be estimated from TLS physics, since
those correspond to very low-energy flank of the distribu-
tion. Results on TLS tell us that f(0) > 0 and that the
density of thermally active localized excitations at, say,
10K is around 1/(7nm)3 [3, 4]. Since those are expected
to be characterized by ε� ∆typ, we obtain that∫ 10K

0

dε
1

∆ typ
f

(
ε

∆ typ

)
' 10K

∆typ
f(0) ' 1

(7nm)3

which sets the scale of f(x) (energies are expressed in
units of temperature). Note that assuming a ∆typ of
the order of a few thousands of Kelvin (see above) one
gets approximatively an excitation per nanometer cube,
which seems reasonable for typical excitations. In or-
der to connect with the notation used for TLS, we re-
call that in that case ε =

√
δ2 + ∆2

0 where the poten-
tial disorder energy δ and the coupling tunnel energy ∆0

are distributed with a density ρ(δ,∆0) = p/∆0 [3, 4]
where p is a constant. This yields - see Supplemental
Material [37] and [3, 4]- f(0)/∆typ ' p ln

(
∆max

0 /∆min
0

)
where ln

(
∆max

0 /∆min
0

)
' 20. An important hypothesis

for our arguments is that the function f(x) is regular.
This amounts to assume that f(x)/f(0) starts from one
at x = 0, varies for x of the order of one and eventu-
ally goes to zero for larger xs. As far as order of magni-
tude estimates are concerned, we can use the simple form
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f(x) = f(0)θ(x− 1), with θ(x) the Heaviside function.
The main issue we wish to address is whether the inter-
action between local excitations is large enough to lead
to a spin-glass phase. In order to work this out, one has
to compare the value of the interaction to the local en-
ergy difference εi; if the latter is too strong then a local
excitation is subjected to a very strong bias toward the
low energy state σi = −1 and its physical behavior is
insensitive to the other ones, i.e. no long-range order can
be present. Note that even though the interaction is a
power-law, it is short-ranged as far as spin-glass order is
concerned [43], i.e. the effective field due to the inter-
actions with the other local excitations, is dominated by
the closest excitations [44].
Not all local excitations can be considered active. In fact
for a given temperature T and a given observation time
τ , some of them are frozen out and cannot change state,
or they are just too slow to give rise to collective be-
havior and cannot participate to the putative spin-glass
state. In consequence, to be relevant, a local excitation
must have an εi less than a certain energy ε(T, τ) ≤ ∆typ

which depends on T and τ . On general grounds one ex-
pects this energy scale to be less or equal than ∆typ, and
to decrease with T and increase with τ [45]. The precise
expression of ε(T, τ) is not needed for our arguments.

Using the simplified form of f(x) we therefore find that
the density of active local excitations is

N (ε(T, τ)) = f(0)
ε(T, τ)

∆typ
.

From (2) the strength of the interaction between the local
excitations is I = U0/`

3, where `(T ) is the typical dis-
tance between them. Hence, the interaction strength is
proportional to the density of localized excitation, which
by the previous equation is proportional to the typical
strength ε(T, τ) of the random fields. These relations
therefore allow to establish a direct comparison between
I and ε(T, τ):

I(ε(T, τ)) =
U0

`3
' U0N (ε(T, τ)) = kε(T, τ) (3)

where k = U0f(0)/∆typ = U0p ln
(
∆max

0 /∆min
0

)
. For

molecular glass-former prepared under normal quenched
condition k is of the order 0.002 − 0.02 [46, 47]. In the
Supplemental Material [37] we work out this value for
glycerol, and show that even considering the additional
modes showing up in the Boson peak region, k may reach
0.04 at most. This implies that the strength of the in-
teraction I(ε(T, τ)) is generically much smaller than the
typical local energy ε(T, τ) [48]. Therefore we expect that
the Gardner spin glass phase should be suppressed as we
explain now. Indeed, theoretical studies have shown that
random fields hamper the existence of long-range order:
within the droplet model an infinitesimal random field
is enough to destroy the spin-glass phase [49]; whereas

within mean-field theory a finite field strength, compa-
rable to the coupling strength, is needed [50]. Simula-
tions and experiments have confirmed the negative role of
the field: for three dimensional short-range spin-glasses
[51, 52], if a transition takes place, it does so for field
strengths much lower than the coupling strength. For
three dimensional dipolar spin-glasses, a model similar
to the one studied in this paper, even without a field
the existence of long-range spin-glass order is not estab-
lished [53], thus making the fate of the spin-glass phase
in a field even more uncertain in this case. All that leads
us to the conclusion that in the present case, where the
interaction strength between local excitations is typically
twenty to fifty times smaller than the value of the local
random field, the emergence of the spin-glass phase, and
hence of the Gardner phase, is unlikely.

