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Influence of surface radiation on the transition to unsteadiness
for a natural convection flow in a differentially heated cavity

P. Chorin , F. Moreau , Y. Billaud, D. Lemonnier , and D. Saury

Institut Prime, UPR 3346 – CNRS � ENSMA � Universit�e de Poitiers, Futuroscope Cedex, France

ABSTRACT
The influence of surface radiation on the transition to the unsteady state
in natural convection is studied numerically. The configuration of the dif-
ferentially heated square cavity with adiabatic horizontal walls is chosen to
generate an internal natural convection flow. It is known that radiative
transfers reduce the temperature difference between the adiabatic walls,
which consequently reduces the thermal stratification of the central zone
and increases the velocity flow. Many studies have focused on the station-
ary regime, but few of them have investigated the transition to unsteady
flow. For this purpose, the effect of the wall emissivity on the critical
Rayleigh number and the associated critical frequency was studied for a
given cavity length. The cavity length and mean temperature of isothermal
walls are set for the whole study. The results show that all these values are
between the values obtained without radiation and those obtained for per-
fectly conducting horizontal walls. The critical Rayleigh number decreases
with emissivity while the associated frequency increases. Moreover, the
symmetry of fluctuating properties of the flow is changed when the radi-
ation is taken into account.
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1. Introduction

The large variety of actual situations in which natural convection takes place (building ventilation,
electronic devices, nuclear power plant, underhood space of cars, etc.) has led the scientific com-
munity to carry out numerous studies on the subject. In most of engineering fields, natural con-
vection flow develops within confined spaces and the associated flow characteristics are complex.
In order to better control the boundary conditions of the problem and thus facilitate its investiga-
tion, academic setups are commonly used. Among these setups, the differentially heated cavity
(DHC), in which two opposite vertical walls are maintained at different temperatures, allows a
thorough study of the flow and the associated heat transfers.

This configuration has been first studied by Batchelor [1]. As the analytical analysis of the
problem is complex, numerical solutions have been proposed and several reference values are
available [2, 3]. Among the possible flow regimes in a DHC, those reference solutions concern
the stationary flow. Later on, several authors have studied regime transitions that occur when the
Rayleigh number increases [4–8]. This transition from steadiness to unsteadiness follows a super-
critical Hopf bifurcation. If the Rayleigh number continues to increase, several other Hopf bifur-
cations occur which leads progressively the flow to chaos [8].
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While some authors have focused on pure convective cases, others have begun to take into
account radiative exchanges [9–12]. In these numerical studies, various radiative models (radiosity
method, P1 approximation, discrete ordinate method… ) are coupled to the convective model.
Considering only surface to surface radiation (i.e. neglecting any radiative interaction within the
medium), the radiative exchanges modify the temperature of the adiabatic walls, which acts both
on the overall flow and on heat transfer. In particular, the thermal stratification of the central
area is reduced. Consequently, a coupling between radiation and convection occurs through non-
isothermal walls.

In those works, the analysis is conducted only on stationary flows. To our knowledge, the only
study of the transition to the unsteady regime in the presence of surface radiation for a two-
dimensional cavity was carried out by Wang et al. [13]. Considering a square cavity and walls
with emissivity of 0.2, the authors have observed that emitting walls lead to trig earlier the transi-
tion to unsteadiness. In addition, the first frequency occurring in the flow is several times greater
than in the absence of radiation.

The present work focuses on the transition to the unsteady state in the presence of surface
radiation. A square cavity is considered in order to study the influence of the emissivity of the
walls on the triggering of this transition and on the emerging frequency in the flow.

