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Abstract. In this work we present and discuss some features of proofs
in the case of temporal logics. More precisely, we discuss the relation
between proofs for temporal logics built in two distinct frameworks: se-
quent calculi and tableau based calculi, taking as a typical example of
temporal logic propositional LTL (Linear Temporal Logic). This work
is a survey focussing on the comparison between sequent calculi and
tableaux proofs. We also illustrate with some details the tableau based
proofs for ATL⇤ (the most expressive logic of the family of Alternating-
Time Temporal Logics) proposed by Amélie David in 2015. Such a logic
takes into account the presence of several agents that can cooperate (or
not) in a given scenario to achieve some temporal objectives. Up to our
knowledge, no proof-system in the sequent style is known for ATL⇤.

1 Introduction

1.1 Philosophical context

The study of the notion of “proof” and of the related question of what makes
an argument valid is central in gnoseology and has far roots. Aristotle devoted a
great amount of work to study the nature of valid argumentations, and interest
for these problems continued to be alive during Middle Age and Renaissance.
But certainly it acquired a new importance towards the end of 19th century
and blossomed in the 20th century, thanks also to the fundamental work of
Gottlob Frege [Fre79], the father of formal logic, which allowed for the view of
a mathematical proof as a formal object. In 1922 David Hilbert writes:
“we must make the concept of specific mathematical proof itself object of inves-

tigation, just as also the astronomer pays attention to his place of observation,

the physicist must care about the theory of his instrument, and the philosopher

criticizes reason itself ” [Hil22]
With Hilbert proof theory was born. However, a formalization of a logical

proof for Hilbert is a linear succession of formulae leading from assumptions to
the conclusion to be proved (and this view actually comes from Frege’s work).
Gerhard Gentzen [Sza71], in the early 1930s, aims to formulate proofs so as
“to study the structure of mathematical proofs as they appear in practice

1”.

1 The emphasis is ours.



Moreover, he presents proofs as trees, that allows for a form of modularity: sub-
trees can be combined in new ways to generate new proofs. The calculi defined
by Gentzen are sequent calculi and natural deduction calculi; in both cases he
provides combinatorial transformations of any proof into a given direct “canon-
ical form” (syntactic cut elimination for sequent calculi and normalization for
natural deduction). As observed in [NvP14]:

Gentzen’s analysis of the structure of proofs in logic was a perfect success. He

was able to show that the means of proving a logical theorem can be restricted to

those that concern just the logical operations that appear in the theorem. Instead

of logical axioms, there are just rules of inference, separately for each logical

operation such as conjunction or implication, to the said e↵ect. Logic in the

whole is seen as method for moving from given assumptions to a conclusion.

The Fregean tradition, instead, presented logic as consisting of a basic stock of

logical truths, namely the axioms of logic, together with two rules by which new

logical truths can be proved from the axioms.

Gentzen’s approach allows for a deep study on the nature of proofs, giving
precise grounds, for instance, to meaningfully ask the question : ‘In which case
a proof of a given property is simpler than another proof of the same result?”
Thus with Gentzen’s work proof theory made a very important progress, and
new questions were opened. In Hilbert’s program the role of proof theory was
essentially to prove the consistency of mathematics, and it is well known that
Gödel’s incompleteness theorem destroyed Hilbert’s dream of using proof theory
to provide a finitist foundation of mathematics. In [Pra71] D. Prawitz proposed
the name of general proof theory as an appropriate name for a field where proofs
are studied in their own right, in contrast to reductive proof theory where the
study is a tool for reductive aims. It was Gentzen that made general proof theory
really possible.

Nowadays we know a great number of di↵erent styles of formulation of formal
systems aiming at proving theorems, beside Hilbert style axiomatic systems,
namely sequent calculi and natural deduction. For instance, resolution systems
(founded on [Rob65]), tableaux (see [DGHP99]), connection methods ([OB03]),
proof-nets (see [Gir87]), etc. Tableaux systems have a semantical origin, since
they are rooted in the work on semantics by Evert William Beth’s [Bet56,Bet59];
the name “tableaux” for these calculi comes from Beth himself. But, despite
the fact that sequent calculi and tableaux calculi are born in di↵erent contexts,
respectively syntactical and semantical, the two approaches began to meet in the
late sixties: it was realized that classical semantic tableau systems and classical
Gentzen systems were essentially the same thing. This is observed both by Melvin
Fitting and Rajeev Gore in their chapters in [DGHP99]. Indeed, tableau calculi
have a formulation that is not as appropriate as sequent calculi to study the
nature of proofs (both from a mathematical and a philosophical point of view)
but that is particularly apt to do mechanical proof search.

In the case of modal logics, however, this strong link between sequent and
tableau proofs holds for many logics of the family but not for all of them. It
does not hold for some modal logics that are quite used in computer science



to model computer systems and their dynamic behavior. This is typically the
case of temporal logics, as this work emphasizes. General proof theory is quite
alive nowadays, see, for an instance, [StL19]; however proof-theorists have not
devoted a lot of attention to temporal proofs, in general.

1.2 Aim and structure of this work

In this work we focus on temporal proofs.
Very generally speaking, a modality is an expression like “necessarily” (often

noted ⇤) or “possibly” (often noted ⌃) and modal logics study the deductive
behavior of expressions as “it is necessary that” and “it is possible that”. Among
the most well known modal logics there are the propositional logics K, K4, T and
S4. However a lot of di↵erent logics, containing many di↵erent modal operators,
belong nowadays to the very broad family of modal logics, and include, for
instance, logics for belief, deontic logics, dynamic logic and temporal logics.

Among modal logics, temporal logics, aiming to model time and to reason on
it, have acquired a lot of importance in computer science. This is quite natural
because an execution of a computer system, or of a program, performs actions
in time and one may be interested to express and check properties concerning
a temporal ordering between these actions. But time can receive several di↵er-
ent abstract representations. For instance it can be taken to be continuous or
discrete, one can suppose that there is an initial instant (corresponding to a
starting point of a computation) or not, that the future is potentially infinite
or not, that each state of a computation has exactly one next state (this is the
case of LTL, described later on) or that the time is branching, so that “several
futurs are possible” (see CTL or ATL, also described below). Temporal logics are
a typical example of modal logics were the notion of proof is, in general, not
completely understood, and not much studied by proof theorists.

The general aim of this work is to make some remarks on proofs for modal log-
ics formulated in two styles, namely by sequents and by tableaux, so to highlight
their di↵erences and their similarities. We emphasize that for “standard” modal
logics like K, K4, T and S4, actually tableaux are just cut-free sequent proofs
under a given formulation of sequent rules, while this link between tableaux and
sequent proofs becomes problematic, as a matter of fact, when temporal log-
ics, typically LTL, are considered. We investigate the intrinsic reasons -if any-
for this gap, and we shortly describe some works aiming to overcome it. Then,
we describe with some details a tableau calculus for the alternating-time tem-
poral logic ATL⇤ (a multi-agent temporal logic) that has been firstly published
in [Dav15a], building on [CDG14,CDG15,GvD06]; up to our knowledge, there
exists no sequent calculus deciding ATL⇤.

In Section 2 we recall the syntax and the semantics of some modal logics,
namely K, K4, T, S4, LTL and, briefly, CTL. In Section 3 we illustrate the very
strong connection existing between tableaux proofs and sequent proofs for S4.
In Section 4 we present a very well known tableau system for LTL that works in
two phases, thereby being very far from the philosophy of usual sequent calculi.



We mention, however, some more recent work done to get one-pass tableaux for
LTL and/or sequent calculi for this logic. We describe the essential features of
the two-pass tableau calculus proposed by Amélie David in [Dav15a] for the logic
ATL⇤ in Section 6. We conclude by pointing at some lines of future research.

2 Preliminaries on modal and temporal logics

2.1 Modal logics K, K4, T and S4

In this section we recall the basic syntactical and semantical notions for some
well known propositional modal logics: K, K4, T and S4, although in the sequel
we will focus on S4 only.

Unless explicitly di↵erently stated, here and through the whole article we
will use lower-case latin letters for propositional variables and lowercase Greek
letters for formulae.

Let P be a set of propositional variables. The set of formulae of a basic modal
(propositional) language can be defined via the following grammar:

' := p | > | ? | (¬') | ('1 ^ '2) | ('1 _ '2) | (⇤') | (⌃')

where p 2 P .
The set P [ {>,?} is the set of atomic formulae. When there is no risk of

ambiguity we wil omit parentheses. As usual, '!  can be defined as ¬' _  

Formulae are interpreted on interpreted transition systems –called alsoKripke

interpretations
2 (from [Kri63b])– defined as follows.

Definition 1. A frame F is a pair (W,R) where W is a non-empty set worlds

and R ✓ W ⇥W (transition relation).

An interpreted transition system (ITS) M is a pair (F , L) where L : W !

P(P ) is a world description function defining for every world in W the set of

atomic propositions true at that world.

The set W is called the domain of the ITS. For w,w
0
2 W , whenever wRw

0

we say that w
0
is accessible from w.

Let w be a world in an ITS M. The notion of a formula ' being satisfied (or
true) at w, noted M, w |= ' is inductively defined. We omit here the obvious
boolean cases (we just recall that > is the constant for truth and ? the constant
for falsity) and explicit just the modal ones:

Definition 2.

– M, w |= ⇤' if and only if for all w
0
such that wRw

0
we have M, w

0
|= ',

– M, w |= ⌃' if and only if for some w
0
such that wRw

0
we have M, w

0
|= '.