The natural question that comes out from the conclu-
sions above is why molecular glasses are so different from
colloidal and granular ones for which instead strong sig-
natures of Gardner physics have been found [16, 22–27].
Our results point towards two possible reasons. On the
one hand colloids and granular systems are prepared in
such a way that the resulting solids are much less an-
nealed, since the time-scale for microscopic motion are
much larger (10−6s for colloids and fraction of seconds
for granular media). This leads to a much higher density
of soft localized excitations, and in consequence to an
increase of the interactions term over the random field
one, thus favoring the existence of the Gardner phase.
On the other hand, the proximity to the jamming tran-
sition that takes place for both systems also transforms
the nature of their excitations. Indeed, at jamming, on
top of localized excitations there are also delocalized ones
[54, 55], which could favor the Gardner transition. How
the mechanisms outlined above conspire together to lead
to Gardner physics in three dimensional colloidal and
granular systems is not clear. Simulations and experi-
ments can help clarify this issue. Direct analysis of the
nature of excitations, as the ones performed numerically
in [56], are instrumental. Another possibility is study-
ing systems where the two mechanisms above are sepa-
rated, e.g. ellipsoids or hard spheres under SWAP dy-
namics [57, 58]. To find a Gardner transition in molec-
ular glasses, it would be interesting to find protocols to
prepare very poorly annealed systems. Another possi-
bility, is to study network glasses, such as amorphous
Silica (SiO2), whose structure is close to be marginally
connected [59, 60] and may then display Gardner physics.
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SUPPLEMENTAL MATERIAL

I. THE EXPERIMENTAL SETUP

Glycerol was used as received from Sigma Aldrich -
purity 99.5%- and put in a cell between two stainless steel
electrodes separated by a 27.4µm thick Mylar®ring -see
[61, 64] for details. The cell was put in a cryocooler al-
lowing to cool the sample down to 10K. The maximum
electrical field E applied to the sample was 13MV/m. We
used the “twin T” filter method described in Ref. [64]:
this suppresses the signal at the fundamental frequency,
which is overdominated by the linear susceptibility χlin,
and allows an accurate detection of the third harmon-
ics cubic susceptibility χ

(3)
3 . The experiments reported

here were typically carried out as follows: after having
been characterized at 205K' Tg + 17K, the sample was
cooled, in 6 hours, down to 10K -the lowest temperature-
at zero electrical field. Then E was varied from 7MV/m

to 13MV/m -with the frequency fixed to 9.878Hz- to
monitor the third harmonics signal at T = 10K. The
temperature T was then increased to another value -with
E = 0- and after 2 hours of stabilization, the field E was

varied again to monitor χ
(3)
3 at the new T . The inter-

val from 10K to 205K was covered in 13 successive steps
-square symbols in Fig. 3-. In the second part of the
experiment -circles in Fig.1 of the main text and in Fig.
3-, the maximum field was applied permanently -still at
f = 9.878Hz- and T was varied continuously from 205K
to 10K in 6 hours.

As explained in the main text, χ
(3)
3 becomes so small

below -say- 100K that the 3ω signal coming from the sam-
ple is obscured by the one stemming from the residual

spurious third harmonics V
(3)
source of the voltage source.

Because measuring accurately V
(3)
source is difficult, the

absolute value of |χ(3)
3 | is known with an accuracy of

±5 × 10−20m2/V2, e.g. we find |χ(3)
3 (30K)| = (1.0 ±

0.5)× 10−19m2/V2. To reduce this uncertainty, we have

used the fact that V
(3)
source does not depend on the tem-

perature, and this is why we have systematically plotted

χ
(3)
3 (T )−χ(3)

3 (30K): this difference is known with a bet-
ter accuracy, as shown by the error bars plotted in Fig.
3 and also in the inset of Fig. 1 of the main text. Note
that these error bars are well known for the “heating”
procedure -square symbols of Fig. 3. Indeed in this case,
the electrical field is systematically varied at constant T ,
which allows to test that the difference between the mea-
sured 3ω signals Vmeas(3ω, T )− Vmeas(3ω, 30K) behaves
as expected when varying the field: its phase turns out to

be independent of the amplitude V
(1)
source of the -first- har-

monics of the voltage source; while its modulus is found

to be proportional to the cube of V
(1)
source. The error bars

are deduced from the slight deviations observed with re-
spect to these two requirements about the phase and the
cubicity of the modulus.