2. Mathematical model

The configuration mimics a differentially heated square cavity with isothermal vertical walls at
temperatures Th and Tc (DT ¼ Th � Tc > 0) and adiabatic horizontal walls (see Figure 1).
The cavity length (used as reference length) is set to L¼ 0.335m. It is filled with atmospheric air
whose thermophysical properties are taken constant except for the density (see below) and

Nomenclature

A dimensionless amplitude
Cp heat capacity (J/kg/K)
f dimensionless frequency
g gravitational acceleration (m/s2)
I radiation intensity (W/m2/sr)
L cavity/reference length (m)
N quadrature order
Nuc convective Nusselt number
Nur radiative Nusselt number
Nut total (convectiveþ radiative)

Nusselt number
pm dimensionless driving pressure
Pl Planck number, Pl ¼ k

4rT3
0L

Pr Prandtl number, Pr ¼ �
a

qinc dimensionless incident radiative flux
qr dimensionless net radiative flux
Ra Rayleigh number, Ra ¼ gbDTL3

�a
t dimensionless time
T temperature (K)
T0 mean temperature, T0 ¼ ThþTc

2 (K)
U, W dimensionless velocity components
X, Z dimensionless coordinates

Greek symbols
a thermal diffusivity (m2/s)

b thermal expansion coefficient (1/K)
DT temperature difference between isothermal

walls (K)
e wall emissivity
k thermal conductivity (W/m/K)
� cinematic viscosity (m2/s)
q density (kg/m3)
r Stefan-Boltzmann constant (W/m2/K4)
h dimensionless temperature
X direction vector

Subscripts
c cold
crit critical
h hot
std standard deviation

Abbreviations and operators
DHC differentially heated cavity
DOM discrete ordinate method
h�i time-averaged quantity
�� space-averaged quantity
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evaluated at the mean cavity temperature T0 ¼ 1
2 ðTh þ TcÞ ¼ 293:15 K: Under these conditions,

the following fluid thermophysical properties are: Prandtl number Pr¼ 0.711, thermal conductiv-
ity k ¼ 0:0257 W:m�1:K�1, thermal diffusivity a ¼ 2:115� 10�5 m2:s�1 and heat capacity Cp ¼
1005 J:kg�1:K�1: The Boussinesq approximation is assumed, i.e. it is considered that the density
is constant except in the buoyancy term where it linearly depends on temperature as following:

qðTÞ ¼ q0 1� bðT � T0Þ½ � (1)

where q0 ¼ 1:207 kg:m�3 is the mean density and b ¼ 3:41� 10�3 K�1 is the thermal expansion
coefficient. The Rayleigh number indicates the flow regime and is defined as:

Ra ¼ gbDTL3

�a
(2)

where � is the cinematic viscosity. All variables relative to lengths, speeds, times and pressures
are scaled using the following reference values: L, a

L

ffiffiffiffiffiffi
Ra

p
, L2

a
ffiffiffiffi
Ra

p and q0
a2
L2 Ra, respectively.

Moreover, dimensionless temperature is written as h ¼ T�T0
DT 2 ½�0:5 ; 0:5�: The dimensionless

governing equations can then be written as follow:

r:V ¼ 0 (3)

@V
@t

þ ðV:$ÞV ¼ �$pm þ Pr h ez þ Prffiffiffiffiffiffi
Ra

p r2V (4)

@h
@t

þ ðV:$Þ h ¼ 1ffiffiffiffiffiffi
Ra

p r2h (5)

where ez is the vector of vertical axis, oriented upwards. The associated boundary conditions in
dimensionless form are:

� U ¼ W ¼ 0 on all walls
� h ¼ hh ¼ þ0:5 and h ¼ hc ¼ �0:5 on hot and cold walls, respectively
� � @h

@Z þ qr ¼ 0 and @h
@Z þ qr ¼ 0 on bottom and top walls, respectively

Figure 1. Scheme of the differentially heated square cavity.
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where qr is the dimensionless net radiative flux defined as:

qr ¼ e
4Pl

T0

DT
T
T0

� �4

� qinc

" #
(6)