2 The first name is mostly used in computer science, while the second mostly in math-
ematics and philosophy.



A formula ' is satisfiable if there are an ITSM and a world w ofM such that
M, w |= ', otherwise it is said to be unsatisfiable. It is valid if and only if ¬' is
unsatisfiable. Two formulae ' and  are logically equivalent, noted ' ⌘  , when
for any ITS M and any world w we have M, w |= ' if and only if M, w |=  .

Clearly for any ' we have ⇤' ⌘ ¬⌃¬' and ⌃' ⌘ ¬⇤¬'. Hence modal
formulae can be put in negation normal form (fnn), where negation applies only
to atomic formulae.

When no hypothesis is made on frames, then the valid formulae are the the-
orems of the logic K, the smallest normal modal logic. By taking only ⇤ as
primitive modal operator, and ⌃ as a defined one, the logic K can be axiomati-
cally characterized by the addition of the K axiom schema:

⇤('!  ) ! ((⇤') ! (⇤ ))

and of the Generalization rule schema:

'

⇤' (GEN)

to an Hilbert style axiomatization of classical propositional logic.
When the transition relation is supposed to be reflexive, which can be ex-

pressed by the addition of the axiom schema T :

(⇤') ! '

one obtains the logic T.
Frames corresponding to the logic K4 are such that the only hypothesis is

that the transition relation is transitive, which is expressed by the axiom schema
4:

(⇤') ! (⇤⇤')

Finally, the logic S4 is such that transition relation is supposed to be both
transitive and reflexive; therefore it can be axiomatically characterized by the
addition of both the axioms T and 4 to an Hilbert style axiom systems of classical
propositional logic. The logic S4 is the one of the above considered modal logics
that is the most suitable to model time: ⇤' can be read as: ' holds always in
the future (including the present time). However S4 frames can contain cycles,
which is counter-intuitive if time has to be modelled; this defect is absent in LTL,
considered in the next section.

The notion of frame can be generalized so to be a pair (W, {Ra | a 2 A}),
where A is non-empty set of labels and each Ra ✓ W⇥W is a distinguished tran-
sition relation, allowing to interpret a specific set of modal operators. Then one
obtains multi-modal logics. The logics K, K4, T and S4 are then particular cases
of multi-modal logics corresponding to frames equipped of just one transition
relation, interpreting the modal operators ⇤ and ⌃.



2.2 Temporal Logics

A variety of temporal logics exists, widely used in computer science to model
computer systems or programs and to express their properties. Many of them
are variations and/or extensions of the propositional logic LTL (Linear Temporal
Logic) first proposed by Amir Pnueli in [Pnu77] and known also under the name
PTL.

LTL. Let P be a set of propositional variables. The set of formulae of a LTL
(propositional) language can be defined via the following grammar:

' := a | > | ? | (¬') | ('1^'2) | ('1_'2) | (⇤') | (⌃F ) | �' | '1U'2

where a is an atomic formula.

Definition 3. A state is a subset of P . An interpretation M of LTL is a surjec-

tive function N ! 2P enumerating states, possibly with repetitions (necessarily

when P is finite): s0, s1, s2, .... The state s0 is called initial state.

Let us note Mi the element a of such a sequence at position i. Then the satis-
faction relation is inductively defined as follows (omitting the inductive boolean
cases):

– If ' is atomic, Mi |= ' if and only if either ' is > or ' is a propositional
variable p and p 2 M(i).

– Mi |= �' if and only if Mi+1 |= '.
– Mi |= ⇤' if and only if Mj |= ' for each j � i .
– Mi |= ⌃' if and only if there is a j � i such that Mj |= '.
– Mi |= '1U'2 if and only if there is a j � i such that Mj |= '2 and, for any

n where 1  n < j, Mn |= '1.

Observe that LTL can be seen as a bimodal logic: the domain W can be
taken to be the set of elements of any !-sequence of states, L is built in, since
the propositions true at the world Mi are exactly the elements of Mi (that is a
state), and we have two transition relations R� and RNext, where Mi R� Mj

i↵ and only if i  j and Mi RNext Mj i↵ and only if j = i+1. The accessibility
relation R� allows for the interpretation of the modal operators ⇤,⌃ and U
(until), while RNext allows for the interpretation of the other specific operator,
� (Next). The relation R� is reflexive and transitive (as the transition relation
of S4), while RNext is functional: given any state s there exists exactly one s

0

such that s RNext s
0. ActuallyR� is the reflexive and transitive closure ofRNext

and an LTL frame is isomorphic to (N,, Succ), where, for n,m 2 N, n Succ m

if and only if m = n+ 1. There is exactly one such a frame.
Thus, modulo the use of “LTL-interpretation” at the place of “ITS”, the

notions of satisfiability, validity and logical equivalence for LTL keep the same
as in Section 2.13.
3 Alternatively, satisfiability can be defined as ‘truth at the initial state of some inter-
pretation”, but a formula is satisfiable according to the first definition if and only if
it is so according to the second one



Let us observe that ¬ � ' ⌘ �¬', ⌃' ⌘ >U' and ⇤' ⌘ ¬(>U¬'). The
temporal operator R (release), not given as primitive in the above grammar, can
be defined by: 'R = (⇤ )_ ( U( ^')) and it easy to show that ¬('U ) ⌘
(¬')R(¬ ). This allows for rewriting any LTL formula as an equivalent formula
in fnn.

Among the remarkable equivalences we find the fixed point equivalences:
⇤' ⌘ ' ^�⇤'
⌃' ⌘ ' _�⌃'
'U ⌘  _ (' ^�('U )).

We underline that all the instances of the induction schema:

(IND) : (p ^⇤(p ! �p)) ! ⇤p

are valid.
It is worthwhile observing that the fixed point equivalences hold because the

accessibility relation R�, interpreting ⇤, is the reflexive and transitive closure
RNext, interpreting �. Both the fixed point equivalences and the induction
schema have a recursive nature, given to the fact that the LTL frame is isomorphic
to (N,, Succ), as we noted before. This feature of LTL semantics constitutes a
di�culty for the definition of satisfactory sequent calculi, as we will discuss in
the sequel.

Branching Temporal Logics In the case of LTL time is modeled as being
linear, and any numbered state si has exactly one successor. This is not the
case for the Branching Temporal Logics, where at any instant of time there are
several “possible futures”. We shortly describe here the most powerful of these
logic, CTL⇤ (Computation Tree Logic, [CES86]).

The definition of the grammar of formulae involves a mutual recursion be-
tween state formulae, that we will be noted by lower case Greek letters, and path

formulae, noted by upper case Greek letters.
State formulae:  := a | ( ^  ) | ( _  ) | (E�) | (A�)

where a is an atomic formula
Path formulae: � :=  | (¬�) | (� ^ �) | (��) | (⇤�) | (�U�)
This syntactic distinction between two classes of formulae reflects semantics,

where time is modeled so that several di↵erent infinite paths, describing possible
future executions of a system or program, stem from a given state at a given
instant of time. The operators E and A are quantifiers over paths, respectively
existential and universal. A state formula, for instance E⇤⌃p – stating the ex-
istence of least a path where p holds infinitely often –, is evaluated at a state,
the (possible) origin of the claimed path. Path-formulae, as for instance ⇤⌃p,
on the contrary, state a property of the path on which they are evaluated. It is
worthwhile observing that any state formula is also a path formula, while the
converse is false. Let us observe that in LTL, given the uniqueness of the path
corresponding to the !-sequence of states of a given interpretation, this kind of



distinction would be meaningless. By default, “CTL⇤ formula”, tout court, means
“state formula”.

We do not give here the formal semantics of CTL⇤, that can be found in
[DGL16], because our discussion of temporal sequent calculi and tableaux will
focus on LTL and also because in a forthcoming section (Section 6) we describe
with some details the logic ATL⇤ that generalizes CTL⇤ to the multi-agent case,
so that CTL⇤ semantics is subsumed by ATL⇤ semantics.

Among the distinguished fragments of CTL⇤ one finds CTL, which obeys
the constraint that any path quantifier is followed by a temporal operator and,
vice-versa, any temporal operator is preceded by a path quantifier. This logic
is largely used to model computer systems because of its good computational
properties.

Finally, it is is worthwhile observing that, in the philosophical context, there
are several possible semantics for branching-time logics: see [Bel01].

3 Sequent Proofs and Tableaux for S4

In this section we recall sequent calculi and tableaux calculi allowing one to prove
modal formulae of the logic S4, with the aim to illustrate the deep links existing
between these two proof styles. It is worthwhile reminding that similar links exist
also between sequent calculi and tableaux calculi for a variety of modal logics,
including K, T and K4.

Sequent calculi for classical and intuitionistic first order logics are rooted in
the fundamental work on proof theory for classical and intuitionistic logic by Ger-
hart Gentzenin of the thirties of the 20th century by [Sza71]. The first attempt
to formulate sequent calculi for some modal logics can be found in [Cur52] and
[OM57]. Tableaux systems have a semantical origin, since they originate from
[Bet56,Bet59], although their development for modal logics had to wait for the
definition of a proper modal semantics by S. Kripke [Kri63a]. Despite the fact
that sequent calculi and tableaux calculi are born in di↵erent contexts, respec-
tively syntactical and semantical, the two approaches began to meet in the late
sixties when it was realized that classical semantic tableau systems and classical
Gentzen systems were essentially the same thing (see the chapters by Melvin
Fitting and Rajeev Gore in [DGHP99]).

For the sake of concision we do not formulate here sequent or tableau rules
for > and ?.

