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Abstract: This paper proposes a practical hybrid solution for combining and switching between three pop-

ular Ring-LWE-based FHE schemes: TFHE, B/FV and HEAAN. This is achieved by first mapping the different

plaintext spaces to a common algebraic structure and then by applying efficient switching algorithms. This

approach has many practical applications. First and foremost, it becomes an integral tool for the recent stan-

dardization initiatives of homomorphic schemes and common APIs. Then, it can be used in many real-life

scenarios where operations of different nature and not achievable within a single FHE scheme have to be

performed and where it is important to efficiently switch from one scheme to another. Finally, as a byproduct

of our analysis we introduce the notion of a FHEmodule structure, that generalizes the notion of the external

product, but can certainly be of independent interest in future research in FHE.

Keywords: fully homomorphic encryption, Ring-LWE, lattice based cryptography, floating point computa-

tion, TFHE, B/FV, HEAAN
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1 Introduction
Homomorphic encryption enables computations on encrypted data without decrypting it. Shortly after the

development of the first fully homomorphic encryption (FHE) scheme by Gentry [23], extensive research has

been carried out on the design, implementation and cryptanalysis of various other FHE schemes.

Several constructions based on the Ring-LWE problem [26] are today among the most promising FHE

candidates, each of them having particular advantages that depend on the type of the target homomorphic

operations and arithmetic. More precisely, certain schemes are better for integer arithmetic whereas others

have advantages for performing arithmetic with real numbers; some are more suitable for vector operations

whereas others perform well in the case of sequential combinatorial operations on individual slots such as

the evaluation of Boolean circuits, finite state machines or lookup tables. In addition, different constructions

typically tolerate different amounts of noise and hence, homomorphic evaluation of circuits of different mul-

tiplicative depth.

It is thus of central importance to be able to use the optimal scheme for each type of operation in a par-

ticular computation. This motivates the need for building an efficient hybrid solution combining more than

one scheme and switching between these schemes during the individual operations.

This paper proposes such a practical hybrid solution based on efficient switching algorithms for three

different Ring-LWE schemes, where each scheme is best suited for certain types of operations: 1) TFHE [18, 19]
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particularly suitable for combinatorial operations on individual slots and tolerating large noise and thus,

largemultiplicative depth. 2) B/FV [6, 13, 21] allowing to perform large vectorial arithmetic operations as long

as the multiplicative depth of the evaluated circuit remains small; 3) HEAAN [15, 16] - a mixed encryption

scheme shown to be very efficient for floating-point computations.

We achieve such a hybrid solution by first mapping the different plaintext spaces of the different schemes

to a common algebraic structure using certain natural algebraic homomorphisms. Once such a uniformiza-

tion of the plaintext spaces has been achieved, we describe our scheme switching algorithms. The main idea

here is to replace the expensive bootstrapping algorithms with more efficient key-switching operations. Re-

call that if S
1
and S

2
are two homomorphic encryption schemes then the concept of bootstrapping, originally

introduced by Gentry [23], is a homomorphic evaluation (under the scheme S
2
) of the decryption function for

the scheme S
1
. Since all Ring-LWE-based FHE decryption functions evaluate an inner product followed by a

rounding function and since the rounding function is a step function, instead of first applying the expensive

bootstrapping and then evaluating a function f , one can replace the last rounding step in the bootstrapping
by a more general step function g that approximates f and use a homomorphic lookup table evaluation. This

is essentially the idea of the key-switching algorithms described in Section 2.2 that are later used to achieve

a switch between the schemes in Sections 3 and 4. Note that the concept of functional key-switch is not new

(it appeared already in the context of TFHE [18] and implicitly in the work of Ducas and Micciancio [20]). Yet,

its application to scheme switching presented in this work is novel.

Tobetter explain the algebraic aspects of our approach,we letRm denote thequotient ring (Z/mZ)[X]/(XN+
1) for some integers m and N and we let T = R/Z be the torus. To introduce the algebraic structure of the

plaintext spaces in TFHE, we distinguish two different underlying encryption schemes (an encryption scheme

on a ring and a homomorphic one on a module over that ring):

– TRGSW: encryption scheme on the ring R := Z[X]/(XN + 1),
– TRLWE: HE scheme on the R-module TR := (R[X]/(XN + 1))/R.

The plaintext space for the scheme TRGSW is the ringRwhereas its ciphertext space is (TN)2ℓ for some integer

ℓ that depends on various precision and noise parameters (see Section 2 for details). Elseways, the plaintext

space for the scheme TRLWE is the R-module TR and the ciphertext space is (TN)2 (see Section 2.2 for details
as well as for the definition of the external product which is the homomorphic evaluation algorithm for the

ring action on the module).

On the other hand, the plaintext space of B/FV is Rp for some integer p (a prime, a power of 2 or a small

number 1 mod 2N, depending on the functionality that we want) and the ciphertext space is R2

q for some

larger integer q. Finally, HEAAN has for message space a ball of radius B in Rq with respect to a certain ℓ
∞
-

norm defined in Section 2.4 and its ciphertext space is R2

q.

It is not too hard to verify that in the three cases listed above, the ciphertext spaces share very similar

algebraic structures. For B/FV and HEAAN this is trivial to do; for TFHE, it suffices to identify the ciphertext

space R2

q with a subgroup of the torus (TN)2 as follows: using that R2

q ≃ ((Z/qZ)N)2, we simply identify

q−1Z/Z ≃ Z/qZ, the latter being the multiplication-by-q isomorphism of Z-modules.

Yet, the plaintext spaces are a priori rather different. In order to apply any key-switching technique, one
thus needs to uniformize them (i.e., map them to the same algebraic structure). In addition, this algebraic

structure should carry a specific metric allowing us to quantify and measure the noise in the decryption

function. We achieve this by using the plaintext space of TFHE, namely R[X]/(XN + 1) modulo Z (a space

we introduce in Section 2 and denote by TR throughout the paper). We then show how to map both B/FV and
HEAAN plaintexts to TR in Sections 3 and 4.

Our hybrid solution has many practical applications. First and foremost, it becomes an integral tool for

the recent standardization initiatives of homomorphic schemes and common APIs [8], especially since TFHE,
B/FV (Seal) and HEAAN are part of this standardization process.

Then, imagine a scenario where operations on large datasets must be performed and a decision must

be taken on the result. The first part would be easier via the B/FV scheme, whereas the decision function

can be evaluated faster in TFHE. Therefore, one would like an efficient method to pass from B/FV to TFHE.
Similarly, if more approximate computations have to be performed, one would benefit from a scheme switch-
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ing between HEAAN and TFHE. Another example comes from the recent Idash’18 Track 2 [1] competition on

designing homomorphic solutions for semi-parallel Genome Wide Association Studies (GWAS). One of the

operations needed for the challenge required to compute homomorphically the product G−1 · S, for a small

4 × 4 symmetric matrix G and a much larger 4 × 10000matrix S. In this scenario, the bootstrapping of TFHE
can be used to compute the 10 coefficients of G−1 (via either Gaussian elimination or Cholesky factorization),

so these algorithms that include loops, inversions and have very high multiplicative depth, benefit from fast

bootstrapping on individual data. Then, the matrix multiplication G−1 · S can be massively vectorized using

the SIMD operations of HEAAN. Similarly, different machine learning algorithms use SIMD operations to pro-

duce an output vector and at the end, one needs to compute the maximum of its coordinates. Conversely,

various financial systems need to perform small computations on an encrypted database with a potentially

very large multiplicative depth over a long period of time and at the end of the period provide statistics on

the current dataset. In this case, it is essential to operate in bootstrapped mode as in TFHE and then perform
the low-depth statistical calculations in B/FV or HEAAN. In such a scenario, it is important to transform TFHE
ciphertexts to B/FV or HEAAN ones.

As a byproduct of our analysis of the three above schemes from the perspective of TFHE, we propose
the general definition of a FHE module structure, that is, an external product allowing to homomorphically

evaluate the action of the ring R on the module M whenever M is equipped with an HE scheme and R is

equipped with a FHE scheme. This concept already appears in a particular case in [18] (named as external
product), but it can certainly be of independent interest in future research in FHE. For instance, it permits to

express the relinearization in the internal products of HEAAN and B/FV in terms of the FHE module structure

for TFHE and this without loss as it is the same algorithm.

T
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Ball∞( 1

2ℓ
) C
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TFHE Gate bootstrap

B/FV bootstrap

HEAAN bootstrap

TLWETLWE

HEAAN-Slot

HEAAN

P = p

P−1
R/R

Figure 1: Bridges between Ring-LWE homomorphic schemes. Plain arrows represent bridges between the different schemes.
Dotted arrows represent inclusion. Finally, the spaces P = p and P = X − p are instantiations of P−1R/R.

2 Preliminaries
Let T = R/Z be the real torus and let R = Z[X]/(XN + 1) be the ring of polynomials with integer coefficients

modulo XN + 1. For a ring A (e.g., A = Z,R,C), let RA := R⊗Z A = A[X]/(XN + 1) be the ring of polynomials

modulo XN + 1 with coefficients in A. In particular, R = RZ, so we interchangeably omit the index.

Let TR = RR/RZ (a.k.a R[X] mod XN + 1 mod Z) which we view as an R-module (it has no ring struc-

ture).We often refer to the left action ofR onTR as an external multiplicationwith coefficients inR. Moreover,
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letBbe the subset of all polynomials ofRZwith coefficients in {0, 1} (here,we identifyRZ ≃ ZN asZ-modules

in the natural way). Finally, if x ∈ R, let Rx = R/xR and let πx : R→ Rx be the natural surjection.