Due to the fluid properties mentioned previously, the Planck number Pl ¼ k
4rT3

0L
is conse-

quently equal to Pl ¼ 1:34� 10�2 where r is the Stefan-Boltzmann constant. The dimensionless
incident radiative flux qinc is derived from:

qinc ¼ 1
rT4

0

ð
n:X<0

Iðx,XÞjn:Xj dX (7)

where I is the radiation intensity and X the direction vector. All walls are radiatively active with
the same emissivity e. The convective and radiative Nusselt numbers on vertical walls are respect-
ively defined as:

Nuc ¼
ð1
0

@h
@X

ðZÞ dZ (8)

Nur ¼
ð1
0
qrðZÞ dZ (9)

Finally, the knowledge of convective and radiative Nusselt numbers let define the total Nusselt
as:

Nut ¼ Nuc þ Nur (10)

3. Numerical methods and validation

All computations are performed using the computational-fluid-dynamics software Code Saturne
[14] based on a co-located finite-volume approach to discretize the Navier-Stokes and energy
equations. A centered second-order scheme in space is used to solve the momentum and energy
equations, whereas the time-advancement is achieved with a second-order Crank-Nicholson
scheme. The time step is set to reach the CFL condition such that the Courant number is lower
than 1 at any time and any location. The pressure-velocity coupling is carried out with a predic-
tion-correction algorithm similar to SIMPLEC. A non-uniform mesh is used to obtain a well-
refined mesh near the walls, using a cell distribution in the two directions with the density func-
tion dðmÞ ¼ coshð4m� 2Þ, m 2 ½0 ; 1�:

The incident radiative flux is calculated using the discrete ordinate method (DOM) [15]. A set
of discrete directions is defined, where each direction has its own weight according to a quadra-
ture formulae. The SN quadrature is used here [16] where N is the quadrature order. This quadra-
ture considers NðN þ 2Þ directions. This computational routine was developed to this purpose
and implemented in Code Saturne [17].

A mesh convergence study is carried out, based on comparison of Nusselt numbers. The val-
ues of convective and radiative Nusselt numbers at the hot wall for Ra ¼ 106 (corresponding to a
steady flow) and e ¼ 0:8 are compared with results from Wang et al. [13]. The temperature

Table 1. Convergence test on mesh size and relative gaps with reference values; Ra ¼ 106, e ¼ 0:8,DT ¼ 10 K, on the
hot wall.

Mesh 90� 90 110� 110 130� 130 Wang et al. [13]

Nuc 7.782 7.786 7.789 7.815
(�0.4%) (�0.4%) (�0.3%) _

Nur 11.115 11.109 11.104 11.265
(�1.3%) (�1.4%) (�1.4%) _
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difference between the isothermal walls is set to DT ¼ 10 K, which is associated in that validation
case with a cavity length of L¼ 0.983m. It can be seen in Table 1 that for the three meshes con-
sidered, the relative gaps on the Nusselt numbers calculated with the reference case are smaller
than 1.4% in absolute value. However, the mesh of size 90� 90 does not allow to detect the
unsteady behavior of the flow with a higher Rayleigh number, due to the occurrence of erratic
oscillations. That is why the mesh 110� 110 is retained thereafter.

Convergence on quadrature order for the same test case considering quadratures S4, S8 and S12
(having 24, 80 and 168 directions, respectively) is displayed in Table 2. Nuc values are very close
whatever the quadrature order. However, the relative gap on Nur for quadrature S4 is larger than
those for quadratures S8 and S12 (which are close to each other). Thus the S8 quadrature is
retained as it offers the best compromise between accuracy and computational time.

The total Nusselt numbers Nut obtained for Ra ¼ ð104, 105, 106Þ and e ¼ ð0:2, 0:8Þ are com-
pared to results from Saravanan and Sivaraj [12] and Wang et al. [13] in Table 3. The flow is
steady for all considered Ra. As in [12,13], the temperature difference between isothermal walls is
set at DT ¼ 10 K and the cavity length is adapted according to the Rayleigh number. Relative

Table 2. Convergence test on quadrature order and relative gaps with reference values; Ra ¼ 106, e ¼ 0:8,DT ¼ 10 K, on the
hot wall.