3.1 Two sided Sequent Calculi for S4

Since Gentzen’s original formulation, sequent calculi have been formulated in
many di↵erent manners. Let us summarize the main essential choices:

1. The main datatype structure can be a sequence, a multi-set or a set of
formulae;



2. The structural rules Exchange, Weakening and Contraction can be either
explicit rules or else can be embedded in the logical rules and the data
structures;

3. Following a terminology introduced by J-Y. Girard [Gir87], each of the rules
for the binary connectives ^ and _ can have either an additive or a multi-

plicative formulation;

4. The cut rule can be present (and its elimination is possibly demonstrated)
or not, and in the second case the calculus is by definition cut-free;

5. Formulae are either “pure” – just expressions of the grammar of the ob-
jet language – or accompanied by labels, encoding semantical informations
(labelled sequent calculi);

6. Traditionally calculi are “two-sided” (a sequent has a left part and a right
part), but also one sided-versions are possible.

In our presentation we choose:

– to use sets of pure formulae as data-structures;

– to embed the structural rules in the calculus (when needed for completeness);

– to give an hybrid additive-multiplicative formulation maximizing determin-
ism when doing proof-search;

– finally, to directly formulate cut-free calculi.

Our choices are motivated by the desire of making particularly evident the con-
nection between sequent calculi and tableaux for S4; an analogous link holds
between sequent calculi and tableaux for K, K4 and T. That is, we aim at show-
ing that for these logics tableaux are essentially a version of sequent calculi that
is well suited for automated proof search although not very appropriate for proof
theory.

We present both a two-sided version of a sequent calculus and a one-sided
one.

Some comments must be made on our choice of sets as data structures. In
Gentzen’s original work a (two-sided) sequent is a couple of sequences of formu-
lae and the structural rules govern the general use of such formulae. Roughly,
Exchange states that the order of formulae does not matter, so it amounts to
use multi-sets rather than sequences as data structures. In the sequel we always
implicitly assume Exchange. The Contraction rules allow for the re-use of for-
mulae when building a proof starting from the conclusion sequent and moving
up toward the leafs (the axioms), that is, to duplicate the principal formula of
a rule as soon as the rule is used, while Weakening rules allow for “forgetting”
a formula while doing such a proof search. That is, Contraction and Weakening
rule are (� and � being sequences of formulae):



�,',') �

� ) �
(Contraction L)

� ) �,','

� ) �,'
(Contraction R)

� ) �

�,') �
(Weakening L)

�,) �

� ) �,'
(Weakening R)

If, di↵erently from Gentzen’s original formulation, one takes a sequent to be
a couple of sets (rather than sequences or multisets) of formulae, then, de facto,
Contraction rules donot make sense any longer, since any formula can appear
at most once in a set. In this case rule formulation becomes context-dependent
(see the discussion in [Nv16]). For instance, a precise and explicit formulation
for the left rule for conjunction (^L) should be:

�,', ) �

� ) � if ' ^  2 �

�,', ) �

�,' ^  ) � if ' ^  62 �

This is rather cumbersome. Moreover, as a consequence, syntactical proofs
of meta-theorems (as cut-elimination) become technically involved, which is cer-
tainly a backdraw for proof-theory. Here, we do take sets as data structures
but we set the convention that �,' means set-union : � [ {'}; this allows us
to avoid the context-depended formulation, that splits each logical rule in two
cases, mentioned above. Once again, we remind the reader that our technical
choice is motived only by the desire of making very explicit the link between
tableaux and sequent calculi, not by proof-theoretical concerns. However, it is
important to observe that even with these conventions when we want to allow
for the re-use of a formula ' when building a proof starting from the conclusion
sequent and moving up, we must explicitly duplicate ', possibly embedding this
duplication in a logical rule defining a logical operator O (see later, in Figure
3.1, our left rule for ⇤ and our right rule for ⌃).

After these preliminary remarks we are ready to present more in details the
version of sequent calculi chosen here.

We will use Greek capital letters to denote finite sets of formulae4. A (two-
sided) sequent is a couple of -possibly empty- sets of formulae �,� written
� ) �; � is called antecedent of the sequent and � is called consequent. Braces
are usually omitted and �,' denotes � [ {'}.

4 This notation is used also for temporal path formulae, later on in this work, but
the meaning of any given occurrence of a Greek capital letter will be clear from the
context.



The intuitive interpretation of a sequent '1, ...,'n )  1, ..., m, n,m � 0, is
that under the hypotheses '1 and ... 'n one can get at least one of the conclusions
 1, ..., m. Let us note �' the formula '1^...^'n (> in the case n = 0) associated
to an antecedent � = '1, ...,'n, and � the formula  1_ ..._ m (? in the case
m = 0) associated to a consequent � =  1, ..., m; the formula associated to
the sequent � ) � is �' ! � . A sequent is valid if and only if its associated
formula is valid. In particular, a sequent )  is valid if and only if the formula
 is valid and a sequent  ) is valid if an only if  is unsatisfiable.

Sequent calculi are mainly thought as direct proof-systems of valid formulae:
given a set of inferences rules, including the axioms (rules with zero premisses),
a proof of (the validity of) a sequent � ) � is a finite tree such that: each
node is a sequent, the root is the sequent � ) �, the leaves are axioms and the
children of a sequent S are the sequents S1, ...,Sn such that S1,...,Sn

S , n � 1 is an
inference rule. Such trees are usually written with the root down and the leaves
up.

In the two-sided formulation of sequents each logical operator O is equipped
with a left rule (O, L) and a right rule (O, R). Each rule can be read either
top-down, as an inference rule allowing for the deduction of the sequent under
the line (the conclusion) from the sequent (the sequents) upside – the premise
or premises –, or else down up, as a proof-search rule, searching for a proof of a
given sequent S starting from it and going upwards toward axioms. If a rule is
seen as a proof search rule, it enables to replace the current goal to be proved
–the lowest sequent– with with the new goal(s) to be proved – the uppermost
sequent(s)–.

The axiom schemas and the propositional rules schemas are given in Figure
1. This formulation of the rules is the same as in the sequent calculus called G

in [Gal15] that was originally formulated by S. C. Kleene. Readers familiar with
linear logic terminology will recognize that (^L) and (_R) have a multiplicative
formulation while (^R) and (_L) have an additive formulation. This formulation
of the rules allows for a deterministic proof search. Indeed, all the rules in the
figure are not only sound but reversible: the sequent conclusion is valid (provable)
if and only if the premises are valid (provable).

The rules for the modal operators are given in Figure 2 where the notations
⇤� and ⌃� mean, respectively, the set of formulae {⇤' | ' 2 �} and {⌃' |

' 2 �}.

It is worthwhile observing that (⇤L) and its dual (⌃R) embed contraction,
while (⇤R) and its dual (⌃L) embed (several applications of) Weakening: this
is necessary for completeness. Observe also that the rules ⇤R and ⌃L are not
reversible, while all the other rules are so.

As an example of proof in the calculus we give here a proof of the validity
of the formula '=(⇤p) ! ⇤⇤p, that is an instance of the axiom schema 4, in a
refutation style. That is, we give a proof of the sequent (⇤p) ^ ⌃⌃¬p ), where
the formula (⇤p) ^ ⌃⌃¬p is equivalent to ¬' and the formula associated to the
sequent is therefore equivalent to ¬' ! ?. Although the natural philosophy
of sequent calculi is the construction of direct proofs, they can be used also
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Fig. 1. Sequent Axioms and Sequent Propositional Rules
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Fig. 2. S4: Sequent Rules for ⇤ and ⌃

to construct proofs by refutation. We choose here to prove � by refuting ¬�

because this example will help to see that tableau proofs for S4, that are always
refutations, can be seen as sequent proofs.

⇤p, p ) p
(axiom)

⇤p, p,¬p )
(¬L)

⇤p,¬p )
(⇤L)

⇤p, p,⌃¬p )
(⌃L)

⇤p,⌃¬p )
(⇤L)

⇤p, p,⌃⌃¬p )
(⌃L)

⇤p,⌃⌃¬p )
(⇤L)

(⇤p) ^ (⌃⌃¬p) ) (^L)

3.2 Tableau calculi for S4

Also tableaux come in many di↵erent formats. Among choices that can be made
one can find:

1. Nodes of a derivation tree are either single formulae or else sets of formulae,
2. Formulae are accompanied or not by labels conveying semantical informa-

tions. Typically, in the case of modal logics, such labels – as in the case
for instance of prefixed tableaux– allow for an explicit representation of the



semantical transition relation R. When labels are absent, the nature of the
transition relation is implicitly encoded into the rule formulation.

Here we have chosen to formulate modal tableaux as trees of finite sets of
formulae and to use the implicit representation of transitions.

Moreover, independently from item 2 above, tableaux can be either signed

or unsigned. Here we will shortly present both formats.
No matter which the format is, generally tableau calculi are refutation sys-

tems: to prove the validity of a formula ' one tries to build a tableau that,
intuitively, shows that the hypothesis of falsity of ' leads to contradiction. The
tableau itself is seen as systematic search for a possible model of ¬', and when
such a search fails ¬' is declared insatisfiable.

If one chooses sets of formulae as the data structures to which the rules of the
sequent calculus apply (which is indeed possible, as we observed), and ignores
the consequent context dependent formulation of sequent rules for the logical
operators, then it becomes apparent that the structure of a tableau is quite
similar similar to the structure of a sequent derivation. A tableau for a set of
formulae � (signed or not, see below) is a finite tree such that: each node is a set
of formulae, the root is � , and the children of a node � are the sets of formulae
�1, ...,�n such that �

�1,...,�n
, n � 1 is an instance of one of the rules of the

calculus. The rules are usually called expansion rules and �1, ...,�n are called
expansions of �. In the case of tableaux trees are usually written with the root
up and the leaves down. When the leaves are all closed (showing a contradiction)
we have a refutation of � . We postpone the formal definition notion of “closed
node”, because it slightly di↵ers according to the signed or unsigned format.