We use the ℓp-distance on the N-dimensional torus TN and write ‖x − y‖p for the distance between two

elements x, y ∈ T. Note that it satisfies ∀m ∈ Z, ‖m · x‖p ≤ |m| ‖x‖p. For an integer element a ∈ TR, consider

any representative a(X) = a
0
+ · · · + aN−1XN−1 ∈ R[X]. We will (unambiguously) write ‖a‖p for the norm of

the image of (a
0
, . . . , aN−1) in TN .

The notion of Lipschitz function always refers to the ℓ
∞
-distance: a function f : Tm → Tn is said to be

κ-lipschitz if
⃦⃦
f (x) − f (y)

⃦⃦
∞

≤ κ ‖x − y‖
∞

for all inputs x, y, where ‖ · ‖
∞
is the ℓ-infinity norm.

In this work, we revisit the three scale-invariant families of HE schemes (TFHE in Section 2, B/FV in Sec-
tion 3 and HEAAN in Section 4), all of them based on the Ring-LWE problem introduced in [26].

More precisely, we present a slightly different interpretation of these schemes through the concept of

FHE module structure that provides a more conceptual interpretation of the corresponding homomorphic

evaluation of the action of a ring on a module over that ring. More importantly, in the subsequent sections,

we realize each of the plaintext spaces of the schemes B/FV, TFHE and HEAAN as subsets of theR-module TR

which enables the scheme-switching algorithms.

2.1 The concept of FHE module structure

The definition below assumes that the decryption algorithms do not introduce any noise in the plaintext (i.e.,

the decryption is exactly the original message). Note that this allows for probabilistic encryption algorithms.

Definition 1 (Noiseless FHE Module Structure) By a noiseless FHE module structure, we mean a 7-tuple

(R,M, EncR , DecR , EncM , DecM ,�) where

– R is a ring with an encryption scheme (EncR , DecR) on R without decryption noise and with ciphertext
space CR,

– M is an R-module with a homomorphic encryption scheme (EncM , DecM)without decryption noise and
with ciphertext space CM,

– � : CR × CM → CM is an operation (external product) satisfying

DecM(EncR(r)� EncM(m)) = r · m, ∀ r ∈ R, m ∈ M.

Although quite general, the above definition has several drawbacks as detailed through the following re-

marks.

Remark 1. While TFHE fits exactly in this definition (with the algorithms TRGSW and TRLWE), the scheme

HEAAN falls outside of its scope, as its decryption is noisy (i.e., no rounding is used).

Remark 2. In practice, the above definition is not sufficient to model the properties of the FHE schemes with

bootstrapping where the notion of noise in the decryption algorithm is of primary importance. The algebraic

structures above are too general to enable a proper model for the noise distributions. Without further as-

sumptions onM (e.g., metric properties, Gaussian distributions supported onM), this definition is incapable

of:

1. Abstracting an adequate model for the correctness of the decryption.

2. Abstracting the security properties of these schemes.

To address these twomajor questions, the pure probabilistic approach seems insufficient. In the next section,

we will restrict the above definition to M = TR and use the metric properties of the torus to define a noisy

version that would address points 1. and 2. above.
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2.2 TFHE

Here, we revisit the TFHE scheme using the definition of the FHEmodule structure. In practice, the definition

of the FHEmodule structure does not directly apply to TFHE. Oneneeds here a leveled version of this definition
(i.e., after each operation, the standard deviation or the noise in the decryption increases until it is impossible

to decrypt by rounding).

TFHE consists of three major encryption/decryption schemes, each represented by a different plaintext

space. First, the scheme TLWE encrypts messages over the entire torus T and produces ciphertexts in TN+1.
The other two schemes are:

– TRGSW encrypts elements of the ring RZ (integer polynomials) with bounded ℓ∞-norms (of the corre-

sponding vectors in ZN under the natural identification R ≃ ZN).
– TRLWE encrypts elements µ of the RZ-module TR that can also be viewed as elements of TN via the

natural bijection TR ≃ TN .

There is an external product �α depending on a noise parameter α [18, Cor. 3.14] that we recall in detail
in Theorem 1 below. This theorem yields a FHE module structure on the schemes TRGSW and TRLWE.

In TFHE, TLWE ciphertexts of amessage µ ∈ Thave the form (a, b = ⟨s, a⟩+µ+e) ∈ TN+1where s ∈ {0, 1}N

is the secret key, a ∈ TN is uniformly random and e ∈ T is sampled according to a noise distribution centered

at zero. Similarly, for TRLWE, ciphertexts of µ ∈ TR are of the form (a, b = s · a + µ + e) ∈ T2

R where s ∈ B,

a ∈ TR is uniformly random and e ∈ TR.

The decryption in TLWE (resp. TRLWE) uses a secret κ-Lipschitz function (here, κ > 0 is small and we

mean “with respect to the ℓ∞-norm on the torus") φs : TN × T → T (resp. φs : TR × TR → TR) called phase
parametrized by a small (often binary) secret key s ∈ {0, 1}N (resp. s ∈ B) and defined by (a, b) ∈ TN × T ↦→
b − ⟨s, a⟩ (resp. (a, b) ↦→ b − s · a). The fact that the phase is a κ-Lipschitz function for small κ ≤ N + 1makes

the decryption tolerant to errors and allows working with approximated numbers.

Ciphertexts are either fresh (i.e., generated by directly encrypting a plaintext) or they are produced by a

sequence of homomorphic operations. In both cases, one views the ciphertext as a random variable depend-

ing on the random coins used to generate a and e as well as all random coins used in all these homomorphic

operations.

Since φs(a, b) = b − s · a = µ + e, the decryption µ and the noise parameter α are the mean and the

standard deviation of the phase function φs(a, b), respectively (here, the mean and standard deviation are

computed over the random coins in the encryption algorithm).

The expectation, variance and standard deviation on the torus are well defined only for concentrated

distributions (defined in [18, 2.1]) whose support is included in a ball of radius 1/4 (up to negligible tails).

This is the case of the error distribution of T(R)LWE. More information on the definition of expectation and

standard deviation for concentrated distributions on the torus can be found in [18, 19]. The benefit of the

definition of the message as the expectation of the phase is that it is valid with infinite precision on any

(discrete or non-discrete) subset of TR. Note that this definition is only useful for analysis (e.g., proving the

correctness of the cryptosystem) and cannot be used for decryption since the expectation of the phase cannot

be computed in practice from a single sample of the distribution.

Below, we describe the parameters and the algorithms that are used for TFHEwith the TRLWE encryption
scheme.

Parameters: A security parameter λ and a minimal noise parameter α. These parameters implicitly define a

minimal key size N. For more details see the FHE standardization workshop security document [2].

KeyGen/Phase: A uniformly random binary key s ∈ B. This key implicitly defines the secret phase function

φs : T2

R → TR, (a, b) ↦→ (b − s · a).

Encrypt (µ, s, α): To encrypt a message µ ∈ TR, choose a uniformly random a ∈ TR and a small Gaussian

error e ← DTR ,α, and return

Encrypt(µ, s, α) =
def

(a, s · a + µ + e).
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DecryptApprox(c, s): (approx) Return φs(c) which is close to the actual message.

Decrypt(c, s,M): (rounded) Round φs(c) to the nearest point in M. Here, M ⊂ TR is subset of plaintext

messages and the nearest point is with respect to the distance function on TR ≃ TN .
Messages(c): (probabilistic) This is the expectation of φs(c) (with respect to the random coins used in the

noise). It can be viewed as a perfect decryption algorithm with infinite precision.

Public linear combination over RZ: return

k∑︁

i=1
ai · ci, where ci ∈ T2

R and ai ∈ RZ for i = 1, . . . , k.

External product: Given a TRGSW ciphertext A encrypting a message µA ∈ RZ and a TRLWE ciphertext b
of a message µb ∈ TR, compute A �α b at precision α > 0, which encrypts µA · µb ∈ TR (see [18] and

Theorem 1)

�α : TRGSW × TRLWE −→ TRLWE.

Apply a Z-module morphism f : use a key-switch algorithm (Theorem 2 and described in Algorithm 2 in

[18]).

SampleExtracti(c) Given a TRLWE ciphertext c of a message µ ∈ RZ, extract from c the TLWE sample that

encrypts the ith coefficient µi with at most the same noise variance or amplitude as c (see [18] Section
4.2), defined as:

SampleExtracti(c) =
def

((ai , ai−1, . . . , ai−N+1), bi).

Toease the readingof this paper,we specify only oneparticular instantiationof TFHE¹, all bit-decompositions

are binary. We present all theorems with decomposition in base 2 (for bootstrapping, key-switch, external

product and bitdecomp) to minimize the number of parameters in the formulas. To perform an operation at

precision α ≪ 1 (i.e. noise standard deviation α during the operation), we always use ℓ = − log
2
(α) terms in

every bit decomposition.

The primary definition of α is the noise’s standard deviation during the current operation: α is thus not a
static parameter of the framework. Then, the notions of noise rate, precision and approximate decomposition

error, key-switch noise and bootstrapping noises are equal to α or proportional to it.
Any TLWE, TRLWE, TRGSW ciphertext, bootstrapping key or key-switching key given at a higher precision,

can always be rounded and truncated to match the current precision α. Working with precision α implies a

minimal size for the current binary key (as a simple rule of thumb, the minimal key size N that provides 128

bits of security is roughly the smallest power of two larger than max(256, 40| log
2
α|). The actual key size

should be determined either from the standardization document [2] or from the LWE estimator by Albrecht

et al. [3]. Whenever α varies (e.g. increases after each multiplication, or decreases after a bootstrapping), we

always use the last key-switching and bootstrapping operation to switch to the smallest possible key that

matches from the security estimates.