For the “cooling” procedure, reported with circles sym-
bols in Figs.1 and 2 of the main text and in Fig.3, we can-
not perform such a detailed analysis, because the field is
kept constantly at its maximum value of 13MV/m. We
observe on Fig. 3 that the dispersion between neighboor-
ing points in the cooling procedure is of the same or-
der as the errors bars thoroughly measured in the “heat-
ing” procedure. Moreover the values obtained in the two
procedures nicely correspond for the imaginary part of

χ
(3)
3 while, for the real part, they show a difference of
' 3 × 10−20m2/V2in the [50K; 100K] range. We do not
not understand this difference, but we emphasize that it
remains very small and cannot not change our conclu-
sions in any respect.
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Figure 3. (Color Online) Temperature dependence of the
third harmonics cubic susceptibility of glassy glycerol at fre-
quency ω = 9.878Hz as a function of temperature. The left
axis reports the value of the real part data, while the right axis
is for the opposite of the Imaginary part data. On top of the
data obtained by the “cooling” procedure already reported in
Figs.1 and 2 of the main text -full and open circles-, we plot
the data recorded in the “heating” procedure where the field
is systematically varied at each temperature -square symbols-
. The two sets of data follow each other, their diffrence is
in any case smaller than 3 × 10−20m2/V2. We remind the
reader that for glycerol around its glass transition tempera-

ture Tg ' 190K, one has |χ(3)
3 (Tg)| ' 2× 10−15m2/V2.

II. ASSESSING THE VALUE OF χ
(3)
3 FOR

GLYCEROL AT LOW TEMPERATURE

Here we detail how we assess the order of magnitude
of the key quantities of our model.

A. Assessing the density of local excitations and
their interactions

In order to evaluate I and ε(T, τ) we use the current
available data on TLS estimation in glassy glycerol (that
we have used in our experimental setting).

In the standard TLS model, the density of two level
systems (TLS) having a potential disorder energy δ and
a coupling tunnel energy ∆0 is distributed with a den-
sity ρ(δ,∆0) = p/∆0. The energy spillting is given by

ε =
√
δ2 + ∆2

0. Because we are interested only in “ac-
tive” TLS’s, we both take into account: (i) a thermody-
namic requirement -their gap ε cannot exceed much kBT
otherwise they lie only in their fundamental level-; and
(ii) a dynamical requirement -their relaxation time must
be shorter that the observation time τ ' 1/f where f is
the frequency of the electrical field. By integration over
∆0 one gets the density of TLS ρ(ε) ' p ln

(
∆max

0 /∆min
0

)
where ∆max

0 ∼ kBT -because of requirement (i)- and
where ∆min

0 is to be calculated by using the dynamical re-
quirement (ii). One shows [3, 4] that the relaxation time

τTLS strongly depends on the values of δ,∆0: indeed
one gets τTLS = τTLS(ε, δ = 0)ε2/∆2

0, i.e., for a given
gap ε, the smaller the tunnel energy ∆0 the longer the
value of τTLS . In practice τTLS(ε = kBT, δ = 0) ∼ 1/T 3

with τTLS(ε = 10K, δ = 0) ' 1ps. As a result the log-
arithmic factor ln

(
∆max

0 /∆min
0

)
is always in the range

15 − 25 and because its variations are often negligible
experimentally, one often states that, as we have writ-
ten in the main paper, the density of TLS’s -per vol-
ume and per energy- is ρ(ε) = p ln

(
∆max

0 /∆min
0

)
with

ln
(
∆max

0 /∆min
0

)
' 20. With this convention of insert-

ing the logarithmic factor in the density of states, one
gets ε(T, τ) = kBT ln[τ/τTLS(ε = kBT, δ = 0)]/20 , i.e.
ε(T, τ) ' kBT up to a factor close to 1 containing the
logarithmic dependence on the observation time τ .