Signed Tableaux for S4. The content of this section is a variant of Melvin
Fitting’s description of signed modal tableaux in his introduction chapter of
[DGHP99].

A signed formula is a couple h', poli where ' is a modal formula (according
to the grammar of Section 2.1) and pol 2 {T, F} is a polarity. The semantics-
oriented intended meaning of the polarities is true (T ) and False (F ), hence
h', T i can be read as “' is true” while h', F i can be read as “' is false”.

Signed formulae that are not atomic are classified as ↵-formulae (or con-
junctive formulae), �-formulae (or disjunctive formulae), ⌫-formulae and ⇡-
formulae, having, respectively, ↵-components, � components, v0 components and
⇡0-components as indicated in Figures 3 and 4. Observe that, reading the po-
larity T as “is true” and F as “is false”, any ↵ signed formula holds if and only
if both the components ↵1 et ↵2 hold, while any � signed formula holds if and
only if at least one of the components �1 et �2 hold.

The expansion rules use the analysis of (signed) formulae in the four classes
and their respective components. The rule schemata are given in Figure 5. For
each rule but (�) the set of formulae below the inference line is called the ex-

pansion; the rule (�) creates a branching in the tree and has two expansions.
A node is closed whenever it contains a pair of signed formulae of the form

h , T i, h , F i. A closed tableau is a finite tableau whose leaves are all closed.



↵ ↵1 ↵2

h' ^  , T i h', T i h , T i
h' _  , F i h', F i h , F i
h¬', T i h', F i h', F i
h¬', F i h', T i h', T i

� �1 �2

h' ^  , F i h', F i h , F i
h' _  , T i h', T i h , T i

Fig. 3. ↵ and � formulae and their components : signed version

⌫ ⌫0

h⇤', T i h', T i
h⌃', F i h', F i

⇡ ⇡0

h⌃', T i h', T i
h⇤', F i h', F i

Fig. 4. ⌫ and ⇡ formulae and their components : signed version
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�,↵1,↵2
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�,�

�,�1 �,�2
(�)

�, ⌫

�, ⌫0, ⌫
(⌫)

�,⇡

�#,⇡0
(⇡)

where �# = {⌫ | ⌫ 2 �}

Fig. 5. S4 Tableau rules

A closed tableau whose root has the form h', T i is a refutation of the unsigned
formula ', thus a proof of ¬'’s validity.

Under a semantical reading the intuitive meaning of all rules but the ⇡ rule is:
“If the premise holds at a world w of an ITS then at least one of the expansions
holds at w”. The intuitive meaning of the ⇡ rule is: “If the premise holds at a
world w of an ITS then the expansion holds at some world w

0 accessible from w.
So, we observe that all rules but ⇡ are “statical”: their role is to analyse what
means for a formula ' to be true or false (according to the polarity) at a given
world w, while the ⇡ rule is “dynamical”: it makes a move from the current
world to an accessible world. A syntactical counterpart of this feature is that all
rules but the ⇡ rule are reversible in the sense that there is a closed tableau for
the premise if and only if there are closed tableaux for the expansions.

Below we prove again by refutation the validity of the formula �=(⇤p) !

⇤⇤p. This time we use the signed tableau rules to build a closed tableau for
h(⇤p) ^ ⌃⌃¬p, T i.



h(⇤p) ^ (⌃⌃¬p), T i
h⇤p, T i, h⌃⌃¬p, T i (↵)

h⇤p, T i, hp, T i, h⌃⌃¬p, T i (⌫)

h⇤p, T i, h⌃¬p, T i (⇡)

h⇤p, T i, hp, T i, h⌃¬p, T i (⌫)

h⇤p, T i, h¬p, T i
(⇡)

h⇤p, T i, hp, T ih¬p, T i
(⌫)

h⇤p, T i, hp, T ihp, F i
(↵)

The example shows very clearly a general phenomenon that could have been
already remarked by inspecting rules: if one reads the polarities not semantically
but as “left” (T ) and “right” (F ) – the two sides of a sequent –, then there is
a close correspondence between the rules of the signed tableaux for S4 as given
in Figure 5 and those of the two sided sequent calculus for S4, as given in the
Figures 1 and 2. The rules (↵) and (�) are a syntactic variant of the sequent
rules for the boolean operators, while the (⌫) rule corresponds to the sequent
rules ⇤L and ⇤R and the (⇡) rule to the sequent rules ⌃L and ⌃R; traditionally
tableau rules (and inferences) are written upside down with respect to sequent
rules.

3.3 Left-handed Sequent Calculi and Unsigned Tableaux for S4

We have observed that formulae can be always rewritten in fnn. This allows for
a one-sided formulation of the sequent rules and for an unsigned version of the
tableau rules that lead literally to the same calculus.

For the sequent calculus, it su�ces to:

– Consider only sequents having an empty succedent: � ), where elements of
� are in fnn,

– Formulate axiom schemas as: �, p,¬p ) where p is atomic,
– Consider only left rules among the rules in Figures 1 and 2,
– Suppress the rules for negation.

It is worthwhile noticing that in the obtained left-handed calculus, that we note
here S4LSeq, only sequents having an associated formula �' ! ? can be proved,
thereby refuting �' and showing only indirectly that ¬�' is valid.

For the tableau calculus, a corresponding unsigned version can be obtained
by considering only sets of formulae in fnn whose polarity is T , that can therefore
be omitted because useless. Decomposition of unsigned formulae can be defined
as in Figure 6; observe that negated formulae do not appear there. Modulo such
a reading of decompositions, the formulation of the tableau rules remain the
same as in the signed case. For the obtained tableau calculus, that we call here
S4LTab, a node is declared close whenever it contains both hpi and h¬pi for some
propositional letter p.



Not only it is true that, for any formula ', there is a proof of the sequent
') if and only if there is a closed tableau for ', but sequent proofs and tableau
refutations are literally the same syntactical object, but for the following trivial
features:

– The nodes of a S4LSeq proof contain the meta-logical symbol ) while those
of a S4LTab proof do not; however such a symbol is useless in a one-sided
context, and it can be removed from sequents,

– For just historical conventional reasons, the root of a S4LSeq proof is at the
bottom, while in a tableau it is at the top.

Therefore tableaux for S4 can be seen as derivations in a left handed sequent
calculus whose rules are formulate so as to minimize non determinism in a proof
search that starts from the root. This holds also for K, T, K4 and some other
modal logics.

↵ ↵1 ↵2

' ^  '  

� �1 �2

' _  '  

⌫ ⌫0

⇤' '

⇡ ⇡0

⌃' '

Fig. 6. Formulae and their components: unsigned version

4 Proofs for LTL

The logic S4 allows for an unsatisfactory representation of time, since a S4 frame
may contain cycles, while LTL provides a more faithful representation. However
the straightforward link existing between sequent and tableau derivations in the
case of S4 is not any longer available in the case of LTL (and other temporal logics
like CTL or CTL⇤). This can be explained with the fact that for LTL the fixed
point equivalences seen in Section 2.2 hold, and all the istances of the induction
schema are valid. As a consequence, the so called eventualities, namely formulae
of the form 'U or ⌃ , that “promise” to eventually make  true, are source
of specific di�culties. In fact if, for instance, a sequent or tableau rule for ⌃ is
designed so to mirror the equivalence ⌃ ⌘  _�⌃ , then one needs to check
that the realization of  is not delayed ad libitum while trying to build a model
through tableau construction to conclude that the root is satisfiable. This can
happen when only the right disjunct in of  _ �⌃ is always available, other
paths containing only inconsistent vertices having been suppressed (see later on).
Therefore the need arises to check a global condition on the derivation in order
to conclude about the satisfiability of the root.



4.1 Two-pass tableaux for LTL: Wolper’s tableaux

A pioneer calculus to reason on the satisfiability/validity of LTL formulae has
been proposed by P. Wolper in [Wol85]. In order to check the satisfiability of a
set of formulae � one proceeds in two phases:

1. Construction phase: a directed graph (not a tree!) of sets of LTL formulae
rooted at � is built, using appropriate expansion rules. When a consistent
vertex v is expanded, and the application of an expansion rule would create
as v’s successor a second copy of a vertex v

0 already existing, then v
0 is not

duplicated but rather an edge from v to v
0 is added. The construction phase

always terminates, generating a finite graph, say G.
2. Elimination Phase: “bad vertices” of G, that cannot contribute to the con-

struction of a model of � are recursively suppressed. If the root � survives
then it is declared satisfiable, otherwise it is declared unsatisfiable.

We give here a presentation that is a slight variation of the material in
[Wol85]. We have chosen here to work with formulae which are in fnn. A formula
which is either a literal or has the form �' is called primitive (or elementary).
Non-primive formulae can be classified as ↵ or � formulae as indicated in Figure
7; as usual ↵ formulae have a conjunctive nature while � formulae are disjunc-
tive. Let us observe that here we have included ⇤' in the class of ↵-formulae,
and 'U and ⌃' in the class of �-formulae, as it is traditionally done.

↵ ↵1 ↵2

' ^  '  

⇤' ' � ⇤'

� �1 �2

' _  '  

'U  ' ^� 'U 
⌃' ' � ⌃'

Fig. 7. ↵ and � formulae for LTL

On can observe that the decompositions of ⇤', ⌃' and 'U are founded on
the fixpont equivalences for LTL seen in Section 2.2.

Say that a set of LTL formulae is patently inconsistent if it contains both p

and ¬p for some p 2 P .
There are two expansion rules: a static one, that we call here SR, and a

dynamic one, Next.