External product
There is a compatibility between the ciphertexts of TRGSW and TRLWE that can be expressed algebraically

in the following manner: observe that the plaintext space for TRGSW is the ring R and the plaintext space

for TRLWE is the R-module TR. In this case, one can define the following external product (a homomorphic

action) (first introduced in [7] and formalized on the torus in [19]) of R on TR:

Theorem 1. (External product [18, Cor. 3.14]) Let cr be a TRGSW ciphertext of a message r ∈ RZ and let cm be
a TRLWE ciphertext of a message m ∈ TR such that cm is independent of the random coins used for cr. There
exists a homomorphic external product algorithm (described explicitly in [18, Sec. 3.3]) and denoted by cr�α cm

1 With this choice, the parameters from [18] correspond to: k = 1, β = 1, Bg = 2, ℓ = − log(α), t = ℓ, n = N, VKS = VBK = α2,
which implies ϵ = α/2. As usual, a non binary decomposition is possible and gives small poly-logarithmic improvements.
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such that Messages(cr �α cm) = r · m with noise standard deviation α > 0 and

Var(Err(cr �α cm)) ≤ 2ℓNVar(Err(cr)) +
1 + N
4

‖r‖2
2

α2 + ‖r‖2
2

Var(Err(cm)).

In general, this theorem will be used to multiply a TRLWE ciphertext cm by a precomputed TRGSW cipher-

text cr (e.g., a ciphertext of the binary secret key in the case of bootstrapping): in this case, we can choose

Var(Err(cr)) = α2, and we have ‖r‖2
2

≤ N (or even ‖r‖2
2

= 1 if TRGSW ciphertexts encrypt only single bits, as

in [19] and [18]). In this case, the working precision α equals the targeted output precision divided by N, so
that the first two error terms in the theorem remain negligible.

Key-switching
In order to switch between the scalar and polynomial message spaces T and TR, the authors of [18] general-

ized the notions of sample extraction and key-switching. On one side, a PubKS(f , KS, c
1
, . . . , cn) algorithm

homomorphically evaluates linear morphisms f from any Z-module Tn to TN [X] using the functional key-
switching key KS. It is possible to evaluate also a private linear morphism, but the algorithm is slower.

Theorem 2. (Functional key-switch adapted from [18, Thm. 4.2]) Given r TLWE ciphertexts ci ∈ TLWES(µi), a
public κ-Lipschitz Z-module homomorphism

f : Tr → TR

and KSi,j ∈ T(R)LWEK,α( Si
2
j ) with standard deviation α and Si the i-th coefficient of the key S, Algorithm 2 de-

scribed in [18] outputs a T(R)LWE sample c ∈ T(R)LWEK(f (µ1, . . . , µr)) such that

Var(Err(c)) ≤ κ2max(Var(Err(ci))) + α2(ℓN2

+

N
4

).

Non-linear functions
In TFHE, a negacyclic function f : T→ T (i.e. f (x+1/2) = −f (x)) can be homomorphically applied to the phase

of an individual TLWE ciphertext c ∈ Tn+1 with a n-bit key K where each individual coefficient is rounded to

the nearest multiple of 1/2N. More precisely, given the values f (i/2N) for i = 0, 1, . . . , 2N − 1, [18, Alg.4]
outputs a ciphertext c′ ∈ TN+1 of the plaintext f (⌊φK(c)⌉) encrypted with key S ∈ {0, 1}N .

Theorem 3. (Functional bootstrap adapted from [18, Thm. 4.3]) Given a TLWE ciphertext c ∈ Tn+1 encrypted
with an n-bit key K ∈ {0, 1}n where each individual coefficient of c is rounded to the nearest multiple of 1/2N,
a negacyclic function f : T → T restricted to (2N)−1Z/Z ⊂ T and a bootstrapping key BK = TRGSWS(Ki) with
standard deviation α, Algorithm 4 described in [18] outputs a TLWE sample c′ ∈ TN+1 encrypting f (φK(c)) with
key S ∈ {0, 1}N such that:

Var(Err(c′)) ≤ α2n(2ℓN + N +

5

4

+ ℓ).

Until now, the most frequent non-linear function used in bootstrapping is the rounding function, since

rounding the phase of a ciphertext is equivalent to decrypting it, and homomorphic decryption is the noise-

reduction method proposed by Gentry in 2009 [23].

2.3 B/FV (Brakerski, Fan–Vercauteren, and Seal).

In this scheme, the message space is the finite ring Rp = (Z/pZ)[X]/(XN + 1) for some integer p (typically a
power of 2 or a prime number). A message µ ∈ Rp is encrypted on a quotient ringRq (for a larger modulus q)
as a ciphertext (a, b) ∈ R2

q where a ∈ Rq is chosen uniformly at random and b is sampled fromDRq ,σ,s·a+ p
q µ
.

Here,DRq ,σ,µ is the discrete Gaussian distribution over Rq centered at µ with standard deviation σ (discrete
means that the values are integers only). In addition, s ∈ B is the secret key.
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Homomorphic addition of two ciphertexts (a
1
, b

1
) and (a

2
, b

2
) is achieved by component-wise addition.

The idea behind the homomorphic multiplication of two ciphertexts (a
1
, b

1
) and (a

2
, b

2
) is a technique re-

ferred to as relinearization: one first lifts (ai , bi) ∈ R2

q to (̃︀ai , ̃︀bi) ∈ R2

where each coefficient is lifted to

[−q/2, q/2) and then view of µi as being expressed as a linear polynomial on s (i.e., µi ∼
p
q (bi + s · ai)). One

then computes the quadratic polynomial corresponding to the product, namely

p
q (b1 + s · a1) ·

p
q (b2 + s · a2),

and uses the relinearization described in [21, p.7–9] to write this product as

p
q (b + s · a) and determine the

coefficients (a, b) ∈ Rq.

The noise amplitude grows by a small factor O(N) on average after eachmultiplication, so it is a common

practice to perform amodulus-rescaling step, that divides and rounds each coefficient as well as the modulus

q by the same scalar in order to bring the noise amplitude back to O(1) so that the subsequent operations
continue on smaller ciphertexts. For more details and formal definitions see [6, 21].

We will show in Section 3 how to embed the plaintext space of B/FV in TR and how to then use the TFHE
module structure to evaluate the above B/FV homomorphic product in a natural way.

2.4 HEAAN

In this scheme, the message space is the subset ofRq containing all elements of norm ≤ B for some bound B,
where the norm of an element x ∈ Rq is defined as ‖̃︀x‖∞. Here ̃︀x ∈ RR is the minimal lift of x, i.e., coefficients

lifted to [−q/2, q/2). The message is decrypted up to a constant number of least significant bits which are

considered as noise.

A HEAAN ciphertext is also a Ring-LWE pair (a, b) ∈ R2

q where a ∈ Rq is uniformly random and b is equal
to s · a + µ up to a Gaussian error of small standard deviation. This time, plaintexts and ciphertexts share

the same space, so no rescaling factor p/q is used. Multiplication of two messages uses the same formula

as in B/FV including relinearization: if both input messages are bounded by B with O(1) noise, the product
is a message bounded by B2 with noise O(B), so it is a common practice at this point to perform a modulus-

rescaling step that divides everything by B to bring the noise back to O(1) (see [16]). Unlike B/FV, this division
in themodulus switching scales not only the ciphertext but also theplaintext by B. This canbefixedby adding
a (public) tag to the ciphertext to track the number of divisions by B performed (see more details in Section

4).

2.5 TR as the common plaintext algebraic structure

As mentioned earlier, the three homomorphic schemes use nearly the same ciphertext space (up to rescaling

by a factor q). In addition, all decryption methods make use of the phase function up to minor differences:

b − sa versus b + sa in B/FV or
m∑︁

i=0
si · ai, s ∈ R, ai ∈ TR for various values ofm in Seal [13]. Yet, the plaintext

spaces are à priori different as they are based on different mathematical structures (groups, rings, intervals,

random sets).

In order to exploit the advantages of each scheme,weneed to be able tohomomorphically switchbetween

the different plaintext spaces, andmost importantly, to give ameaningful semantic to these transformations.

The main idea that enables us to give a meaningful semantic to the scheme switching transformation is

to interpret all the plaintext spaces as being embedded in the same module TR as shown in Figure 2 and to

use the distance function on the torus to quantify the transformation error. In this setting, all schemes use

the same ciphertext space T2

R, the same key spaceB and the same phase function φs(a, b) = b − s · a. Thus,
the probabilistic characterization of the message and error as the expectation and the standard deviation of

the TFHE phase, respectively, are automatically extended to all schemes.
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TR
+

noise?

Ciphertext

(a, b)
Integers (B/FV)

(Z/pZ)n

Fixed point (HEAAN)
C

Circuits (TFHE)
B = (0, 1)

Figure 2: Representation of the plaintext space over the TR

2.6 Real and complex slots for B/FV, TFHE and HEAAN

In this section we recall the representation of the plaintext spaces of the three schemes via the user slots. This
is indeed the representation used in the current implementations.