Order S4 S8 S12 Wang et al. [13]

Nuc 7.788 7.794 7.789 7.815
(�0.3%) (�0.3%) (�0.3%) –

Nur 11.027 11.109 11.123 11.265
(�2.1%) (�1.4%) (�1.3%) –

Table 3. Comparison of total Nusselt numbers Nut of present work (PW) with values from Saravanan et al. [12] and Wang
et al. [13], and relative gaps with reference values; DT ¼ 10 K.

Nut

Saravanan Wang et al. [13]
Ra e PW et al. [12]

104 0.2 2.755 2.757 (�0.1%) 2.767 (�0.4%)
0.8 4.602 4.629 (�0.6%) 4.650 (�1.0%)

105 0.2 5.461 5.477 (�0.3%) 5.484 (�0.4%)
0.8 9.298 9.371 (�0.8%) 9.385 (�0.9%)

106 0.2 10.667 10.671 (<0.1%) 10.736 (�0.6%)
0.8 18.902 19.029 (�0.7%) 19.080 (�0.9%)

Figure 2. Temperature h (left) and horizontal velocity component U (right) vs. vertical location Z; comparison with results from
Wang et al. [13]; Ra ¼ 106, e ¼ 0:2:
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Figure 3. Determination of the critical Rayleigh number Racrit based on the linear variation of the squared amplitude A2 with Ra.

Figure 4. Temporal evolution of temperature h at Ra ¼ 107 from an arbitrary time t0 ¼ 100; (top) X¼ 0.002 and Z¼ 0.10 (mid-
dle) X¼ 0.50 and Z¼ 0.90 (bottom) X¼ 0.50 and Z¼ 0.98.

6 P. CHORIN ET AL.



gaps are below or equal to 1.0%. In addition, the profiles of temperature and horizontal compo-
nent of velocity at mid-width (X¼ 0.50) for the case Ra ¼ 106 and e ¼ 0:2 are given in Figure 2.
There is a good agreement with the profiles from [13]. The code is thus validated thanks to the
reference results for steady cases.

It must also be checked whether the transition from steady to unsteady state occurs at the cor-
rect critical Rayleigh number Racrit and with the correct flow frequency fcrit. To our knowledge,
the only study of this transition for a bidimensional cavity submitted to radiation is that of Wang
et al. [13]. The authors chose the particular value of L¼ 0.335m and a wall emissivity of e ¼ 0:2:
As the transition is following a supercritical Hopf bifurcation, the squared amplitude of the fluc-
tuations evolves linearly with Ra in the vicinity of Racrit. This relationship is used to estimate the
value of the critical Rayleigh number (see Figure 3). The measurement points have been chosen
such that the temporal evolution of the temperature signals is almost sinusoidal (see Figure 4),
which is a necessary condition for this relation to be verified. Indeed, in some points in the cavity
the temporal signals are more strongly modified, although the fundamental frequency is the
same. As seen in Table 4, the Racrit and fcrit values with and without radiative transfer are in
good agreement with the ones in the literature. This demonstrates the capability of the numerical
methods used in the present work to properly detect the transition to unsteadiness.

4. Results and discussions

In order to study natural convection with the interaction of surface radiation in DHC, the cavity
length has to be set because the effects of radiation depend on it (see [17]). The cavity length is
set at L¼ 0.335m [13] and T0 is maintained at 293.15K, corresponding to a Planck number Pl ¼
1:34� 10�2: This ensure relatively small values of DT (from 1 to 15K), which allows to stay
within the Boussinesq approximation. For cases without radiation, Ra is the unique driving par-
ameter and the cavity length can be chosen such that DT � 15 K.