SR Rule. Let � be a set of formulae that is not patently inconsistent – let us
say that it is “consistent” for short. A set of formulae � is full expansion of �
if it is the result of the following iterative procedure (that obviously halts):

– Initialisation: Set � := �

– Saturation:



• (↵-Saturation). If ' 2 � is an ↵-formula and it is not marked as “used”,
then add to � both its components and mark ' as used;

• (�-Saturation). If ' 2 � is a �-formula and it is not marked as “used”,
then add to � one of its components and mark ' as used.

It is worthwhile noticing that the above procedure is non-deterministic, thus
several full expansions of � can be produced. Let us note FS(� ) the family of all
the full saturations of � . The rule SR expands a vertex � that is consistent and
contains at least a non-primitive formula by creating all the elements of FS(� )
as � ’s successors (but avoiding duplications, as said above). A vertex created as
the result of the application of the SR-rule is said to be a tableau state.5

For instance, if the current node � is ⇤⌃p, (q^p)Ur, four successors of � are
created:
�1 = ⇤⌃p, (q ^ p)Ur,⌃p,�⇤⌃p, p, r
�2 = ⇤⌃p, (q ^ p)Ur,⌃p,�⇤⌃p,�⌃p, r
�3 = ⇤⌃p, (q^p)Ur,⌃p,�⇤⌃p, p, (q^p)^�((q^p)Ur), (q^p), q, p,�((q^p)Ur)
�4 = ⇤⌃p, (q^p)Ur,⌃p,�⇤⌃p,�⌃p, (q^p)^�((q^p)Ur), (q^p), q, p,�((q^
p)Ur)

It is worthwhile observing that the SR rule is conservative, in the sense that
the decomposed formula is kept in the result of the decomposition, taking care
–however– of not analyzing it twice, by means of a suitable marking device. This
is di↵erent from what happens in the tableaux for S4 that we saw, and it is
necessary because of the elimination phase, that needs to memorize any possible
eventuality in order to assure that its fulfillment is not procrastinated ad libitum

(see below). One may also remark that this formulation encompasses a sequence
of applications of the (↵) and (�) of S4LTab into one single step.

Next Rule. The Next rule applies only to tableau states, namely sets of for-
mulae that are fully expanded. Let L1, ..., Ln,�'1, ...,�'m, where n +m � 1
and each Li is a literal be all the primitive formulae in a state �. The Next rule
creates a successor node � 0 = '1, ...,'m. In the particular case where m = 0,
�

0 = >. A node � 0 containing just > is also considered a tableau state (and a
new application of Next to � 0 creates a loop).

Once a tableau G is built, vertices are recursively suppressed in the elimina-
tion phase by iterating the following operations as much as it is possible:

1. Remove any vertex who has no successors (thus, in particular, any patently
inconsistent vertex),

2. Remove any vertex that contains as an element an eventuality ⌃ or 'U 
and that is not the origin of any path in the current graph leading to a
node containing  . The role of this operation is, intuitively, to eliminate as
possible models those interpretations where an eventuality should hold at a

5 Let us observe that the word ‘state” is somewhat semantically overloaded, since it
has a meaning in the context of the semantics of LTL and a meaning here, as a kind
of vertex in a tableau. However the two notions have an intuitive relation, since a
tableau state actually is a representation of a state according to the first sense.



state but the promised formula is never obtained. It is important to observe
that checking that an eventuality occurring in some state is fulfilled via at
least a path is a global condition on the current tableau.

In this calculus a tableau is closed whenever at the end of the elimination
phase its root � is suppressed; in that case � is refuted, and declared unsatisfi-
able.

When a tableau is complete, that is all vertices have been expanded, but it
is open (i.e. not closed), then it is always possible to build out of the tableau an
interpretation satifying its root. Thus the calculus is sound and a complete with
respect to the unsatisfiability: � is unsatisfiable if and only if there is a closed
tableau rooted at � . Tableaux provide a constructive decision method for the
satifiability problem, as well as for the validity problem. Both the satisfiability
and the validity problems for LTL are PSPACE complete [DGL16], thus the
complexity of such a decision procedure is sub-optimal, because it is exponential
in the size of the argument formula. This is due to the fact that the number of
vertices of a tableau rooted at ' can be 2m, where m is the size of '.

Clearly the structure of this calculus is far from standard sequent calculi: it
makes an essential use of loop-check in the very definition of what a tableau is, it
works in two phases and it needs a global condition to determine when a tableau
is indeed a (refutational) proof. Tableaux for LTL rather recall the construction
of Büchi automata to decide LTL satisfiability (see for instance [Pel01]).

4.2 Sequent calculi and one-pass tableaux and for LTL

Some early works on sequent calculi for temporal logics present two sorts of
problems that make them inappropriate to do proof search. Some of them, for
instance [Kaw87], contain an infinitary rule:

) �, A ) �,�A ) �,��A ...

) �,⇤A

Others, as the one in [Pae88] for instance, are not cut-free since they contain
this kind of rule:

) �, B ) ¬B,�B ) ¬B,A

) �,⇤A

These di�culties are clearly related to the specific feature of temporal linear
logics w.r.t. other modal logics that we already mentioned: the capability of
validating induction, so to encode N.

However, some one-pass tableau calculi for LTL where there are not two dis-
tinct phases have been proposed, after Wolper’s seminal work, and they some-
times correspond to sequent systems that are cut-free and finitary. We give here
a short survey of these works, treating at the same time one-pass tableaux and
sequent-calculi (since it is sometimes di�cult to separate the two approaches in



these works), without any claim of exhaustiveness (in particular with respect to
works on µ-calculus).

In [Sch98] tableaux for LTL are tree-shaped, however there are some com-
munications between branches. There are also some annotations of nodes with
depth measures. The tableau calculus there defined is one-pass and checks on
the fly, branch by branch, the fulfillment of eventualities.

Cut free sequent systems for LTL and CTL are proposed in [BL08]. Also here
a proof is a finite tree, that uses annotated formulae (not belonging to the object
logical language). It can be observed that a loop rule is present which hides a
non-local closing condition, because it is necessary to inspect previous nodes in
order to verify if there is a loop.

The authors of [GHL+09] provide a one-phase tableau method for LTL (called
PTL there), named TTM , that is associated to a left-handed cut-free sequent
calculus TTC. This, in its turn, is transformed in a two-sided sequent calcu-
lus GTC that is finitary, sound and complete for LTL. Therefore, the authors
claim to have shown that ‘the classical correspondence between tableaux and
sequent calculi can be extended to TL” (Temporal Logics). However they ac-
knowledge that their approach has a poor performance as a decision method for
the LTL satisfiability problem, because the structural complexity of the problem
is PSPACE, traditional two phases tableaux require exponential time and their
own approach requires even double-exponential time (in the worst case).

In [Rey16] a tableau calculus for LTL is defined where a tableau is, again, a
tree of sets of formulae, not a graph. The main novelty is the definition of a new
tableau rule, called PRUNE, allowing for the finite detection of any branch that,
even if continued ad libitum, would not produce any new fulfillment of an even-
tuality. However the same remark done for [BL08] holds for this work: one needs
to explore some ancestors of the current node in order to apply PRUNE. This
approach has been extended to an extension of LTL to past time in [GMR17].

Although the work [BN09] is older than [Rey16], we shortly discuss it after
the above articles because it uses a quite specific approach to the definition of
sequent calculi, namely a labelled sequents approach, as previously introduced by
the second author in [Neg05]. The use of labels, in general, allows for embedding
model-theoretic arguments in the syntax of the inference rules. The studied logic
in [BN09] is Prior’s Linear Time Logic, a modal temporal logic logic introduced
by Arthur Prior in the late 1950s and containing also past operators. However,
LTL is nothing but the future-oriented and reflexive version of Prior’s Linear
Time Logic; for instance, in Prior’s logic ⇤' means that in the strict future -
not necessarily including the present - ' will always hold. In [BN09] eventual-
ities have only the form ⌃�, because U (and its past corresponding operator,
since) is not taken into account, however this is done in the first author’s Ph.D.
thesis [Bor08]. Candidate proofs in the calculus – named G3LTcl – are possibly
infinite trees of labelled sequents. The calculus G3LTcl is sound and complete
with respect to validity, and an appropriate proof search procedure always ter-
minates, notwithstanding the fact that a tree having a not valid root might be
infinite, in principle. Hence, G3LTcl provides a decision algorithm for validity.



It is worthwhile observing that the proof search method makes no loop-check
and no inspection of previous parts of the tree: at any step of the construction
of a candidate proof only the current sequent in inspected, possibly allowing for
halting the search. Thus the halting conditions are local. In particular, one can
stop the construction of the current branch because a sequent S that is an axiom
is found – or else, because a so called fulfilling sequent S is found, providing a
counter-model of the root sequent, and in this second case the root sequent is
declared invalid. A practical drawback of this calculus, however, is the fact that,
as [GHL+09], it provides a decision algorithm for validity that has a suboptimal
complexity.

Finally, LTL validities can be proved by using the more expressive linear
time µ-calculus, noted L

Lin
µ , that extends LTL with greatest and smallest fixed

point operators. This gives it the power to express all ⌦-regular languages, i.e.
strictly more than LTL. The linear time µ-calculus can also be seen as the modal
µ-calculus interpreted only over infinite linear time structures, i.e. Kripke struc-
tures in which every state has exactly one successor. The structural complexity
of the validity problem for L

Lin
µ formulae is PSPACE, as for LTL. However,

the presence of nested and possibly alternating fixed point constructs makes its
validity decision problem much harder than for LTL, in practice.