B/FV
In B/FV, homomorphic operations are performed either on N SIMD slots modulo a medium-size integer p
[13, 21], or more recently, on a single big-number slot modulo pN + 1 [14]. In both cases, the set of these slots
has a ring structure and is isomorphic to a quotient of RZ by a principal ideal (the native plaintext in [14]).

HEAAN
In HEAAN, homomorphic operations are performed on N/2 SIMD slots containing complex numbers in fixed-

point representation with the same public exponent and the same precision. By interpolating the complex

roots of XN + 1, the native plaintext can be mapped to small polynomials of TR (i.e., a zero-centered ball of

small fixed radius) since the complex DFT matrix is Hermitian. We achieve this in Section 4.

TFHE
Finally, in TFHE, the message space is an arbitrary subset of TR, without any particular structure.

Preserving the user slots
In order to introduce the notion of slots (real or complex), we use the following two isomorphisms ofR-vector
spaces:

RR ≃ RN , f = a
0
+ · · · + aN−1XN−1 ↦→ (a

0
, . . . , aN), (1)

and

RR ≃ CN/2, f ↦→ (f (ζ ), f (ζ 3), . . . , f (ζ N−1)). (2)

Here ζ = eπi/N is a primitive root of XN + 1. Representation (1) corresponds to what is called the coefficient
packing and representation (2) corresponds to what is called the slot packing.

The unified native plaintext spaces and the correspondence with the user-space slots are shown in Fig-

ure 3.
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Ciphertext Phase Native Message User Slots

(a, b)
b− s · a

any M⊆ TR

small continuous interval

principal ideal lattice

local stability of homomorphic ops

Arbitrary subset

P (X) = p, N SIMD slots modulo p

P (X) = X-p, 1 bignum slot modulo pN+1

N/2 fixed point SIMD slots over C

fast operations on individual slots

N independent coeffs over T

P (X) =
∏

(X-pi) SIMD slots, each mod pNi +1

T2
R TR M⊆ TR

(TFHE)

(B/FV)

(HEAAN)

M = P−1RZ/RZ

coeffs∈ [− 1
2`
, 1
2`

]

=
µ+ e

Figure 3: Unifying the plaintext space in RLWE-schemes. See the following sections for the definition of the notation.

3 A general abstraction of B/FV over the torus
The B/FV scheme is very efficient in evaluating arithmetic circuits (i.e. polynomials on the plaintext). Yet,

huge slowdowns are observed when evaluating comparisons, the sign function or other non-linear decision

diagrams that do not correspond to sparse low-degree polynomials.

Here, we propose an alternative approach that switches to a different scheme, and for instance, executes

the non-arithmetic operation via TFHE’s gate bootstrapping.We explain how to represent the plaintext spaces

in order to enable this conversion.

Originally, the construction of B/FV uses Rp as the plaintext space, where p ≥ 2 is a plaintext modulus.

For more flexibility (see, e.g., the B/FVwith big numbers below), one can use an arbitrary element P ∈ R and

take RZ/PRZ as the plaintext space.
Following the ideas of [14, 22], given an element P ∈ RZ that is invertible inRR, letL(P) andL(P−1) be the

real lattices generated by the rows of the matrices associated to P and P−1, respectively. Recall that these are
thematrices (with respect to the standard basis {1, X, . . . , XN−1}) corresponding to the linear transformation

of the R-vector space RR that is multiplication by P. The native plaintext spaceM is precisely the subgroup

P−1RZ/RZ ⊂ RR/RZ = TR. We then have

P−1RZ/RZ ≃ RP := RZ/PRZ,

where the isomorphism is induced by u ↦→ P · u for u ∈ P−1RZ/RZ. Thus,M ≃ RP. Geometrically,M can be

thought of as the vectors in the lattice L(P−1)whose coordinates are taken modulo Z. Algebraically,M is the

P-torsion of the TR.

Via this isomorphism, the native plaintext spaceM is equipped with the following internal Mongomery-

type product:

Definition 2 (Native plaintext product) Givenan element P ∈ RZ as above,wedefine aproduct�P : M×M→
M by µ

1
�P µ2 := P · µ1 · µ2. Here, the product P · µ1 · µ2 is defined inRR by choosing arbitrary lifts of µ

1
, µ

2

to P−1RZ. Notice that this definition is independent of the choices of these lifts.

Multiplication in B/FV
We will now deploy our definition of an FHE module structure to recover the internal homomorphic product

of B/FV in terms of the external product. We view the plaintext space M := RP as an R := RZ-module and let

s ∈ B ⊂ RZ be the key.
Given a TRLWE ciphertext c = (a, b) ∈ T2

R, we denote by (
̃︀a, ̃︀b) ∈ R2

Z the optimal lift of c to R2

R, that is the
pair of the unique lifts of c for which all coefficients of ̃︀a and ̃︀b are in [−1/2, 1/2). Let (a

1
, b

1
), (a

2
, b

2
) ∈ T2

R
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be two ciphertexts of plaintexts µ
1
, µ

2
∈ M ⊂ TR. We are searching for a ciphertext (a, b) that is a valid

encryption of the product µ
1
�P µ2. Since µi = bi − s · ai for i = 1, 2, we can write

µ
1
�P µ2 = P

(︁
̃︀b
1

̃︀b
2
− s · (̃︀a

1

̃︀b
2
+ ̃︀a

2

̃︀b
1
) + s2̃︀a

1
̃︀a
2

)︁
.

We would like to define the internal product (a
1
, b

1
)�P (a2, b2) as a pair (a, b) with the property that

DecM(a, b) = P
(︁
̃︀b
1

̃︀b
2
− s · (̃︀a

1

̃︀b
2
+ ̃︀a

2

̃︀b
1
) + s2̃︀a

1
̃︀a
2

)︁

The important point here is that we would like to find a, b ∈ TR such that

a − s · b = P
(︁
̃︀b
1

̃︀b
2
− s · (̃︀a

1

̃︀b
2
+ ̃︀a

2

̃︀b
1
) + s2̃︀a

1
̃︀a
2

)︁
.

This would have been trivial without the s2 term. To deal with the latter, we use an encryption EncR(s) =: RK
(the relinearization key) and the definition of an FHE module structure to deduce that

s2̃︀a
1
̃︀a
2
= DecM(EncR(s)� EncM(s̃︀a1̃︀a2)).

To summarize, we get

(a, b) = (̃︁a
1

̃︁b
2
+̃︁a

2

̃︁b
1
,
̃︀b
1

̃︀b
2
) + RK� (̃︀a

1
̃︀a
2
, 0).

Alternatively, the term s2̃︀a
1
̃︀a
2
can also be computed as RK′ � EncM(̃︀a1̃︀a2) where RK′ = EncR(s2).

Letting RK be a relinearization key as above, that is a TRGSW encryption of s with key s (denoted by

TRGSWs(s)), this analysis in the noiseless setting motivates the following definition of a B/FV internal homo-

morphic product in the presence of noise:

Definition 3 (Internal homomorphic product) We define the internal homomorphic product between two ci-

phertexts c
1
, c

2
∈ (TR)

2

as c
1
�P,α c2 as follows:

c
1
�P,α c2 = (C

1
, C

0
) − RK �α (C2, 0), (3)

where C
0
= P · ̃︀b

1
·
̃︀b
2
, C

1
= P · (̃︀a

1
·
̃︀b
2
+ ̃︀a

2
·
̃︀b
1
) and C

2
= P · ̃︀a

1
· ̃︀a

2
.

Note that this definition of the internal homomorphic B/FV product relies on a precomputed TRGSW external

product, or homomorphic action, which is faster than the internal product. The relation between the two

products is possible thanks to the common plaintext space for B/FV and TFHE. A formulation closer to the

original B/FV relinearization presented in [6], [21] would rather take RK′ an encryption of s2 and compute

(C
1
, C

0
) + RK′ �α (0, C2).

Yet, this approach generates more noise than using directly the encryption of s since the propagation
depends on the norm of the plaintext in TRGSW.

Proposition 1 (B/FV noise propagation) Let RK be a relinearization key, let c
1
, c

2
be two TRLWE ciphertexts of

µ
1
, µ

2
∈ M = P−1RZ/RZ, respectively, with the same key s ∈ B as in Definition 3. The internal homomorphic

product c
1
�P,α c2 is then an encryption of µ1 �P µ2 and the noise variance satisfies

Var(Err(c
1
�P,α c2)) ≤

1+N+N2

2

‖P‖2
2

max(Var(Err(ci)) +
(︂
2ℓN +

N2+N
4

)︂
α2 . (4)

Proof. Let µ
1
, µ

2
, e

1
, e

2
∈ RR be the smallest representatives of the message and error of c

1
and c

2
, respec-

tively. By definition, for each i = 1, 2, we have bi − s · ai = µi + ei + Ii where Ii is an integer and the variance
of Ii is ≤ N.

φs(c1 �P,α c2) = C0 + s · C1 + s2 · C2 + Err(RK �α (0, C2)) mod Z

= (b
1
− sa

1
)(b

2
− sa

2
)P + Err(RK �α (0, C2)) mod Z

= (µ
1
+ e

1
+ I

1
)(µ

2
+ e

2
+ I

2
)P + Err(RK �α (C2, 0)) mod Z

= µ
1
µ
2
P + e

1
µ
2
P + e

2
µ
1
P + e

1
e
2
P + e

1
I
2
P + e

2
I
1
P
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+ Err(RK �α (C2, 0)) mod Z

= µ
1
�P µ2 + e1µ2P + e2µ1P + e1e2P + e1I2P + e2I1P

+ Err(RK �α (C2, 0)) mod Z

Taking the expectation, since all multiples of ei as well as Err(RK � (0, C
2
)) have a null expectation, the

message of c
1
�P,α c2 is µ1 �P µ2. By bounding the variance of each error term, we prove Eq. (4).