In order to illustrate the effects of radiation, temperature fields for e ¼ 0 (without radiation)
and e ¼ 1 (black surfaces) at Ra ¼ 106 are given in Figure 5. The streamlines are superimposed
in order to visualize the associated structure of the flow. Without considering wall radiation (i.e.
e ¼ 0), the flow crosses the central area (X 2 ½0:4, 0:6�) mainly through horizontal flowlines.
When black surface radiation is considered (i.e. e ¼ 1), the flow exhibits major vortex structures,
in particular a large central vortex with a direction of rotation in opposition to the one of the
main flow, which has not been previously noticed in the literature to the authors’ knowledge.
These changes on core flow are highlighted in Figure 6 with the profiles of the horizontal compo-
nent of velocity U against the elevation Z at mid-with of the cavity. The maximum of the hori-
zontal velocity is more than twice higher for e ¼ 1 than for e ¼ 0 (0.132 against 0.065) whereas
the reverse flow (contra-rotating vortex) is observed between Z¼ 0.3 and Z¼ 0.7 only for e ¼ 1:
Consequently, the flow rate on the mid-height of the cavity at X¼ 0.5 is 12% higher with wall
radiation. Moreover, it can be noticed on the temperature fields (Figure 5) that the central area
has an important thermal stratification in the case where wall radiation is not considered (e ¼ 0)
but a weaker one in the case of wall radiation with black surfaces. The thermal stratification at
the center of the cavity S ¼ @h

@Z ðX ¼ 0:5 ;Z ¼ 0:5Þ is thus 26% lower for e ¼ 1 (S¼ 0.680) than
for e ¼ 0 (S¼ 0.916). This difference in thermal stratification is linked to a change in the

Table 4. Comparison of critical Rayleigh numbers Racrit and critical frequencies fcrit from present work with results from Wang
et al. [13]; Pl ¼ 1:34� 10�2:

Wang et al. [13] Present Work

Racrit e ¼ 0 1:82� 108 1:81� 108 (�0.6%)
e ¼ 0:2 9:3� 106 9:5� 106 (þ2.5%)

fcrit e ¼ 0 0.047 0.045 (�2.6%)
e ¼ 0:2 0.154 0.153 (-0.4%)
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temperature of the adiabatic walls: the radiation exchange reduces the temperature difference
between the top and bottom adiabatic walls and therefore the stratification within the cavity
(which in turn modifies the structure of the flow). This change in temperature distribution on
the adiabatic walls for these two extreme cases is shown in Figure 7. For e ¼ 0, the mean tem-
perature difference between the top and bottom walls is equal to 0.601, that means 60.1% of the
temperature difference between the isothermal walls, against only 6.5% for e ¼ 1:

Thus the radiation exchanges lead the present case, with adiabatic horizontal walls, close to
the case of perfectly conducting horizontal walls for which the temperature difference between
these walls is zero. As noted by Wang et al. [13], it can be expected that the critical Rayleigh

Figure 5. Temperature fields for Ra ¼ 106, Pl ¼ 1:34� 10�2; (top) e ¼ 0 and (bottom) e ¼ 1; streamlines are overprinted.
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number of the onset of the unsteady state is then intermediate between the value for adiabatic
walls in pure convection (Racrit ¼ 1:82� 108) and the value for perfectly conducting horizontal
walls (Racrit ¼ 2:11� 106). In addition, it can also be expected that the emerging frequency in the
flow has a value between the adiabatic case without radiation (fcrit ¼ 0.046) and the one for per-
fectly conducting horizontal walls (fcrit ¼ 0.214). In order to check these assumptions and to
determine how these quantities vary in presence of radiation, the critical Rayleigh number and
the critical frequency as functions of the emissivity are given in Figure 8. The frequencies are
obtained using spectral analysis (see insert in Figure 8). All the values of Racrit and fcrit are actu-
ally between the limits previously expected. Moreover, these quantities vary monotonically and

