Keywords: Riemann hypothesis, Robin inequality, Sum-of-divisors function, Prime numbers, Riemann zeta function Mathematics Subject Classification (2010) MSC 11M26, MSC 11A41, MSC 11A25

Robin's criterion states that the Riemann hypothesis is true if and only if the inequality σ (n) < e γ × n × log log n holds for all natural numbers n > 5040, where σ (n) is the sum-of-divisors function of n and γ ≈ 0.57721 is the Euler-Mascheroni constant. We show that the Robin inequality is true for all natural numbers n > 5040 that are not divisible by some prime between 2 and 1771559. We prove that the Robin inequality holds when π 2 6 × log log n ′ ≤ log log n for some n > 5040 where n ′ is the square free kernel of the natural number n. The possible smallest counterexample n > 5040 of the Robin inequality implies that q m > e 31.018189471 , 1 < (1+ 1.2762 log qm )×log(1.006479799241) log log

+ log N m
log n , (log n) β < 1.000208229291 × log(N m ) and n < (1.006479799241) m ×N m , where N m = ∏ m i=1 q i is the primorial number of order m, q m is the largest prime divisor of n and β = ∏ m i=1 q a i +1 i q a i +1 i -1

when n is an Hardy-Ramanujan integer of the form ∏ m i=1 q a i i .

Introduction

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real The constant γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the natural logarithm. The importance of this property is:

Theorem 1.1 Robins(n) holds for all natural numbers n > 5040 if and only if the Riemann hypothesis is true [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann[END_REF].

It is known that Robins(n) holds for many classes of numbers n. Robins(n) holds for all natural numbers n > 5040 that are not divisible by 2 [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. We extend the indivisibility property on the following result:

Theorem 1.2 Robins(n) holds for all natural numbers n > 5040 that are not divisible by some prime between 3 and 1771559.

We recall that an integer n is said to be square free if for every prime divisor q of n we have q 2 ∤ n.

Theorem 1.3 Robins(n) holds for all natural numbers n > 5040 that are square free [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF].

In addition, we show that Robins(n) holds for some n > 5040 when π 2 6 × log log n ′ ≤ log log n such that n ′ is the square free kernel of the natural number n. Let q 1 = 2, q 2 = 3, . . . , q m denote the first m consecutive primes, then an integer of the form ∏ m i=1 q a i i with a 1 ≥ a 2 ≥ • • • ≥ a m ≥ 0 is called an Hardy-Ramanujan integer [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. A natural number n is called superabundant precisely when, for all natural numbers m < n f (m) < f (n).

Theorem 1.4 If n is superabundant, then n is an Hardy-Ramanujan integer [START_REF] Alaoglu | On highly composite and similar numbers[END_REF].

Theorem 1.5 The smallest counterexample of the Robin inequality greater than 5040 must be a superabundant number [START_REF] Akbary | Superabundant numbers and the Riemann hypothesis[END_REF].

Suppose that n > 5040 is the possible smallest counterexample of the Robin inequality, then we prove that q m > e 31.018189471 , 1 < (1+ 

+ log N m log n , (log n) β < 1.000208229291 × log(N m ) and n < (1.006479799241) m × N m , where N m = ∏ m
i=1 q i is the primorial number of order m, q m is the largest prime divisor of n and

β = ∏ m i=1 q a i +1 i q a i +1 i -1
when n is an Hardy-Ramanujan integer of the form ∏ m i=1 q a i i .

A Central Lemma

These are known results:

Lemma 2.1 [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. For n > 1:

f (n) < ∏ q|n q q -1 . (2.1) Lemma 2.2 ∞ ∏ k=1 1 1 -1 q 2 k = ζ (2) = π 2 6 . (2.2)
The following is a key Lemma. It gives an upper bound on f (n) that holds for all natural numbers n. The bound is too weak to prove Robins(n) directly, but is critical because it holds for all natural numbers n. Further the bound only uses the primes that divide n and not how many times they divide n.

Lemma 2.3 Let n > 1 and let all its prime divisors be q

1 < • • • < q m . Then, f (n) < π 2 6 × m ∏ i=1 q i + 1 q i .
Proof Putting together the lemmas 2.1 and 2.2 yields the proof:

f (n) < m ∏ i=1 q i q i -1 = m ∏ i=1   q i + 1 q i × 1 1 -1 q 2 i   < π 2 6 × m ∏ i=1 q i + 1 q i .