The working precision α of the input ciphertexts is set in a way that the term in α2 remains negligible

compared to the first one in (4). Thus, the noise standard deviation multiplicative overhead is bounded by

O(N||P||
2
) in the average case.

3.1 Bridging B/FV slots with TFHE

In the classical description of B/FV or Seal, P(X) is usually chosen as a constant integer p. In this case, the

plaintext spaceM consists in all the multiples of P−1 = p−1 mod (XN + 1) mod Z, which is a rescaling of the
classical plaintext space descriptionRp (as shown in Figure 4). In particular, if XN+1hasN rootsmodulo p,M
is isomorphic to N independent integer slots modulo p (else, there are less slots, in extension rings or fields).
From a lattice perspective,M is viewed as the orthogonal lattice generated by 1/pIN (IN is the N × N identity

matrices). The packing radius ofM is 1/2p which is the maximal error tolerable by the phase. Rounding an

element toM consists of rounding each coordinate independently to the nearest multiple of 1/p.

0

2

p

1

p

Figure 4: The B/FV plaintext space over the TR

In the literature, the isomorphism used to obtain the slot representation is

p−1RZ/RZ ≃ Rp ≃ (Z/pZ)N , µ ↦→ (µ(r
0
), . . . , µ(rN−1)). (5)

Here, one assumes that the polynomial XN +1 mod p factorizes into distinct linear factors X− r
0
, . . . , X−

rN−1 (i.e., it has N distinct roots r
0
, . . . , rN−1 mod p). This isomorphism allows to manipulate N independent

slots in parallel. Typical values are N = 2

15

and p = 2

16

+ 1 (allowing a very small noise α ≈ 2−886 according
to [8], so a multiplicative depth of ≈ 28 without key-switch according to the propagation of Lemma 1).

If we identify a polynomial in Rp with its coefficient vector in (Z/pZ)N , the bijection between the coeffi-

cients and the slot then corresponds to the Vandermonde matrix of (r
0
, . . . , rN−1) mod p

VDM =

⎡
⎢⎢⎢⎢⎣

1 r1
0

· · · rN−1
0

1 r1
1

· · · rN−1
1

.

.

.

.

.

. · · ·

.

.

.

1 r1N−1 · · · rN−1N−1

⎤
⎥⎥⎥⎥⎦

mod p. (6)
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3.1.1 B/FV→ TFHE.

In this section we show how B/FV ciphertexts, interpreted as TRLWE ciphertexts with plaintext (slots in) Rp,
can be transformed into k independent TLWE ciphertexts.

Let z = (z
0
, . . . , zN−1) ∈ (Z/pZ)N be a B/FV plaintext and, as in the previous section, let p−1RZ/RZ ≃

(Z/pZ)N be the identification (5) and let µ ∈ p−1RZ/RZ ⊂ TR be the preimage of z. More generally, suppose
that we start with a Z-module homomorphism f : (Z/pZ)N → (Z/pZ)N with a matrix F ∈ MN(Z), where
MN(Z) is the class of integer N × N matrices (this could arise in practice as either a projection, extraction

or permutation of the slots) and get the output f (z) as a polynomial

∑︀N−1
i=0 µ′iXi ∈ p−1RZ/RZ where² µ′ :=

(µ′
0
, . . . , µ′N−1) =

1

p f (z0, . . . , zN−1) mod Z.

Then, by definition,wehave µ′ = (F·VDM)µ mod Z, where F·VDM canbe any integer representative of F·
VDM mod p. In particular, we can always take the representativewith all coefficients in [−p/2, p/2). This is a
(Np/2)-LipschitzZ-module homomorphism, and can be evaluated via the functional key-switch of Theorem 2

(see Algorithm 1). Coefficients can then be homomorphically extracted as individual TLWE ciphertexts with
the SampleExtract of TFHE.

Algorithm 1 Public Functional Switching B/FV to TFHE
Input: TRLWE ciphertext c(X) = (a(X), b(X)) encodingN slots (z

0
, . . . , zN−1) mod pwith key K ∈ B, a public

Z-module homomorphism f : (Z/pZ)N → (Z/pZ)N with matrix F ∈ MN(Z), and key switch key KSi,j ∈
TRLWES( Ki

2
j ), where S ∈ B.

Output: a TRLWE ciphertext c′ ∈ T2

R encrypted with key S ∈ B whose message is

∑︀N−1
i=0 µ′iXi where

(µ′
0
, . . . , µ′N−1) = 1

p f (z0, . . . , zN−1)
1: F′ = F · VDM mod p (all coefficients lifted in [−p/2, p/2))
2: Compute B = F′(b(X)) ∈ TN

3: for i ∈ 0→ N − 1 do do
4: Compute Ai = F′(Xia(X)) = A ∈ TN

5: Decompose Ai =
∑︀l

j=0 Ai,j · 2
−j
with Ai,j ∈ BN

6: end for
7: return (0, B) −

∑︀N−1
i=0

∑︀l
j=0 Ai,j · KSi,j

Proposition 2 (B/FV slots→ TFHE) Let c = (a, b) ∈ T2

R bea TRLWE ciphertext encryptingN slots (z
0
, . . . , zN−1)

mod p with key K ∈ B,
let f : (Z/pZ)N → (Z/pZ)N be a public Z-module homomorphism with matrix F ∈ MN(Z). Let KSi,j ∈
TRLWES,α(Ki/2j) be a key switching key (0 ≤ i < N, 1 ≤ j < log

2
α) and Ki is the i-th coefficient of K. By

applying the functional key-switch of Theorem 2 using the integer transformation F · VDM mod p whose coef-
ficients are between [−p/2, p/2) and we obtain a TRLWE ciphertext c′ ∈ TR encrypted with key S ∈ B whose
message is

∑︀N−1
i=0 µ′iXi where (µ′0, . . . , µ′N−1) = 1

p f (z0, . . . , zN−1). The noise variance satisfies

Var(Err(c′)) ≤
(︂
Np
2

)︂
2

Var(Err(c)) + α2
(︂
ℓN2

+

N
4

)︂
.

2 A priori f (z) ∈ (Z/pZ)N is identified with an element of Rp which is then identified with p−1RZ/RZ; the coefficient vector

µ′ = (µ′
0

, . . . , µ′N−1) ∈ (p−1Z/Z)N ⊂ TN yields the output.
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3.1.2 TFHE→ B/FV.

Conversely,wewould like to transform k independent TLWE ciphertexts (encryptionsofmessages (µ
0
, . . . , µk−1) ∈

Tk) into a TRLWE ciphertext with slots in Z/pZ. Again, we will need to define a Lipschitz Z-module homo-

morphism g : Tk → (Z/pZ)N . Unfortunately, since for all x ∈ Tk there exists y ∈ T such that x = p · y, we
have g(x) = p · g(y) = 0 in (Z/pZ)N and this implies that g is zero everywhere, which is of limited interest.

Therefore, we need to restrict the message space only to multiples of 1/p (this prevents division by p).
Such a plaintext space restriction may imply that input TLWE ciphertexts must be bootstrapped before ex-

porting them as B/FV slots using gate bootstrapping from Theorem 3. Note that B/FV manages with a noise

that is smaller than in the TFHE. Therefore for this transformation, it is not enough to only switch between

different ciphertexts types, but also to decrease the noise. Also the bootstrapping of the input permits to map

the plaintext space to the space composed of exact multiples of 1/p.
Then, let g : (Z/pZ)k → (Z/pZ)N be a Z-linear map whose matrix G is in MN,k(Z). To obtain a B/FV

ciphertext whose slots are g(pµ
0

mod p, . . . , pµk−1 mod p), the actual transformation to apply is VDM−1 ·G
mod p (see Algorithm 2). Again, we can choose the representative with coefficients in [−p/2, p/2) which is

(Np/2)-Lipschitz.

Algorithm 2 Public Functional Switching TFHE to B/FV
Input: k < N TLWE ciphertexts (ai , bi) encoding µi ∈ MN,k(Z) with key S ∈ Bn, a public (Np/2)-Lipschitz

Z-module morphism g : (Z/pZ)k → (Z/pZ)N , whose matrix G ∈ MN,k(Z) and KSi = TRGSWK(Si) with
K ∈ B and 1 ≤ i ≤ n.

Output: a B/FV ciphertext (a(X), b(X)) encoding a plaintext with slots are g(pµ
0

mod p, . . . , pµk−1
mod p), with key K ∈ B

1: G′
= VDM−1 × G mod p (all coefficients lifted in [−p/2, p/2))

2: Compute B = G′
(b

0
, ..., bk) ∈ TR

3: for i ∈ 0→ N − 1 do do
4: Compute A[i] = G′

(a
0
[i], ..., ak[i]) ∈ TR

5: end for
6: return (0, B) −

∑︀N−1
i=0 KSi � (0, A[i])

Bootstrapping in B/FV
If we want to decrease the noise of the output, different possibilities for the algorithm of bootstrapping exist

in the literature [12, 21]. The first one is the naive bootstrapping, where we evaluate the rounding function. In

this case for p > 2N + 1 prime (p = 1 mod N), we need O(√p) internal products for the evaluation and we

preserve the N slots. The second one is the bootstrapping proposed in [12], where p = re is a power of a prime

number, and we need only (e − 1)(r − 1)multiplications, but the number of slots is reduced.