In the work [DHL06] the authors in propose a sequent calculus for L
Lin
µ

where a proof is an infinite tree in which each branch satisfies an additional
global condition concerning the existence of so-called threads. Although proofs
are infinite objects, the combination of the use of the calculus with, respectively,
automata tools and category-theoretic methods allows for the definition of two
algorithms deciding validity.

The logic L
Lin
µ is studied also in [DBHS16]. More precisely, three calculi are

considered: the infinitary system µLK
1, its regular fragment µLK

⌦ and the
finitary sequent calculus µLK. Constructive completeness results are provided
for class of formulae corresponding to interesting fragments of L

Lin
µ . As the

authors argue, a constructive proof of completeness (for instance, specifying a
proof search method) readily provides a realistic decision algorithm.

In [JKS08] two infinitary cut frees sequent calculi are defined for the modal
µ-calculus (thus not for the specific LLin

µ ). However, such calculi are then trans-
formed into a finitary one by exploiting the small model property of the propo-
sitional modal µ-calculus. Hence, the finite model property is presupposed by
the definition itself of the calculus rather then being a consequence of sound-
ness, validity and termination, as it is often case for sequent or tableau based
formalizations of logics.

The work [AL17] present two sound and complete finitary cut-free sequent
calculi for the modal µ-logic.

One of the authors of [JKS08] contributes also to the more recent work
[AJL19] that extends the study to the modal µ-calculus with converse modalities;
this extended logic is known as two-way µ-calculus or full µ-calculus.



5 Alternating Time Temporal Logic

Temporal logics of the ATL family, first appearing in [AHK97,AHK02], consider
several agents who act synchronously. They have been proposed to model the
behavior of so called “open” computer systems – where the environment is un-
known or only partially known – as a game between the system components and
an “enemy”, the environment. The semantical scenarios of ATL logics are in fact
games where agents can form coalitions in order to achieve a given goal. One
can express proprieties as “Coalition C has a strategy to ensure achievement of
the goal g, no matter how the other agents play”. Intuitively, these logics are
extensions of computer tree logics to the multi-agent case.

We recall here some standard definitions about ATL⇤.

Definition 4 (Concurrent Game Model). Given a set of atomic proposi-
tions P , a CGM (Concurrent Game Model) is a 5-tuple

M = hA, S, {Acta}a2A, {acta}a2A, out, Li

such that:

– A = {1, ..., k} is a finite non-empty set of agents,

– S is a non-empty set of states,

– For each a 2 A, Acta is a non-empty set of actions. If A ✓ A, then A is

a coalition of agents. Given a coalition A, an A-move is a k-ple h↵1, ...,↵ki

where, for any i, 1  i  k, if i 2 A then ↵i 2 Acta, else ↵i = ⇤ (⇤ being

a place-holder symbol distinct from each action). A move of the coalition A
will also be called global move. The set of all the A-moves is denoted by ActA.
The notation �A denotes an element of ActA, and if a 2 A, �A(a) means

the action of the agent a in the A-move �A,

– acta is a function mapping a state s to a non-empty subset of Acta; acta(s)
denotes the set of actions of the agent a that are available at state s. Given

a coalition A, a mapping actA associating to a state a set of A-moves is

naturally induced by the function acta; actA(s) is the set of all the A-moves

available to coalition A at state s,

– out is a transition function, associating to each s 2 S and each �A 2 actA(s)
a state out(s,�A) 2 S: the state reached when each a 2 A does the action

�A(a) at s,
– L is a labelling function L : S ! P(P ), associating to each state s the set of

propositions holding at s.

5.1 ATL⇤ Syntax and Semantics

Let A be a coalition of agents. The following grammar defines formulae of ATL⇤,
the most expressive logic of the ATL family, by mutual recursion.

Definition 5 (ATL⇤ syntax).



State formulae :

 := a ¬( ) | ( ^  ) | ( _  ) | (hhAii�) | ([[A]]�)
where a is an atomic formula.

Path formulae :

� :=  | (¬�) | (� ^ �) | (��) | (⇤�) | (�U�)

The expressions hhAii and [[A]] are called strategic quantifiers. It is worthwhile
observing that any ATL⇤ state formula is also an ATL⇤ path formula, while
the converse is false. State formulae will always be noted by lower case Greek
letters, and path formulae by upper case Greek letters6. Unless explicitly stated
otherwise, in the sequel by ATL⇤ formula we mean an ATL⇤ state formula.

The logic called simply ATL, or Vanilla ATL to avoid confusions with the
family, is the syntactical fragment of ATL⇤ obeying to the constraint that any
temporal operator in a formula is prefixed by a quantifier and that no quantifier
can have a boolean or temporal operator in its immediate scope, analogously to
CTL w.r.t. CTL⇤. Hence any ATL formula is a state formula. The intermediate
logic ATL+ does not allow for nesting temporal operators in path formulae but
allows for boolean combinations of path formulae in the immediate scope of a
quantifier.

The semantics for ATL⇤ is based on the notions of concurrent game model,
play and strategy.

A play � in a CGM M is an infinite sequence of elements of S: s0, s1, s2, ...
such that for every i � 0, there is a global move �A 2 actA(si) such that
out(si,�A) = si+1. Given a play �, we denote by �0 its initial state, by �i its
(i+1)th state, by �i the prefix �0...�i of � and by ��i the su�x �i�i+1... of �.
Given a prefix �i : �0...�i, we say that it has length i+1 and write |�i| = i+1.
An empty prefix has length 0. A (non-empty) history at state s is a finite prefix
of a play ending with s. We denote by PlaysM and HistM respectively the set of
plays and set of histories in a CGM M.

Given a coalition A ✓ A of agents, a perfect recall A-strategy FA is a function
which maps each element � = �0...�` of HistM to an A-move �A belonging to
actA(�`) (the set of actions available to A at state �`).

Given a coalition A ✓ A of agents, a perfect recall A-co-strategy F
c
A is a

function which assigns to every A-strategy and each element � = �0...�` of HistM
a collective move of Ac = A \ A (the coalition of A’s opponents) belonging to
actAc(�`) (the set of actions available to A

c at state �`). Intuitively, we can see
A

c as a way of answering to A-actions by the opponents of A.
Whenever a strategy (or a co-strategy) depends only on the last state �` of

the history � = �0...�` it is said to be positional (or memoryless).
For any coalition A, a global move �A extends an A-move �A whenever for

each agent a 2 A, �A(a) = �A(a). Let �A be an A-move; the notation Out(s,�A)
denotes the set of states out(s,�A) where �A is any global move extending �A.
Intuitively, Out(s,�A) denotes the set of the states that are successors of s when

6 Again, the meaning of any given occurrence of a Greek capital letter – a path formula
or a set of formulae – will be clear from the context.



the coalitions A plays at s the A-move �A and the other agents play no matter
which move.

A play � = �0,�1, ... is said to be compliant with a strategy (respectively: a

co-strategy) FA if and only if for each j � 0, �j+1 2 Out(�j ,�A), where �A is the
A-move chosen by FA at state �i (given also the current history for the perfect
recall case).

The notions M satisfies the formula � at state s, noted M, s |= �, and M

satisfies the formula � at path �, noted M,� |= �, are recursively defined as
follows (omitting the obvious boolean cases):

– M, s |= hhAii� i↵ there exists an A-strategy FA such that, for all plays �
starting at s and compliant with the strategy FA, M,� |= �,

– M, s |= [[A]]� i↵ there exists an A-co-strategy F
c
A such that, for all plays �

starting at s and compliant with F
c
A , M,� |= �,

– M,� |= ' i↵ M,�0 |= ',

– M,� |= �� i↵ M,��1 |= �,

– M,� |= ⇤� i↵ M,��i |= � for all i � 0;

– M,� |= �U i↵ there exists an i � 0 where M,��i |=  and for all 0  j <

i, M,��j |= �.

Given a CGM M, a state s of M and a formula �, we say that that � is true

at s in M whenever M, s |= �. We say that a CGM M is a model of � whenever
there is a state s such that � is true at s in M, and is a model of a finite set of
state formulae � whenever it is a model of the conjunction of the elements of � .

The two kinds of strategies, positional and perfect recall, produce incompa-
rable sets of satisfiable/valid formulae [JB11]. In the rest of the paper we always
consider perfect recall strategies. Also, one can consider two notions of satisfia-
bility of ': one can set that the relevant agents to be considered are only those
explicitly occurring in ' – then one speaks of “tight satisfiability” - or else one
can consider a larger set of agents. Here we consider tight satisfiability.

A path formula � is a logical consequence of a path formula  , noted  |= �,
when for any CGM M and any path �, M,� |=  implies M,� |= � . The
formulae  and � are said to be equivalent, noted  ⌘ � when  |= � and
� |=  .

The following fixed-point equivalences hold for ATL⇤ with perfect recall strate-
gies:

– hhAii⇤� ⌘ � ^ hhAii � hhAii⇤�.
– hhAii�U ⌘  _ (� ^ hhAii � hhAii�U ).

– The analogous of the equivalences above with [[A]] replacing hhAii.

The path formula ⌃� can be defined by TU�, and �R (� releases  ) can be
defined by (⇤ ) _ (�U(� ^  )). Since ¬hhAii� ⌘ [[A]]¬� and ¬[[A]]� ⌘ hhAii¬�

it is easy to see that ATL⇤ formulae can be rewritten in fnn.