Robin on Divisibility

We know the following lemmas:

Lemma 3.1 [START_REF] Hertlein | Robin's Inequality for New Families of Integers[END_REF]. Let n > e e 23.762143 and let all its prime divisors be q

1 < • • • < q m , then m ∏ i=1 q i q i -1 < 1771561 1771560 × e γ × log log n.
Lemma 3.2 Robins(n) holds for all natural numbers 10 10 13.11485 ≥ n > 5040 [START_REF] Platt | Robin's inequality for 20-free integers[END_REF].

Theorem 3.3 Suppose n > 5040. If there exists a prime q ≤ 1771559 with q ∤ n, then Robins(n) holds.

Proof We have that f (n) < 1771561 1771560 × e γ × log log(n) for any number n > 10 10 13.11485 since the inequality 10 10 13.11485 > e e 23.762143 is satisfied. Note that f (n) < n ϕ(n) = ∏ q|n q q-1 from the Lemma 2.1, where ϕ(x) is the Euler's totient function. Suppose that n is not divisible by some prime q ≤ 1771559 and n ≥ 10 10 13.11485 . Then,

f (n) < n ϕ(n) = n × q ϕ(n × q) × q -1 q < 1771561 1771560 × q -1 q × e γ × log log(n × q) and f (n) e γ × log log(n) < 1771561 1771560 × q -1 q × log log(n × q) log log(n) = 1771561 1771560 × q -1 q × log log(n) + log(1 + log(q) log(n) ) log log(n) = 1771561 1771560 × q -1 q ×   1 + log(1 + log(q) log(n) ) log log(n)   So f (n) e γ × log log(n) < 1771561 1771560 × q -1 q ×   1 + log(1 + log(q) log(n) ) log log(n)  
for n ≥ 10 10 13.11485 . The right hand side is less than 1 for q ≤ 1771559 and n ≥ 10 10 13.11485 . Therefore, Robins(n) holds.

On the Greatest Prime Divisor

We know that Lemma 4.1 [START_REF] Dusart | Estimates of some functions over primes without RH[END_REF]. For x ≥ 2973:

∏ q≤x q q -1 < e γ × (log x + 0.2 log(x)
).

Theorem 4.2 Let ∏ m i=1 q a i i be the representation of n as a product of primes q 1 < • • • < q m with natural numbers as exponents a 1 , . . . , a m . If n > 5040 is the smallest integer such that Robins(n) does not hold, then q m > e 31.018189471 . Proof According to the theorems 1.4 and 1.5, the primes q 1 < • • • < q m must be the first m consecutive primes and a 1 ≥ a 2 ≥ • • • ≥ a m ≥ 0 since n > 5040 should be an Hardy-Ramanujan integer. From the Theorem 3.3, we know that necessarily q m ≥ 1771559. So,

e γ × log log n ≤ f (n) < ∏ q≤q m q q -1 < e γ × (log q m + 0.2 log(q m ) )
because of the lemmas 2.1 and 4.1. Hence,

log log n - 0.2 log(q m ) < log q m .
However, from the Lemma 3.2 and Theorem 3.3, we would obtain that log log n -0.2 log(q m ) ≥ 13.11485 × log(10) + log log 10 -0.2 log(1771559) > 31.018189471.

Since, we have that log q m > log log n -0.2 log(q m ) > 31.018189471 then, we would obtain that q m > e 31.018189471 under the assumption that n > 5040 is the smallest integer such that Robins(n) does not hold.

Some Feasible Cases

We can easily prove that Robins(n) is true for certain kind of numbers:

Lemma 5.1 Robins(n) holds for n > 5040 when q ≤ 7, where q is the largest prime divisor of n.

Proof This is an immediate consequence of Theorem 3.3.

The next Theorem implies that Robins(n) holds for a wide range of natural numbers n > 5040.

Theorem 5.2 Let π 2 6 × log log n ′ ≤ log log n for some n > 5040 such that n ′ is the square free kernel of the natural number n. Then Robins(n) holds.

Proof Let n ′ be the square free kernel of the natural number n, that is the product of the distinct primes q 1 , . . . , q m . By assumption we have that

π 2 6 × log log n ′ ≤ log log n.
For all square free n ′ ≤ 5040, Robins(n ′ ) holds if and only if n ′ / ∈ {2, 3, 5, 6, 10, 30} [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. However, Robins(n) holds for all n > 5040 when n ′ ∈ {2, 3, 5, 6, 10, 15, 30} due to the Lemma 5.1. When n ′ > 5040, we know that Robins(n ′ ) holds and so f (n ′ ) < e γ × log log n ′ because of the Theorem 1.3. By the previous Lemma 2.3:

f (n) < π 2 6 × m ∏ i=1 q i + 1 q i . So, f (n) < π 2 6 × m ∏ i=1 q i + 1 q i = π 2 6 × f (n ′ ) < π 2 6 × e γ × log log n ′ ≤ e γ × log log n
according to the formula f (x) for the square free numbers [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF].