Non-linear functions in B/FV
In B/FV, an arbitrary function f : Z/pZ→ Z/pZ, for a prime p, can be interpolated by a polynomial of degree

≤ p −1 (by Lagrange interpolation) and can thus be evaluated as an arithmetic circuit of multiplicative depth

2 log
2
p. The evaluation of the polynomial is performed simultaneously on the N slots. If the function f is

viewed as a function f : T→ T, both the domain and the range are in this case rounded to exact multiples of

1/p. Compared to TFHE, the output is constrained in the subset p−1Z/Z (e.g., only to multiples of 1/p), but
on the other hand, there is no negacyclic constraint on the input, so the graph of the non-linear function can

be arbitrary everywhere. However, except in very special circumstances, the polynomial to evaluate is dense,

so the number of homomorphic operations is Θ(p) which is impractical for large p’s and thus, the method
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does not apply to big-number slots. One notable exception to this rule is the bootstrapping in [12] modulo pk,
which proves that the rounding function is the composition of sparse polynomials.

3.2 Scheme-switching between B/FV-big-number and TFHE.

In the case of [14], using the NTRU trick [25], the plaintext space is R/(X − p)R ≃ Z/(1 + pN)Z. Usually, p is
small, but pN + 1 is large, so a slot corresponding to Z/(1 + pN)Z allows us to perform arithmetic operations

on big numbers. If P = X − p then the native plaintext spaceM is P−1RZ/RZ with

P−1 = − 1

pN + 1

N−1∑︁

i=0
pN−1−iXi .

Interestingly, since the leading coefficient of the polynomial P−1 is 1/(pN+1), the isomorphismM ≃ 1

pN+1Z/Z
corresponds to extracting the coefficient in XN−1 (i.e. themap µ =

∑︀N−1
i=0 µiXi ↦→ µN−1 mod Z). On this native

plaintext space, the naïve rounding algorithm computing µ = P−1 · ⌊φs(c) · P⌉ can solve the BDD problem

up to a distance ≈ 1/2p (which is the packing radius of the latticeM; note that the vector P ∈ RZ is a short

vector). Here, by φs(c), we mean an arbitrary lift in RR. This allows to operate on ciphertexts with very large
noise ≈ 1/2

√
Np.

3.2.1 B/FV-big-number→msb-TFHE.

Given a TRLWE ciphertext c = (a, b) ∈ T2

R encrypting µ ∈ TN with a key K, to obtain the TLWE encryption of
the most significant bit of µ with key K, it is enough to extract cN−1 = SampleExtractN−1(c).

3.2.2 TFHE→ B/FV-big-number.

Conversely, to transform k < N TLWE independent ciphertexts c
0
, . . . , ck−1 encrypting µi = xi/p ∈ p−1Z/Z

(for xi ∈ [0, p − 1]) with key S ∈ BN into a TRLWE ciphertext encrypting the big-number R =

∑︀k−1
i=0 xip

N−1−i

mod pN + 1 with key K ∈ B, we can return an encryption of (µ
0
, . . . , µk−1) →

∑︀k−1
i=0 µiX

N−1−i ∈ p−1RR/RR.
Indeed, this polynomial is very close to our target P−1R mod RZ. To that end, we can just apply the public

key-switch c = PubKS(id, KS, (c
0
, . . . , ck−1)), where the key-switching key is composed by KSi = TRGSWK(Si)

to pack the k ciphertexts as a single TRLWE ciphertext.

4 A general abstraction of HEAAN over the torus
For HEAAN, the homomorpic encryption scheme of approximate numbers, the idea is that instead of correct-

ing the error during the decryption for the sake of increased noise, one keeps the approximation error and

thus, reduces the noise. In this scheme only the significant digits are used and the phase is taken as a good

approximation of the plaintext.HEAAN is amixed encryption scheme dedicated to fixed-point arithmetic with

public exponent. Similarly to scale invariant schemes, the noise is appended to the least significant bits of the

phase, but unlikeB/FV, the space of validmessages is a small bounded interval rather than evenly-distributed

in the whole space. Also, the maximal amount of noise is interpreted in terms of the ratio between the diam-

eter of the message space and the scale modulus q rather than the usual noise amplitude versus packing

radius. As we keep performing homomorphic operations, the message space diameter increases until the

majority of the space is covered at this point, the scale invariance property enables to extract the message

as a classical LWE sample that can be processed, for instance, by TFHE. To fully enable this switch between

schemes, it is necessary to relate the message spaces of HEAAN and TFHE.
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Tags of ciphertexts
To do this, we revisit the representation of HEAAN ciphertexts by adding the following three tags/parameters

that we define and clarify below:

– L ∈ N: level exponent of the ciphertext - overall, it quantifies the maximum amount of homomorphic

operations before performing a bootstrapping (the native plaintext ‖µ‖
∞

≤ 2

−L
),

– ρ ∈ N: bits of precision of the plaintext, that is, the number of bits in the mantissa. Since it is a global

constant, we omit it in general.

– τ ∈ Z: slot exponent (order of magnitude of the complex values in each slot). Here, we use floating-

point representation for which the exponent is public and fixed across all the coordinates of the vector

and only the mantissas are secret. More precisely, a complex number z is represented as z = m · 2τ

where τ is public and m ∈ 2−ρ · (Z + iZ) with 0 ≤ |m| < 1.

In Figure 5, we show the plaintext space (with the rounding error) using the tags defined before.

m2τ + ε

−

1

2
L

1

2
L

1

q = 2

−(L+ρ)

Figure 5: The HEAAN plaintext space over the TR, where the error ε is an approximation error of the same order as α = 2

−(L+ρ).

More precisely, L is needed since HEAAN can be viewed as an instantiation of TRLWEwhose native plain-
text space is the subset of all polynomials µ ∈ TR of small norm ‖µ‖

∞

≤ 2

−L
. The integer L > 0 is the level

exponent of the ciphertext, it is public and decreases with eachmultiplication. When the level is too low, the

ciphertext must be bootstrapped to allow further processing.

The plaintext space is always described with a global and fixed number ρ of significant bits. One can
define the noise amplitude α := 2

−(L+ρ)
. Finally, since the goal is to represent ρ-bit fixed-point values of any

order of magnitude, each ciphertext carries a public integer exponent τ ∈ Z which represents the order of

magnitude of its slots.

We choose these three tags because they are helpful for the parameter selection of the cryptosystem (N
and α) from the user point of view. For that, the first step is to fix ρ, the precision needed at the end of the

algorithm, the second step is to determine the range of each variable (so the slot exponents τ): this can be

done either from the domain of the evaluated function or experimentally by running the algorithm on a fake

data. Then, using the noise propagation formula for elementary operations given in this section, we compute

the smallest level exponent L > 1 for each variable by traversing the arithmetic graphof the algorithm. Finally,

we use the security API document [8] (or the LWE estimator) to find the smallest key size N that supports a

noise rate α = 2

−(L+ρ)
to the desired security parameter.³ The original HEAAN choice of tags is inherent and to

determine the final system parameters, we have to solve a complex system of equations.

3 There is a very light dependency requirement ρ ≥ log
2
(N) in the noise propagation formula of the product, but in general,

choosing ρ ≥ 15 should be enough.
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Complex-valued slots for plaintexts
Recall that N is always a power of 2. Given a message µ ∈ RR where ‖µ‖

∞

≤ 2

−L
, its complex slots

(z
1
, . . . , zN/2) are defined as the (rescaled) evaluation on the complex roots of XN + 1, so zk = 2

L+τµ(ζk) ∈ C.
We omit the values on the last N/2 roots as they are complex conjugates of the first ones since µ is real. If
‖µ‖

∞

≈ 2

−L
, this indeed implies that slot values |zk| ≈

√
N2τ and that the slot precision is up to 2τ−ρ.

In order to unify the message spaces, we redefine tagged HEAAN ciphertexts as a quadruple (a, b, τ, L) ∈
T2

R × Z × N where (a, b) is a TRLWE ciphertext. As usual, the phase of a ciphertext is (b − s · a) ∈ TR and

the message is the expectation of the phase. The slots of a ciphertext are the slots of its message µ ∈ TR

represented by a lift inRR of small real norm ≤ 2

−L
. From a matrix point of view, the transformation between

the coefficients and the slots is the multiplication with 2

τ+L
times the complex DFT matrix of ζk. We have

(z
1
, . . . , zN/2) = DFT · (µ

0
, . . . , µN−1) and (µ0, . . . , µN−1) = 2Re(IDFT · (z

1
, . . . , zN/2)).

DFT =

⎡
⎢⎢⎢⎢⎣

1 ζ 1
1

· · · ζ N−1
1

1 ζ 1
2

· · · ζ N−1
2

.

.

.

.

.

. · · ·

.

.

.

1 ζ 1N/2 · · · ζ N−1N/2

⎤
⎥⎥⎥⎥⎦
, IDFT = 1

N

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1

¯ζ 1
1

¯ζ 1
2

· · ·
¯ζ 1N/2

.

.

.

.

.

. · · ·

.

.

.