In the specific case of glycerol, the measurement of
specific heat [65] yields p ' 1045J−1m−3. Thus, follow-
ing the arguments presented in the text, the density of
TLS active at temperature T is given by nTLS(ε(T, τ)) =
p ln

(
∆max

0 /∆min
0

)
ε(T, τ). Therefore the typical distance

between them is given by `TLS = (nTLS(ε(T, τ)))
−1/3

.
Therefore the typical interaction strength between TLS
is given by I = U0/`

3
TLS = U0p ln

(
∆max

0 /∆min
0

)
ε(T, τ).

In glassy glycerol it is found that U0p ' 10−3 and there-
fore one has that I ' 2 · 10−2ε(T, τ). Therefore the
typical elastic coupling strength between TLS is fifty
times smaller than the typical energy scale of local ex-
citations. As discussed in the main text, this argument
carries over to localized excitations with energies larger
than the usual TLS since the strength of the interaction
between them is directly proportional to their local ran-
dom energy scale, and the proportionality constant is the
same one than for TLS.

Therefore we expect that the Gardner transition can
be strongly suppressed by structural disorder.

Additionally we can compute the typical energy ∆typ

corresponding to the extreme case where each molecule
of glycerol is a local degree of freedom, i.e. where one im-
poses N = ngly with ngly ' 0.85× 1028m−3 the molecu-
lar density of glycerol. One gets -with kB the Boltzmann
constant-:

∆typ/kB =
ngly(

kBp ln
(
∆max

0 /∆min
0

)) ≈ 3× 104K (4)

This estimate of ∆typ is interesting since it turns out
to be larger than (but not so far of) the energy scale Eβ
deduced from the activated behavior of the time scale τβ
around the glass transition temperature Tg: for glycerol
one finds indeed Eβ/kB ≈ 30Tg ≈ 6× 103K.

B. Assessing the density of supplementary
excitations in the boson peak region

On top of the Debye and of the localized excitation
contributions, a supplementary contribution shows up in
the measured specific heat C in the so called Boson peak
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region, where one finds a hump in C/T 3. In glycerol, this
hump is visible [65] between T ? ' 2K and 10T ? ' 20K
with a maximum around 8.5K. Even though the micro-
scopic origin of the Boson peak is still an intense subject
of research, we just need here an estimate of the density
of excitations involved in it. This is why we use Ref [66]
where it is argued that the Boson peak comes from the
contribution of soft modes, the energy density of which
is given by:

Dsoft(E) =
p

6
√

2

[
E

1.8T ?

]4

(5)

This yields a contribution Csoft to the specific heat
growing very fast in temperature, namely Csoft ∼ T 5.
Comparison with experimental data in glycerol shows
that this behavior is obeyed up to a T ' 3T ?, above
which some cutoff comes into play, yielding a round max-
imum in C/T 3 followed by a decrease at higher temper-
atures. This is why the sought estimate of the density
of supplementary modes is of the order of Dsoft(3T ?).
Because one finds Dsoft(3T ?) ' p we conclude that the
supplementary modes associated to the boson peak re-
gion should only double the value of k obtained when
considering only the localized excitations, yielding finally
a maximal value of k ' 0.04 as stated in our main text.
We emphasize that this is an upper bound for k since we
have no logarithmic factor in the range of 20 involved in
the density of soft modes.

C. Assessing the cubic susceptibility of TLS’s

Assuming, on the basis of the previous results, that
the localized excitations can be considered as mainly in-
dependent objects, the order of magnitude of their con-
tribution to the cubic response is given by:

χ
(3)
3 =

ε0 (∆χ1)
2

kBTn(T )

with n(T ) = kBTp ln
(
∆max

0 /∆min
0

)
(6)

where ε0 is the vacuum dielectric constant, ∆χ1 is the
contribution of the localized excitations to the static lin-
ear dielectric susceptibility, and n(T ) is the number of
localized excitations per unit volume which are active at

temperature T . We thus obtain χ
(3)
3 ∝ (∆χ1/T )

2
. This

yields:
• when the standard low temperature behavior for TLS

holds ∆χTLS1 ∝ ln(T/Trev) with Trev ≈ 0.05K, ∆χ1

hardly varies in temperature and one gets χ
(3)
3 ∝ 1/T 2.

Usually the standard low temperature behavior for TLS’s

is observed up to ' 10K. Because the re-increase of χ
(3)
3

reported in Fig. 2 happens when cooling below 16K, it
may be explained by a contribution of independent TLS’s
where ∆χ1 is fairly constant when 10K ≤ T ≤ 16K.