On Possible Counterexample

For every prime number p n > 2, we define the sequence Y n = e where p ≤ x means all the prime numbers p that are less than or equal to x. We know that Lemma 6.2 [START_REF] Aoudjit | On Robin's criterion for the Riemann Hypothesis[END_REF]. For x ≥ 7232121212:

θ (x) ≥ (1 - 0.01 log 3 (x) ) × x.
Lemma 6.3 [START_REF] Aoudjit | On Robin's criterion for the Riemann Hypothesis[END_REF]. For x ≥ 2278382:

∏ q≤x q q -1 ≤ e γ × (log x + 0.2 log 2 (x)
).

We will prove another important inequality: Lemma 6.4 Let q 1 , q 2 , . . . , q m denote the first m consecutive primes such that q 1 < q 2 < • • • < q m and q m > 7232121212.

Then m ∏ i=1 q i q i -1 ≤ e γ × log (Y m × θ (q m )) .
Proof From the Lemma 6.2, we know that

θ (q m ) ≥ (1 - 0.01 log 3 (q m ) ) × q m .
In this way, we can show that

log (Y m × θ (q m )) ≥ log Y m × (1 - 0.01 log 3 (q m ) ) × q m = log q m + log Y m × (1 - 0.01 log 3 (q m )
) .

We know that

log Y m × (1 - 0.01 log 3 (q m ) ) = log   e 0.2 log 2 (qm) (1 -0.01 log 3 (q m ) ) × (1 - 0.01 log 3 (q m ) )   = log e 0.2 log 2 (qm) = 0.2 log 2 (q m )
.

Consequently, we obtain that log q m + log Y m × (1 -0.01 log 3 (q m ) ) ≥ (log q m + 0.2 log 2 (q m ) ).

Due to the Lemma 6.3, we prove that

m ∏ i=1 q i q i -1 ≤ e γ × (log q m + 0.2 log 2 (q m ) ) ≤ e γ × log (Y m × θ (q m ))
when q m > 7232121212.

We use the following Lemma: Lemma 6.5 [START_REF] Hertlein | Robin's Inequality for New Families of Integers[END_REF]. Let ∏ m i=1 q a i i be the representation of n as a product of primes q 1 < • • • < q m with natural numbers as exponents a 1 , . . . , a m . Then,

f (n) = m ∏ i=1 q i q i -1 × m ∏ i=1 1 - 1 
q a i +1 i . F. Vega
The following theorems have a great significance, because these mean that the possible smallest counterexample of the Robin inequality greater than 5040 must be very close to its square free kernel. Theorem 6.6 Let ∏ m i=1 q a i i be the representation of n as a product of primes q 1 < • • • < q m with natural numbers as exponents a 1 , . . . , a m . If n > 5040 is the smallest integer such that Robins(n) does not hold, then

(log n) β ≤ Y m × log(N m ), where N m = ∏ m
i=1 q i is the primorial number of order m and

β = ∏ m i=1 q a i +1 i q a i +1 i -1
.

Proof According to the theorems 1.4 and 1.5, the primes q 1 < • • • < q m must be the first m consecutive primes and a 1 ≥ a 2 ≥ • • • ≥ a m ≥ 0 since n > 5040 should be an Hardy-Ramanujan integer. From the Theorem 4.2, we know that necessarily q m > e 31.018189471 . From the Lemma 6.5, we note that

f (n) = m ∏ i=1 q i q i -1 × m ∏ i=1 1 - 1 
q a i +1 i .
However, we know that

m ∏ i=1 q i q i -1 ≤ e γ × log (Y m × log(N m ))
because of the Lemma 6.4 when q m > 7232121212. If we multiply by ∏ m i=1 1 -1 q a i +1 i the both sides of the previous inequality, then we obtain that

f (n) ≤ e γ × log (Y m × log(N m )) × m ∏ i=1 1 - 1 
q a i +1 i .
If n is the smallest integer exceeding 5040 that does not satisfy the Robin inequality, then

e γ × log log n ≤ e γ × log (Y m × log(N m )) × m ∏ i=1 1 - 1 
q a i +1 i because of e γ × log log n ≤ f (n).
That is the same as

m ∏ i=1 q a i +1 i q a i +1 i -1 × log log n ≤ log (Y m × log(N m ))
which is equivalent to

(log n) β ≤ Y m × log(N m ) where β = ∏ m i=1 q a i +1 i q a i +1 i -1
. Therefore, the proof is done.