¯ζ N−1
1

¯ζ N−1
2

· · ·
¯ζ N−1N/2

⎤
⎥⎥⎥⎥⎦

(7)

4.0.1 Tag propagation formulas.

We now describe the tag propagation formulas for the homomorphic operations over the slot representation

of the ciphertext⁴:

Addition HeaanAdd((c
1
, τ

1
, L

1
), (c

2
, τ

2
, L

2
))→⎧

⎪⎪⎨
⎪⎪⎩

c = 2

τ
1
+L

1
−τ−Lc

1
+ 2

τ
2
+L

2
−τ−Lc

2
mod Z,

τ = max(τ
1
, τ

2
) + 1,

L = min(L
1
+ τ

1
, L

2
+ τ

2
) − τ

Proof. We can check that this transformation changes the slot value into 2

τ+Lµ(ζk) = 2

τ
1
+L

1µ
1
(ζk) +

2

τ
2
+L

2µ
2
(ζk) = (z

1
+ z

2
), that proves the correctness of the sum of two slots. The fact that τi +Li −τ−L ≥ 0,

for i ∈ {1, 2}means that the sum is an integer combination of the ciphertexts. At the end, we verify that

‖µ(X)‖
∞
≤ 2

τ
1
+L

1
−τ−L‖µ

1
(X)‖

∞
+ 2

τ
2
+L

2
−τ−L‖µ

2
(X)‖

∞
≤

≤ 2

τ
1
+L

1
−τ−L−L

1

+ 2

τ
2
+L

2
−τ−L−L

2

≤ 2

−L
.

Decrease level HeaanRSL→L′ ((c, τ, L), L′ < L)→ (2

L−L′c′ mod Z, τ, L′)

Proof. We verify that the slot values are preserved and that ‖µ(X)‖
∞

< 2

L−L′‖µ′(X)‖
∞
≤ 2

L−L′−L
= 2

−L′
.

Binary Shift (multiply by 2t) HeaanBS(t, (c, τ, L))→ (c, τ + t, L)

Proof. Slots are indeed transformed as z′ = 2

τ+t+Lµ(ζk) = 2

tz where t is the shift and z = 2

τ+Lµ(ζk) is the
slot value. Since the TRLWE part does not change, the native plaintext does not change either and the

bound 2

−L
is preserved.

4 The identities below are approximate since the sum of two normal distributions X = N(0, σX) and Y = N(0, σY ) is not nec-
essarily a normal distribution (unless the variables are independent which needs not be the case as they are distributions over

ciphertexts), but, for any practical purposes, is close enough to a normal distribution with zero mean and standard deviation

σ =

√︁
σ2X + σ

2

Y . In addition, the Gaussian distributions that appear in practice are not even continuous Gaussian distributions

and this makes the estimate even more complex.
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Multiplication by a constant HeaanMultCst(a ∈ Z s.t.|a| ≤ 2ρ , (c, τ, L)→ (a · c mod Z, τ + ρ, L − ρ)

Proof. We can check that multiplication with a ≤ 2ρ transforms the slot value into z′ = 2

τ+Laµ(ζk).

Constant slot-wise multiplication HeaanSlotMult((u
1
, . . . , uN/2), (c, τ, L))

Let u
1
, . . . , uN/2 be N fixed-point complex slots of the same order of magnitude (e.g. uk = (xk + iyk).2−ρ

where xk , yk are integers in [−2ρ , 2ρ].
Interpolate (or find by least mean square) an integer polynomial d(x) with coefficients in [−2

ρ
, 2

ρ
] and

t an integer exponent such that the slots of d(X)2t are all good approximations of z
1
, . . . , zN/2, up to

precision 2

t−ρ
. Namely,

|d(ζk)2t − uk| ≤ 2t−ρ for all k ∈ [1, N/2]. (8)

Then all we need is to multiply the input ciphertext by d(x) and shift the result by τ bits. The level de-
creases by ρ bits, where 2ρ is the norm of d.

d(X) ∈ RZ(‖d‖∞ ≤ 2ρ), (c, τ, L) :

⎧
⎪⎪⎨
⎪⎪⎩

d(X) · c mod Z,
τ′ = τ + ρ + t,
L′ = L − ρ.

Proof. It follows from (8) that z′k = 2

τ′+L′µ(ζk)d(ζk) = 2

τ+Lµ(ζk)d(ζk)2t = zk · (uk + εk)where |zkεk| ≤ 2τ
′
−ρ

and that the native plaintext norm verifies ||µ′(X)||
∞
≤ 2

−L+ρ
= 2

−L′
.

Slot-wise precomputed secret multiplication :

HeaanPrivSlotMult(TRGSW(D), (c, τ, L))
In the previous multiplication, d(x) can be provided encrypted as a TRGSW ciphertext of D.

General multiplication HeaanMult((c
1
, τ

1
, L′), (c

2
, τ

2
, L′)) use the Algorithm 3 below, proved in Proposi-

tion 3.

Algorithm 3 HEAAN homomorphic product on TR

Input: Two HEAAN ciphertexts (a
1
, b

1
, τ

1
, L

1
), (a

2
, b

2
, τ

2
, L

2
) ∈ T2

× Z × N whose slots are (z(1)
1

, . . . , z(1)N/2)
and (z(2)

1

, . . . , z(2)N/2) under the same key s and precision ρ > log
2
N.

Output: a HEAAN ciphertext (a, b, τ, L) whose slots are zj = z(1)j z
(2)

j for j ∈ [1, N/2] with the same key s
1: Set τ = τ

1
+ τ

2
(slot exponent)

2: Set L′ = min(L
1
, L

2
) and use HeaanRSLi→L′ to decrease both ciphertexts to level L′

3: Let q = 2

L′+ρ
, α = q−1, and L = L′ − ρ

4: Round (ai , bi) to the nearest multiple of α = q−1.
5: Let (a, b) = (a

1
, b

1
)�q,α (a2, b2) (with�q,α the internal homomorphic product defined in the Definition

3)

6: return (a, b, τ, L)

Proposition 3 (HEAAN product) Let (a
1
, b

1
, τ

1
, L

1
), (a

2
, b

2
, τ

2
, L

2
) ∈ T2

R×Z×Nwhose slots are (z(1)
1

, . . . , z(1)N/2)
and (z(2)

1

, . . . , z(2)N/2) under the same key s. Suppose that the precision ρ is larger than log2 N. Algorithm 3 com-
putes a HEAAN ciphertext (a, b, τ, L) whose slots are zj = z(1)j z

(2)

j for j ∈ [1, N/2] with the same key s such that
Var(Err((a, b))) remains implicitly 4−L−ρ.

Proof. (sketch) Since Algorithm 3 rescales both ciphertexts to the same level, we can assume that both inputs

have the same level L′. Compared to the proof of Lemma 1, defining the same auxiliary quantities C
0
,C

1
,C

2
,

we have

φs(a, b) = µ1 �q µ2 + e2µ1q + e1µ2q + e1e2q + e2I1q + e1I2q + Err(RK �α (C2, 0)) mod 1

= µ
1
�q µ2 + e2µ1q + e1µ2q + e1e2q + Err(RK �α (C2, 0)) mod 1
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Here, the terms e
1
I
2
q and e

2
I
1
q disappear because ei are exact multiples of

1

q after the rounding. The ex-

pectation of the phase is still µ
1
�q µ2, so the output slots contain zk = qµ1(ζk)µ2(ζk)2τ+L = z

1,kz2,k since
L = 2L′ − log

2
(q). The native plaintext µ

1
�q µ2 itself is bounded by q2−2L

′
= 2

L′+ρ−2L′
= 2

−L
. The phase vari-

ances of e
2
µ
1
q, e

1
µ
2
q are bounded by

(︁
q2−L

′
2

−L′−ρ
)︁
2

= 4

−L−ρ
, e

1
e
2
q by 4−L−2ρ, and Var(Err(RK�α (C2, 0)) ≤(︁

2ℓN +

N2

+N
4

)︁
α2 ≤ N2α2 ≤ 4log2(N)−L

′
−ρ

< 4

−L′
≤ 4

−L−ρ
because ρ > log

2
(N). Overall, the output noise stan-

dard deviation is 2

−L−ρ
, which corresponds to ρ bits of fixed-point precision.

4.1 Scheme switching between TFHE and HEAAN

4.1.1 TFHE→ HEAAN

Let S = (S
1
, . . . , Sn) ∈ {0, 1}n be a TLWE key and let N be the power of 2 in the HEAAN cryptosystem. Let

(a
1
, b

1
), . . . , (aN/2, bN/2) ∈ Tn × T be TLWE ciphertexts encrypted under the secret key S. For every 1 ≤ k ≤

N/2, let νk = φS(ak , bk) be their phases. Suppose that N is themodulus used inHEAAN and K ∈ B is a HEAAN

secret key. Here, we describe an algorithm (functional switching from TFHE to HEAAN) that outputs a HEAAN
ciphertext (a, b, τ, L) which, when decrypted with the key K, yields a vector of size N/2 whose components

are the complex values zk = exp(2πiνk) for 1 ≤ k ≤ N/2. This allows us to evaluate trigonometric polynomials

and have various practical applications such as evaluating continuous functions via rapid convergence of

Fourier series. We describe this algorithm as a variant of the bootstrapping for HEAAN [15].

Letting BKi = TRGSWK(Si) be the components of the bootstrapping key BK, this algorithm is a combina-

tion of a homomorphic evaluation of themodZ operation (the bootstrapping proposed by HEAAN in [15]) and

a multiplication with the DFTmatrix in order to switch between coefficients and slots.

Oncewehave the complex exponential, we can represent any other piecewise continuous function f from
T to C and obtain f (ν

1
), . . . , f (νN/2) in the slots, by just evaluating the first terms of the Fourier series of f .