6 Tableaux for deciding ATL⇤ satisfiability

In [Dav15a] a tableau system is defined that decides the problem of ATL⇤ state
formulae (tight, perfect-recall) satisfiability, answering to the question: “Given
any formula � are there a CGM M and a state s such that M, s |= �?” Such
a work extends to ATL⇤ the tableau calculus proposed in [CDG14,CDG15] for
ATL+. The calculus is a two-pass tableau system; up to our knowledge, it is
the only calculus deciding ATL⇤ satisfiability problem, that can also be solved,
however, by automata tools [Sch08].

It is worthwhile emphasizing that tableau construction, here, should be un-
derstood as a systematic search of CGMs that are models of the root, as for LTL.
In the case of failure to find such a model the tableau is declared closed and its
root unsatisfiable.

Again as in the case of LTL, a tableau is a finite graph of formulae, more
precisely of state formulae, built – avoiding duplications of vertices – by using
a static rule and a dynamic rule, and then modified by eliminating undesirable
vertices. Also here the static rule uses formulae decomposition, and such a decom-
position is founded on fixed point equivalences. Such a decomposition, however,
and the corresponding classification of formulae is quite specific to ATL⇤, and to
the discussed calculus.

Without loss of generality we consider only formulae in fnn.

6.1 Construction Phase

Classification and decomposition of ATL⇤ state (fnn) formulae. Let A
be a coalition of agents and let us note Q a strategy quantifier, namely hhAii or
[[A]].

A successor formula is a formula having either the form hhAii�� or [[A]]��.
The class of ATL⇤ state formulae can be partitioned in:

– Primitive Formulae. A primitive formula is either a literal or a successor
formula Q� � where � is a state formula, called the successor component
of Q� �;

– Non-primitive formulae that can be classified as:
• ↵-formulae, having the form �^  ; as before, � and  are said to be its
↵-components;

• �-formulae, having the form � _  ; again, � and  are said to be its
�-components;

• �-formulae, that are non-primitive formulae of the form Q�.

The notion of �-formula has been introduced in [CDG14,CDG15]. The anal-
ysis of such formulae in components that are state formulae, to be used in the
static tableau rule, is delicate, because two di�culties have to be faced:

– A strategic quantifier actually combines first-order existential and universal
quantification. For instance, hhAii� means that there is a strategy for coali-
tion A such that, no matter how the other agents play, � is assured. As a



consequence, any strategic quantifier does not distribute over conjunction
and does not distribute over disjunction either.7

– When � and  are not state formulae, fixed point equivalences cannot be
immediately exploited to analyse formulae Q⇤� and Q�U into components
that are again state formulae. Take, for instance, the �-formula hhAii⇤⌃p.
Its truth at a state s cannot be analyzed as the truth at s of both ⌃p and
hhAii � hhAii⇤⌃p, because ⌃p is not a state formula.

However, by iterating the use of ATL⇤ equivalences, any �-formula can be
indeed analyzed as a disjunction of conjunctions of state formulae. For instance,
the truth of �-formula hhAii((⇤p) _ (⇤q)) at a current state s can be analyzed
in three cases:

– At present state s, p holds (present state formula), and the state formula
hhAii�hhAii(⇤p) holds (future state formula); this last express a commitment
for the future : for some A-move the paths issued from s’s successors and
compliant with some given strategy will make the path formula ⇤p true;

– At present state s, q holds (present state formula), and the state formula
hhAii�hhAii⇤q holds (future state formula), expressing the commitment that
for some A-move the paths issued from s’s successors and compliant with
some given strategy will make the path formula ⇤p true;

– At present state s, both p and q hold (present state formulae), and the state
formula hhAii�hhAii((⇤p)_(⇤q)) holds (future state formula), expressing the
commitment that for some A-move the paths issued from s’s successors and
compliant with some given strategy will make the path formula (⇤p)_ (⇤q)
true. In this last case at the present state no choice has been made yet about
which one, among ⇤p and ⇤q, to enforce.

Hence, expansions of a vertex containing the formula hhAii(⇤p)_ (⇤q)) are built
according to the equivalence:
hhAii(⇤p) _ (⇤q)) ⌘

(p^ hhAii� hhAii⇤p)_ (q ^ hhAii� hhAii⇤q)_ (p^ q ^ hhAii� hhAii(⇤(p)_⇤(q))
In the general case, the approach firstly introduced in [CDG14,CDG15], then

extended in [Dav15a], analyses �-formulae by using a function dec which takes
as input a path formula and returns a set of triples, whose first element is a state
formula, the second is a path formula and the third is a set of path formulae. The
definition of dec uses two auxiliary binary functions ⌦ and � taking as arguments
two sets of triples of this sort and producing a new set of triples. The first element
of each triple corresponds to the present formula, the second to the commitment
for the future. The third component does not participate to the decomposition
of �-formulae used in the static expansion rule, but plays a technical role in the
elimination phase of the tableau calculus, to check eventuality fulfillment.

The analysis of �-formulae uses the following definitions. The notations S1

and S2 correspond to two sets of triples, whose first element is a state formula, the
second is a path formula and the third is a set of path formulae, while the �i and

7 This phenomenon occurs already for the logic ATL+.



�j are sets of formulae. The operators ê and e_ correspond, respectively, to the
boolean function ^ and _ where the associativity, commutativity, idempotence
and identity element properties are embedded in the syntax. The aim of both
the operators is to automatically generate formulae in conjunctive normal form
without redundancy, and ensure the termination of the tableau construction
procedure. For instance, pêq êpêT = p ^ q = q ^ p.

Definition 6. .

– S1 ⌦ S2 := {h i ê j , i ê j ,�1 [ �2i | h i, i,�ii 2 S1, h j , j ,�ji 2 S2}.

– S1 � S2 :=

{h i ê j , ie_ j ,�1 [ �2i | h i, i,�ii 2 S1, h j , j ,�ji 2 S2, i 6= >, j 6=
>}.

The function dec is defined by recursion on the input path formula �.

Definition 7.

– dec(') = {h',>, ;i} for any ATL⇤ state formula '.

– dec(��1) = {h>,�1, ;i} for any path formula �1.

– dec(⇤�1) = {hT,⇤�1, {�1}i}⌦ dec(�1)
– dec(�1U�2) = ({h>,�1U�2, {�1}i}⌦ dec(�1))[ ({h>,>, {�2}i}⌦ dec(�2)).
– dec(�1 ^ �2) = dec(�1)⌦ dec(�2)
– dec(�1 _ �2) = dec(�1) [ dec(�2) [ (dec(�1)� dec(�2)).

The components of a �-formula ✓ are finally defined as follows.

Definition 8. Let ✓ = hhAii� or [[A]]� be a �-formula. All triples h , ,� i

in dec(�) are converted to a �-set of formulae �s( , ,� )= � , and to a �-

component of ✓ that is a state formula �c( , ,� ) defined as follows:

– �c( , ,� ) =  if  is >

– �c( , ,� ) =  ^ hhAii � hhAii� if ✓ = hhAii�

– �c( , ,� ) =  ^ [[A]]� [[A]]� if ✓ = [[A]]� [[A]]� if ✓ = [[A]]�

As an example, consider again �–formula hhAii((⇤p) _ (⇤q)).
Here dec((⇤p) _ (⇤q))=
dec(⇤p) [ dec(⇤q) [ (dec(⇤p)� dec(⇤q)) =
{hp,⇤p, {p}i, hq,⇤q, {q}i, hp ^ q, (⇤p) _ (⇤q), {(⇤p) _ (⇤q)}i}.
We get three �-components:
p ^ hhAii � hhAii⇤p,
q ^ hhAii � hhAii⇤q,
and p ^ q ^ hhAii � hhAii(⇤p) _ (⇤q).

A lemma in [Dav15a] states that each formula hhAii� is equivalent to the
disjunction of its � components, and analogously for [[A]]�.



Static Rule. Modulo these di↵erent notions of classification et decomposition of
non-primitives formulae, therefore of full saturation of a consistent set of (state)
formulae, the SR rule for this tableau calculus stays essentially the same as for
the calculus already seen for LTL.

Let � be a set of state ATL⇤ formulae; define � is patently consistent exactly
as it is done for the case of LTL, and, again, let’s just say that � is consistent
when it is not patently inconsistent.

A full expansion of a consistent set of formulae � is a set of formulae �

obtained by applying the following iterative procedure (that obviously halts):

– Initialisation: Set � := �

– Saturation:
• (↵-Saturation). If ' 2 � is an ↵-formula and it is not marked as “used”,

then add to � both its components and mark ' as “used”;
• (�-Saturation). If ' 2 � is a �-formula and it is not marked as “used”,

then add to � one of its components and mark ' as “used”.
• (�-Saturation). If ' 2 � is a �-formula and it is not marked as “used”,

then add to � one of its components and mark ' as “used”.
Moreover, if the added �-component, is, say, �c( , ,⇤) associate the set
of path formulae �s(( , ,⇤), namely ⇤, to this component.

Let us note FS(� ) the family of all the full saturations of � . As for LTL,
the rule (SR) expands a vertex � that is consistent and contains at least a
non-primitive formula by creating all the elements of FS(� ) as � ’s successors
(avoiding duplications). Moreover � is connected to each of its successors via a
) edge (tableaux for ATL⇤ are graphs having two sorts of edges).

A vertex created as the result of the application of the SR-rule is said to
be a tableau state, and corresponds to an elements of S for a CGM candidate
to be a model of the tableau root, while a vertex to which SR is applied is
called a tableau prestate. The root can always be declared to be a prestate, but
it is worthwhile observing that it will always be, trivially, also a state in the
particular case where it contains only primitive formulae.

It is worthwhile observing that associating each �-component of a � formula
' to a set of path formulae (the third element of the triple used to generate this
component), thereby pairing it with a tableau state, is a form of book-keeping
of constraints that need to be taken into account when checking for eventuality
fulfillment in the elimination phase.