Theorem 6.7 Let ∏ m i=1 q a i i be the representation of n as a product of primes q 1 < • • • < q m with natural numbers as exponents a 1 , . . . , a m . If n > 5040 is the smallest integer such that Robins(n) does not hold, then (log n) β < 1.000208229291 × log(N m ),

where N m = ∏ m i=1 q i is the primorial number of order m and β = ∏ m i=1 q a i +1 i q a i +1 i -1

.

Proof From the Theorem 4.2, we know that necessarily q m > e 31.018189471 . Using the Theorem 6.6, we obtain that

(log n) β < 1.000208229291 × log(N m )
due to the Lemma 6.1 since we have that Y m < 1.000208229291 when q m > e 31.018189471 . Theorem 6.8 Let ∏ m i=1 q a i i be the representation of n as a product of primes q 1 < • • • < q m with natural numbers as exponents a 1 , . . . , a m . If n > 5040 is the smallest integer such that Robins(n) does not hold, then n < (1.006479799241) m × N m , where N m = ∏ m i=1 q i is the primorial number of order m.

Proof According to the theorems 1.4 and 1.5, the primes q 1 < • • • < q m must be the first m consecutive primes and a 1 ≥ a 2 ≥ • • • ≥ a m ≥ 0 since n > 5040 should be an Hardy-Ramanujan integer. From the Lemma 6.4, we know that

m ∏ i=1 q i q i -1 ≤ e γ × log (Y m × θ (q m )) = e γ × log log(N Y m m )
for q m > 7232121212. In this way, if n > 5040 is the smallest integer such that Robins(n) does not hold, then n < N Y m m since by the Lemma 2.1 we have that

e γ × log log n ≤ f (n) < m ∏ i=1 q i q i -1 .
That is the same as n < N Y m -1 m × N m . We can check that q Y m -1 m is monotonically decreasing for all primes q m > e 31.018189471 . Certainly, the derivative of the function

g(x) = x   e 0.2 log 2 (x) (1-0.01 log 3 (x) ) -1  
is less than zero for all real numbers x ≥ e 31.018189471 . Consequently, we would have that q Y m -1 m < g(e 31.018189471 ) < 1.006479799241 for all primes q m > e 31.018189471 . Moreover, we would obtain that

q Y m -1 m > q Y m -1 j for every integer 1 ≤ j < m. Finally, we can state that n < (1.006479799241) m × N m since N Y m -1 m < (1.006479799241) m
when n > 5040 is the smallest integer such that Robins(n) does not hold.

We know the following results: Lemma 6.9 [START_REF] Dusart | The k th prime is greater than k(ln k + ln ln k -1) for k ≥ 2[END_REF]. For x > 1: π(x) ≤ (1 + 1.2762 log x ) × x log x where π(x) is the prime counting function. Lemma 6.10 If n > 5040 is the smallest integer such that Robins(n) does not hold, then p < log n where p is the largest prime divisor of n [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. Theorem 6.11 Let ∏ m i=1 q a i i be the representation of n as a product of primes q 1 < • • • < q m with natural numbers as exponents a 1 , . . . , a m . If n > 5040 is the smallest integer such that Robins(n) does not hold, then 1 < (1+ 1.2762 log qm )×log(1.006479799241) log log n

+ log N m
log n , where N m = ∏ m i=1 q i is the primorial number of order m.

Proof Note that n < (1.006479799241) m × N m when n is the smallest integer such that Robins(n) does not hold. If we apply the logarithm to the both sides, then log n < m × log(1.006479799241) + log N m .

According to the Lemma 6.9, we have that log n < (1 + 1.2762 log q m ) × q m log q m × log(1.006479799241) + log N m .

From the Lemma 6.10, we would have log n < (1 + 1.2762 log q m ) × log n log log n × log(1.006479799241) + log N m .

which is the same as 1 <

(1 + 1.2762 log q m ) × log(1.006479799241) log log n + log N m log n after of dividing by log n.

2 .
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 1 As the prime number p n increases, the sequence Y n is strictly decreasing. Proof This Lemma is obvious. In mathematics, the Chebyshev function θ (x) is given by θ (x) = ∑ p≤x log p
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