Figure 6. Horizontal velocity component U profiles at X¼ 0.5, Ra ¼ 106 and Pl ¼ 1:34� 10�2 for e ¼ 0 and e ¼ 1:

Figure 7. Temperature profiles at top and bottom walls at Ra ¼ 106 and Pl ¼ 1:34� 10�2 for e ¼ 0 and e ¼ 1:
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for low emissivities the variations of Racrit and fcrit are greater than for high emissivities, as the
slopes decrease progressively when e increases. fcrit is thus almost four times higher for e ¼ 1
than for e ¼ 0 while Racrit has decreased by two orders of magnitude.

Another characteristic of the onset of the unsteady state is the growth rate of the fluctuations
from the critical Rayleigh number. As it was seen in Figure 3, the square of the amplitude of the
temperature fluctuations A2 at any point inside the cavity growths linearly with Ra. The growth

Figure 8. Critical Rayleigh number Racrit and critical frequency fcrit vs. wall emissivity e for Pl ¼ 1:34� 10�2; Racrit is displayed in
logarithmic scale and fcrit is displayed in linear scale; Power Spectral Densities for e ¼ 0 and e ¼ 1 are inserted.

Figure 9. Growth rate of the squared amplitude of temperature fluctuation with the Rayleigh number dA2
dRa at

(X ¼ 0:508 ; Z ¼ 0:508) vs. wall emissivity e for Pl ¼ 1:34� 10�2; specific cases for e � 0:2 are inserted with a linear regression
for e 2 ½0:2 ; 1�:

10 P. CHORIN ET AL.



rate of these fluctuations dA2

dRa is thus the slope of the profile of A2 against Ra. The variation of dA2

dRa
measured on the temperature at (X ¼ 0:508 ;Z ¼ 0:508) against e is shown in Figure 9. The
value for the case without wall radiation (e ¼ 0) is one order of magnitude higher than the values
for the cases with wall radiation (e 6¼ 0), hence the profile for e � 0:2 is inserted. dA2

dRa ðeÞ starts by
strongly decreasing for e 	 0 and then increases in a linearly for emissivities greater than 0.2.
Indeed, the square of the correlation coefficient obtained for the linear regression in the range
e 2 ½0:2; 1� is greater than 0.999. Even if this first decrease following by an increase on this profile
is observed at the other measuring points, a linear relationship is not clearly observed in other
regions of the cavity. This behavior can be linked to the changes of the Rayleigh number and

Figure 10. Standard deviation on temperature hstd for Pl ¼ 1:34� 10�2; (top) e ¼ 0 and Ra ¼ 1:82� 108, (bottom) e ¼ 1
and Ra ¼ 4:5� 106:
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thermal stratification for the tested wall emissivities, which modifies the mean flow, the tempera-
ture distribution and consequently the growth rate of fluctuations. As this point is closed to the
center of the cavity i.e. the symmetry point of the mean flow, it is less impacted by
these changes.

In order to observe the distribution of the fluctuations within the cavity, standard deviations
on temperature at the beginning of the supercritical regime for both the cases e ¼ 0 and e ¼ 1
are plotted in Figure 10. It is worth mentioning that, in this figure, the displayed Rayleigh num-
ber depends on the considered case since the critical Rayleigh number changed with wall emissiv-
ities. In the absence of wall radiation (e ¼ 0), the temperature fluctuations are concentrated at the

Figure 11. Fluctuation of temperature h0 for Pl ¼ 1:34� 10�2; (top) e ¼ 0 and Ra ¼ 1:82� 108, (bottom) e ¼ 1 and Ra ¼
4:5� 106 at an arbitrary time.
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end of the vertical boundary layers as observed by Le Qu�er�e and Behnia [6]. On the other hand,
when wall radiative exchanges occur, the largest amplitudes of the fluctuations are located at the
beginning of the vertical boundary layers (and with lower amplitudes along all the walls, region
where the mean flow velocity is large).