Dynamic Rule
The only dynamic rule of the calculus is the Next rule, whose aim is to build the
successors of the states of the current tableau. Such successors will be pre-states
that, once saturated via SR, will become in their turn states of the tableau
(corresponding to elements of S for the CGMs that are candidate to be models
of the root of the tableau).

The main ideas that underlie the formulation of such a rule are intuitive
enough, but the formulation of the rule is rather technical. These ideas are:



– The agents A performing actions are those explicitly mentioned in the root
formula (tight satisfiability).

– All primitive successor formulae of the state � to which Next is applied
are arranged in a list L where all the formulae of the form hhAii � ' (ex-
istential successor formulae) precede all the formulae of the form [[A]]�  

(universal successors formulae). Hence each element of L receives a number,
corresponding to its position in the list. An action of an agent a is identified
with the choice of the number of the formula that a decides to enforce. The
case of formulae of the form [[A]]µ (recall that A is the set of all the agents)
is particular, because all the successors of � must satisfy the formula µ,
thus a unique dummy action can be assigned to each agent to enforce µ.

– If there are k possible actions (k successor formulae in �), there will be k
|A|

possible global actions that can be played at �. Each of them – let’s note it
�A – will connect � to a successor vertex; let’s say that such a vertex is the
target of �A. Each �A can be seen as a program encoding which successor
components will be in in its target, and can be seen as a “collective vote ”
made by all agents.

– This program (or “vote”) must be such that the semantics of the strategy
quantifiers is respected.
For each existential formula hhAii � ' 2 L this means that �A must encode
an A-action that guarantees ' to be true at each state that is issued via the
saturation of �A’s target, no matter how the other agents act. This is easy
to achieve, by setting that each �A where all the agents in A have chosen
(the number of) hhAii � ' leads to a successor vertex containing '.
The situation is more delicate for universal formulae [[A]] �  2 L where
A 6= A. Here, what is must assured is that for each A-action there is at least
one “answer” of the opponent coalition, namely A\A, that enforces  . Hence
the existence of such answers must be guaranteed. This is achieved by means
of the function co defined below. Very roughly, the idea is the following. Let
[[A]]�  2 L be the i-th universal formula in L. The function co is defined
in such a way that each A-action �A can always be completed so to obtain
at least one �A such that co(�A) = i+1: the agents in A \A can synchronise
to do so. The resulting global vector will lead to a successor containing  .

Formally, the Next rule is defined as follows (abbreviating �A by �):

Let � a tableau state, and let � be a shorthand for �A. Do:

1. List all primitive successor formulae in � in such a way that all existential
formulae hhAii � ' precede all the universal ones [[A0]]� ', where A

0
6= A,

and and put at the end of the list, all the formulae of the form [[A]]�'; let
the result be the list L:

[hhA0ii�'0, ..., hhAm�1ii�'m�1, [[A0
0]]� 0, ..., [[A0

l�1]]� l�1, [[A]]�µ0, ..., [[A]]�
µn�1]
Let r� = max (m+ l, 1)



Let D(�) be the set of action vectors {0, ..., r� � 1}|A|.
for each � 2 D(�), set :
• N(�) = {i | �i � m}, where �i is the ith component of the tuple �,
• co(�) = [⌃i2N(�)(�i �m)] mod l.

2. For each � 2 D(�) create a prestate �� defined as:

{'p | hhApii � 'p 2 � and �a = p for each agent a 2 Ap }

[

{ q | [[A0
q]]�  q 2 �, co(�) = q and A \A

0
q ✓ N(�)}

[

{µr | [[A]� µr 2 �}

If �� = ; then add > to it.
Then connect � to �� via the labelled edge

�
�!. If, however, �� = � for some

already existing prestate � , then do not create a second copy of � but only
connect � to � via

�
�!.

For more details on the Next rule the interested reader may consult [Dav15a];
but it is rather in [Dav15b] that the intuitive meanings of all the technicalities
of the rule formulation are fully explained.

Figure 8 shows the output of the construction phase for the formula

hhHii(((¬p ^ ¬r)Ul) ^ ⌃r) ^ hhBii⇤¬l

whereH and B are agents and p, r and l are propositional variables. In the figure,
vertices containing a patent contradiction v,¬v for some propositional letter v

are not shown (they will get eliminated anyway in the elimination phase, see
later on).

6.2 Elimination Phase

This phase bears similarities to the corresponding one for Wolper’s tableaux for
LTL, and proceeds by iteratively eliminating vertices of the current tableau that
cannot contribute to models of the root until stability of the resulting tableau.
In particular, as for LTL, vertices showing that some eventuality will never be
fulfilled need to be eliminated. However, handling eventualities ATL⇤ is more
involved than in LTL. Two di�culties have to be faced.

The first one is: what exactly is to be considered an eventuality here? For
instance, certainly hhAiipUq is an eventuality“promising” that q will eventually
occur. But what about the formula hhAii((⇤r)_ pUq)? It is worthwhile recalling
that this last �-formula can not be analyzed as (hhAii⇤r)_hhAiipUq. The chosen
solution is to declare any formula containing an occurrence of U (necessarily
positive because of the fnn) to be a potential eventuality.



Fig. 8. A tableau for hhHii(((¬p^¬r)Ul)^⌃r)^hhBii⇤¬l resulting from the construction
phase

The second di�culty is caused by the fact that the “promised” formula might
contain itself temporal operators, as, for instance, in the case of hhAii⌃⇤q, where
the promise is ⇤q. Whenever the realization of ⇤q is initiated at a state s of
the tableau by putting q in it, one must be memorize (via some sort of book-
keeping) that the present occurrence of q is just the beginning of the realization

of ⇤q and that q must continue to be true on paths issued from s, in order to

truly maintain the promise. The role of the third element in the set of couples
generated by Definitions 7 and 8 is exactly to make such a book-keeping possible.

For instance, a decomposition of hhAii⌃⇤q) (that is hhAii>U⇤q) produces two
�-components �c1 and �c1 and two corresponding �-sets �s1 and �s2:

1. �c1 = > ^ hhAii � hhAii⌃⇤q and �s1 = {>}

2. �c2 = q ^ hhAii � hhAii⌃⇤q and �s2 = {q,⇤q}



The second case corresponds to the situation where the promised formula ⇤q

is initiated at a tableau state and a link from that state to �s2 = {q,⇤q} keeps
track of the fact that q has started to be true but must continue to be true.

Based on these ideas a notion of realization of a potential eventuality at a

state � of a tableau T is defined. The definition is technical enough, and we
do not recall it here; the interested reader may read [Dav15a]. Modulo this
new definition of realization of eventualities, the elimination phase consists in
iterating the following rules, until stability of the tableau is reached.

RULE ER1 .

1. If a tableau state � of a tableau T is patently inconsistent, then update T

by erasing �.
2. If a tableau prestate � of a tableau T is such that each node � that is a

successor of � via ) has been already eliminated, then update T by erasing
� .

3. If a tableau state � of a tableau T is such that for some � 2 D(�)8 the node
target of a

�
�! arrow stemming from � has been eliminated, then update T

by erasing �.

RULE ER2 If � is a tableau state containing a potential eventuality that is
not realized at � in T , then update T by erasing �.

We have not given here the technical definition of “realization of a potential
eventuality ' at a tableau state �”, that can be found in [Dav15a]; intuitively,
it means that the fulfillment of a formula promised by ' is witnessed in the
tableau.

Given a tableau T for a set of formulae � , T is declared open if the root �
survives to the elimination phase, and closed otherwise.

Theorem 1. The calculus is correct an complete with respect to unsatisfiability:

a tableau for � is closed if and only if � is unsatisfiable [Dav15a]. The procedure

terminates and it runs in at most 2EXPTIME, which is the intrinsic complexity

of the satisfiability decision problem for ATL⇤. 9

7 Concluding Remarks

The examination of proofs respectively sequent-based and tableau-based shows
that while the two approaches essentially coincide for (classical logic and) several
modal logics, they have a more involved relation for temporal logics. We have
illustrate this focussing on LTL, a particular temporal logic that is at the hearth
of a lot of temporal logics widely used in computer science to model the dynamic

8 See the meaning of the notation D(�) in the previous description of the Next-rule.
9 Actually, the argumentation given in [Dav15a] concludes only to 3EXPTIME, but
it has been refined in [Dav15b] to get the optimal complexity.



behavior of systems. We have also provided elements to explain why in the case
of temporal logics the definition of “simple” sequent calculi, using only local
conditions, and of related simple tableau calculi has to face some di�culties.

Then we have described with some details the tableau system proposed in
[Dav15a] for ATL⇤, allowing for the decision of the satisfiability/validity prob-
lems, under a tight notion of satisfiability and a perfect recall semantics. Such
a tableau calculus has no sequent calculus counterpart, up to our knowledge. In
fact, the only other known method to decide the ATL⇤ satisfiability problem is
automata based [Sch08].

As a future work, we plan to examine the possibility of defining a sequent
calculus for ATL⇤ based on the labelled approach described in [Neg05]. This ap-
proach, that allows for the expression of semantical relation between vertices
of an interpretation via a specific kind of formulae, has revealed fruitful for
Priorean’s time logic ([BN09]). However that work has a computational draw-
back because its complexity is far from the optimal structural complexity of the
satisfiability decision problem for that logic. As we observed, the satisfiability
problem for ATL⇤ is already 2EXPTIME, so that one can hope that the intrinsic
exponential nature of a similar approach to ATL⇤ would not be an hindrance to
obtain an optimal complexity of the resulting sequent calculus.
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