• when increasing T above 20K, ∆χ1 evolves faster
and faster with T : in the interval 20K ≤ T ≤ 80K one
observes ∆χ1 ≈ c1T with c1 ' 2 × 10−4K−1. As a
consequence one finds, by using Eq. (6):

χ
(3)
3 (20K ≤ T ≤ 80K) =

ε0c
2
1

k2
Bp ln

(
∆max

0 /∆min
0

)
≈ 0.9× 10−19m2/V 2 (7)

which is idenpendent on T and has the correct order of
magnitude with respect to the behavior observed in Fig.
1 in the corresponding temperature range.

D. Assessing the contribution of electrostriction
and of Kerr effect to the measured cubic

susceptibility
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Figure 4. (Color Online) Temperature dependence of the
third harmonics cubic susceptibility of glassy glycerol at fre-
quency 9.878Hz. The left axis is for the real part data, while
the right axis is for the opposite of the Imaginary part data.

This order of magnitude of χ
(3)
3 ' 10−19m2/V 2 that

we have just derived is so small that it is worth assess-
ing the contribution of electrostriction and of Kerr effect
which are usually neglected in the interpretation of low
frequency cubic responses of glasses around Tg.

Electrostriction comes from the change of the thick-
ness h of the sample arising from the attraction be-
tween electrodes due to their opposite charges which cre-
ate a pressure Π(t) = ε0εrE

2(t)/2 with εr = 1 + ∆χ1

the static dielectric constant. As a result the thick-
ness decreases by an amount δh = h0Π/Y where h0

is the thickness of the sample at zero applied field and
where Y is the effective Young modulus of the sample
-i.e. the Young modulus combining that of the glass and
that of the spacers separating the electrodes-. Let us
write now the polarisation P coming from the linear re-
sponse χ1. One has P (t) = ε0χ1Vsource(t)/(h0 + δh) '
ε0χ1Vsource(t)/h0 × (1 − δh/h0). Inserting δh ∝ E2, we
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Figure 5. (Color Online) Zoom on the [10K; 100K] range
(same symbols as in as Fig. 1 of the main text). Inset : Tem-

perature evolution of |χ(3)
3 (T, f)− χ(3)

3 (30K, f)| for T ≤ 25K.
The electrical frequency f is either 9.878Hz (squares) or
530Hz (triangles). The solid line is an example of the 1/T 2

dependence expected for non interacting TLS’s.

obtain, on top of the standard linear response, a supple-
mentary term in the dielectric polarisation which is cubic
in the field. As a result electrostriction contributes to the
cubic susceptibility. More precisely δh has two compo-
nents, a static part δh0 and a part δh2ω oscillating at 2ω.
Only the latter contributes to the third harmonics suscep-

tibility χ
(3)
3 but it is difficult to assess how much dynam-

ical effects damp δh2ω with respect to δh0. Therefore we
only estimate the effect of δh0 and the corresponding con-

tribution of electrostriction χ
(1,el)
3 to the first harmonics

cubic susceptibility: we obtain χ
(1,el)
3 ≈ ε0ε

2
r

3Y . This yields

χ
(1,el)
3 ≈ 0.5 × 10−19m2/V 2 which might be significant

with respect to what is reported in Fig.1. However we
emphasize that we just have an upper bound here since
dynamical damping effects should yield a much smaller
electrostriction contribution for the third harmonics sus-
ceptibility.

Finaly, we briefly mention Kerr effect, i.e. the fact that
the optical index nopt may slightly change upon the ap-
plication of a strong field, yielding a change in the high
frequency dielectric constant ε∞ = n2

opt. The strong field
may be a d.c. field or an optical field. Because the change
δnopt of the optical index is quadratic in the field, the
Kerr effect may contribute to the cubic response that is
measured in this work. In glasses, most of the measure-
ments [67] of the Kerr effect have been made by using a
strong field of optical origin -by applying typically an in-
tense laser pulse-: using these values to estimate the Kerr

contribution χ
(3,Kerr)
3 to the measured χ

(3)
3 , one finds

that 4× 10−23m2/V 2 ≤ χ(3,Kerr)
3 ≤ 4× 10−21m2/V 2 de-

pending on the considered glassy material. As a result we
think that the Kerr contribution can be safely neglected
in our experiment.
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