Proposition 4 (Functional switching TFHE to HEAAN) In the setting described abovewhere the noise standard
deviation is α and the precision parameter is ρ ∈ N, Algorithm 4 computes a HEAAN ciphertext (a, b, τ, L)
decrypting to (z

1
, . . . , zN/2) under K and having precision ρ, p =

√ρ + log
2
(2πn/√ρ) and level ciphertext

exponent

L = − log
2
α − (p + log

2
ρ)ρ − 1

2

(︂
log

2

(︂
−2nN log

2
α + n1 + N

4

)︂)︂
.

Proof. (sketch) We approximate exp(2πiνk) using the idea of [15] by first taking a small real representative of

the input ciphertexts and divide them by 2

p
for a suitable p (that depends on the target precision). This way,

the (real) phase of the rescaled ciphertext νk/2p is guaranteed to be boundedby n/2p.Wefirst compute a good

approximation, up to an error ≤ 2

−ρ
, for exp(2πiνk/2p) using the first

√ρ terms of the Taylor expansion of the

exponential function. For instance, the Taylor–Lagrange inequality gives

⃒⃒
⃒⃒
⃒⃒exp(ix) −

⎛
⎝

√ρ−1∑︁

k=0

(ix)k
k!

⎞
⎠
⃒⃒
⃒⃒
⃒⃒ ≤
|x|

√ρ
√ρ! ,

so for x ≤ n/2p, it suffices to choose p =

√ρ + log
2
(2πn/√ρ) to get the required approximation within 2

−ρ
.

Then, we square and multiply (we square and square in this case) the result to raise exp(2πiνk/2p) to the

power 2

p
to obtain the desired plaintext exp(2πiνk). From Theorem 1 on the external product for TFHE, the

noise of the ciphertext c of line 4 is

Var(Err(c)) ≤ (−2n log
2
αN + n1 + N

4

)α2 ≤ 4−L−(p+log2(ρ))ρ .

We then evaluate the Taylor expansion of the complex exponential (up to degree d =

√ρ) via the al-
gorithm of Paterson–Stockmayer [27]: this requires a depth of 2 log

2
d = log

2
ρ, it uses 3

√
d non-constant

(HeaanMult) as well as d constant multiplications (HeaanSlotMult). After this step, the level decreases by ρ
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Algorithm 4 Switching TFHE to HEAAN
Input: N/2 TLWE ciphertexts (ak , bk), 1 ≤ k ≤ N/2 whose phases are νk ∈ T under the same key S ∈ {0, 1}n

and BKi = TRGSWK(Si).
Output: A HEAAN ciphertext (a, b) ∈ T2

R at level L that decrypts (under K) to the slots (z
1
, . . . , zN/2) where

zk = e2πiνk and νk = φS(ak , bk).
1: Let A be the N/2 × (n + 1) real matrix where Ai,j is the representative of the j-th coefficient of ai ∈
[−1/2, 1/2) and the last column Aj,n+1 contains the representative of bj ∈ [−1/2, 1/2).

2: Let p = √ρ + log
2
(2πn/√ρ)

3: Compute Pj ←
1

2
pN Re(IDFT * Aj) for 1 ≤ j ≤ n + 1. Here, Pj is the polynomial whose slots are

1

2
p Aj.

4: c ← (0, 2

−(L+(p+1)ρ)Pn+1) −
∑︀n

j=1 BKj �α (0, 2
−(L+(p+1)ρ)Pj).

5: Let C = (c, τ = 0, L + (p + 1)ρ)

6: Evaluate homomorphically E =

√ρ−1∑︁

k=0

ik
k!C

k
using Paterson–Stockmayer algorithm [27] (in depth log

2
ρ),

HeaanMult for non-constant multiplications and HeaanSlotMult for constant multiplications. Here, E
has parameters τ = 0 and level L + pρ.

7: for j = 1 to p do
8: E ← HeaanMult(E, E) (the new E has parameters τ = 0 and level L + (p − j)ρ)
9: end for
10: return E at level L

times the multiplicative depth, so the level of E is ≤ L + pρ. Finally, we square the ciphertext p times to obtain

the desired result.

4.1.2 HEAAN→ TFHE.

Conversely, to switch fromHEAAN to TFHE ciphertexts, we use the observation that aHEAAN ciphertext of level
1 is automatically a TFHE ciphertext. Starting from a ciphertext HEAAN of level L, we use the level decrease
function HeaanRSL→1

followed by a slot extraction to obtain a TFHE ciphertext of µ. Here, by slot extraction,
we mean the slots to coefficients procedure described in [15] to extract HEAAN slots into coefficients of TRLWE
(i.e. applying the IDFT complex transformation homomorphically).

4.2 Non-linear functions in HEAAN

In HEAAN, non-linear functions can be evaluated via approximations by either complex-valued polynomials

(via traditional products) or trigonometric polynomials (Fourier approach within the bootstrapping).

As explained in [4], Fourier series of smooth and regular functions converge rapidly: for instance, the

Fourier series of a C∞-function converges super-algebraically and if one smooths any periodic function by

convolution with a small Gaussian, its Fourier series converges exponentially fast. However, the convergence

is slower if the functionhas discontinuities (pointwise convergence inΩ(1/k)), or discontinuities in its deriva-
tive (uniform convergence in Ω(1/k2)) where k is the number of harmonics used in the series.

Compared to classical approximations of functions by polynomials in [10, 24] (i.e. Taylor series or Weier-

strass approximation theorem), Fourier series have three main advantages: they do not diverge to∞ outside

of the interval (better numerical stability), the Fourier coefficients are small (square integrable), and the series

converge uniformly to the function on any interval that does not contain any discontinuity in the derivative.

With this bootstrapping trick, HEAAN can at the same time evaluate a non-linear function and bootstrap

its output to a level L even higher than its input. Taking this fact into account, instead of writing ReLU(x) =
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max(0, x) as 1

2

(|x|+ x) like in TFHE, where the term +x/2 is not bootstrapped, it is actually better to extend the
graph of ReLU from a half period (−1/4, 1/4) directly to a 1-periodic continuous function and to decompose

the whole graph as a Fourier series. In the latter case, the output level L can be freely set to an arbitrary large
value. Figure 6 shows a degree-7 approximation of the odd-even periodic extension of the graph of ReLU(x).
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degree- 7trigo polynomial
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Figure 6: ReLU for HEAAN

5 Implementation of some major components of Chimera
Some of the algorithms presented in this paper have been implemented and tested in the context of an IDash

2018 [1] submission described in [9]. This submission was selected in October 2018 to be among the finalists

of the competition.

Since the challenge was mostly about real-valued algorithms, we implemented the TFHE/HEAAN bridges,

andwe left the implementation of the TFHE-B/FV bridges as a future work. In the implementation, torus arith-

metic is represented either by double-precision floats (for α ≥ 2

−52

), or by a fixed-size array of 64-bit gmp

limbs, and polynomial multiplications are implemented via the complex FFT. Since the total precision re-

quired was always lower than 128 bits for external products and 192 bits for internal products (so at most two

or three gmp limbs), there was no advantage in switching to an alternative RNS/NTT representation. All bit-

decompositions for the TRGSW external products (also used in the internal product) have been carried-on in

base 2

16

and 2

32

rather than in base 2. The implemented algorithms are:

– Evaluation of a sigmoid on a TLWE ciphertext via gate bootstrapping followed by a functional key-

switch to HEAAN (noise reduction from (α = 2

−7

, N = 650) to (α = 2

−80

, N = 4096)). The time for

the evaluation of the bootstrapped sigmoid is: 32s for the bootstrapping to TLWE and 7s for the public
key-switch TLWE to TRLWE.

– External product to multiply a HEAAN ciphertext by a fresh TRGSW ciphertext, using both the slot

packed ciphertexts (N/2 slots) and coefficient-packed ciphertexts (N slots). The time is 80ms with pa-

rameters α = 2

−80

, N = 4096.

– TRLWE internal product for HEAAN slotwise multiplication, using the tagging system proposed here,

and relinearization via the external product formula. The time is 160ms for parameters α = 2

−80

, N =

4096.

– Evaluation of the non-linear function log |x| on 1024 slots in parallel during the bootstrapping for

HEAAN (Algorithm 4), versus the traditional bootstrapping followed by a Taylor approximation.
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The implementation of the algorithms described in this section is now public and available at: https:
//github.com/DPPH/chimera-iDash2018. Other directions that we leave as a future work is the elaboration
of a bridge towards the BGV scheme as well as the introduction of RNS in this framework. The presented

framework has already been applied to some concrete use-cases in the domain of machine-learning [5, 9]

but we are wishing to provide more applications in this or other directions. The remaining bridges will be

implemented when specific use cases are identified for them.

Conclusion
Some recent works introduce alternatives to the methods presented in this article. In [17], the authors pro-

pose a new method for the evaluation of the sign function by staying in the HEAAN encoding by multiple

compositions of polynomials. This extends to the evaluation of the RELU function and can be very efficient

in amortized running time. This SIMD sign evaluation, can be viewed as a bootstrapping for BFV via HEAAN,

which is not covered in this work.

Furthermore, in [11], an alternative method for switching between RLWE ciphertexts is presented. This

is an orthogonal direction to ours and uses composition with Galois polynomials. In this work, the authors

obtain speed-up by one order of magnitude in particular on the LWE-RLWE conversion. As a counterpart the

noise overhead is no longer additive since the phase is multiplied by a power of 2. This method can speed-up

the Chimera framework by replacing some of the underlying KS methods.
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