Symmetry is another physical property used to characterize unsteady flows. In a DHC with
pure convection (i.e. e ¼ 0), the mean flow is always centro-symmetric (CS), which means that it
satisfies for each ðX, ZÞ locations the following equation:

h/ið1� X, 1� ZÞ ¼ d h/iðX,ZÞ (11)

with / ¼ ðU,W, hÞ and d ¼ �1:
In addition, the fluctuating flow obtained by replacing h/i by /0 ¼ / � h/i can be centro-

symmetric if d ¼ �1 or anti-centro-symmetric (ACS) if d¼ 1, according to the unsteady mode
considered [8]. In the absence of wall radiation (e ¼ 0), the first unsteady mode is ACS [8]. The
results in this study show that the first mode obtained when surface radiation is considered is CS
whatever the value of the emissivity. This CS behavior was also found for a cavity with perfectly
conducting horizontal walls. Thus the presence of wall radiation modifies the symmetry of the
fluctuating temperature field. This difference can be seen in Figure 11: the fluctuating structures
are in phase in Figure 11 (top) but in phase opposition in Figure 11 (bottom) with respect to the
center of the cavity.

Finally, for information, several data obtained during this study are gathered and made avail-
able in Table 5.

5. Conclusion

A natural convection flow in a differentially heated square cavity with adiabatic walls is consid-
ered. The working fluid is air taken at normal condition of temperature. The solutions are
obtained numerically by finite volume method. A radiative model is solved by the discrete ordin-
ate method allowing to take into account radiative exchanges between the walls. The influence of
the wall emissivity on the triggering of the transition from stationary to unsteady state has been
studied for a cavity of length 0.335m and for a mean temperature cavity T0 ¼ 293:15 K. The fol-
lowing conclusions can be drawn:

� All critical Rayleigh numbers and emerging frequencies in the flow are between the values of
the case without radiation and the values of the case with perfectly conducting horizon-
tal walls.

� Critical Rayleigh number decreases with the emissivity while the frequency appearing in the
flow increases.

Table 5. Numerical results slightly below the Racrit value for each tested emissivity e: thermal stratification S, mean tempera-
tures of the bottom and top walls �hðZ¼0Þ and �hðZ¼1Þ , convective and radiative Nusselt numbers Nuc and Nur on the hot wall
(X¼ 0) and on the cold wall (X¼ 1).

e Ra S �hðZ¼0Þ �hðZ¼1Þ Nuc, X¼0 Nuc, X¼1 Nur, X¼0 Nur, X¼1

0 1:8� 108 1.012 –0.366 0.366 35.211 35.228
0.05 6:0� 107 0.983 –0.293 0.296 25.849 25.898 1.908 1.866
0.1 1:9� 107 0.938 –0.232 0.234 18.613 18.641 3.831 3.803
0.2 9:6� 106 0.882 –0.166 0.168 15.053 15.080 7.842 7.814
0.4 6:6� 106 0.805 –0.103 0.105 13.188 13.218 16.560 16.528
0.6 5:6� 106 0.763 –0.073 0.075 12.433 12.465 26.407 26.372
0.8 5:0� 106 0.740 –0.056 0.058 11.905 11.929 37.005 36.969
1 4:2� 106 0.721 –0.043 0.045 11.237 11.263 49.507 49.474
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� The growth rate of the square of the amplitude of the temperature fluctuations close to the
center of the cavity strongly decreases first for very low wall emissivities and then increases in
a linear way for emissivities larger emissiviies (e > 0:2).

� In the case where wall radiation is considered (e 6¼ 0), temperature fluctuations are mainly
located inside the boundary layers.

� Wall radiation changes the symmetry of the fluctuating temperature field, especially the first
unsteady mode becomes centro-symmetric, whereas it was anti-centro-symmetric when wall
emissivity is null.
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