
HAL Id: hal-03228070
https://hal.science/hal-03228070

Submitted on 17 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

End-to-End Similarity Learning and Hierarchical
Clustering for unfixed size datasets

Leonardo Gigli, Beatriz Marcotegui, Santiago Velasco-Forero

To cite this version:
Leonardo Gigli, Beatriz Marcotegui, Santiago Velasco-Forero. End-to-End Similarity Learning and
Hierarchical Clustering for unfixed size datasets. 5th conference on Geometric Science of Information,
Jul 2021, Paris, France. �hal-03228070�

https://hal.science/hal-03228070
https://hal.archives-ouvertes.fr

End-to-End Similarity Learning and Hierarchical
Clustering for unfixed size datasets

Leonardo Gigli, Beatriz Marcotegui, Santiago Velasco-Forero

Centre for Mathematical Morphology - Mines ParisTech - PSL University

Abstract. Hierarchical clustering (HC) is a powerful tool in data anal-
ysis since it allows discovering patterns in the observed data at differ-
ent scales. Similarity-based HC methods take as input a fixed number
of points and the matrix of pairwise similarities and output the den-
drogram representing the nested partition. However, in some cases, the
entire dataset cannot be known in advance and thus neither the rela-
tions between the points. In this paper, we consider the case in which
we have a collection of realizations of a random distribution, and we
want to extract a hierarchical clustering for each sample. The number
of elements varies at each draw. Based on a continuous relaxation of
Dasgupta’s cost function, we propose to integrate a triplet loss function
to Chami’s formulation in order to learn an optimal similarity function
between the points to use to compute the optimal hierarchy. Two archi-
tectures are tested on four datasets as approximators of the similarity
function. The results obtained are promising and the proposed method
showed in many cases good robustness to noise and higher adaptability
to different datasets compared with the classical approaches.

1 Introduction

Similarity-based HC is a classical unsupervised learning problem and different
solutions have been proposed during the years. Classical HC methods such as
Single Linkage, Complete Linkage, Ward’s Method are conceivable solutions to
the problem. Dasgupta [1] firstly formulated this problem as a discrete optimiza-
tion problem. Successively, several continuous approximations of the Dasgupta’s
cost function have been proposed in recent years. However, in the formulation of
the problem, the input set and the similarities between points are fixed elements,
i.e., the number of samples to compute similarities is fixed. Thus, any change in
the input set entails a reinitialization of the problem and a new solution must
be found. In addition to this, we underline that the similarity function employed
is a key component for the quality of the solution. For these reasons, we are in-
terested in an extended formulation of the problem in which we assume as input
a family of point sets, all sampled from a fixed distribution. Our goal is to find
at the same time a “good” similarity function on the input space and optimal
hierarchical clustering for the point sets. The rest of this paper is organized as
follows. In Section 2, we review related works on hierarchical clustering, espe-
cially the hyperbolic hierarchical clustering. In Section 3, the proposed method is

described. In section 4, the experimental design is described. And finally, section
5 concludes this paper.

2 Related Works

Our work is inspired by [2] and [3] where for the first time continuous frame-
works for hierarchical clustering have been proposed. Both papers assume that
a given weighted-graph G = (V,E,W) is given as input. [2] aims to find the
best ultrametric that optimizes a given cost function. Basically, they exploit
the fact that the set W = {w : E → R+} of all possible functions over

the edges of G is isomorphic to the Euclidean subset R|E|+ and thus it makes
sense to “take a derivative according to a given weight function”. Along with
this they show that the min-max operator function ΦG : W → W, defined as
(∀w̃ ∈ W,∀exy ∈ E) ΦG(w̃)(exy) = minπ∈Πxy maxe′∈π w̃(e′), where Πxy is
the set of all paths from vertex x to vertex y, is sub-differentiable. As insight,
the min-max operator maps any function w ∈ W to its associated subdominant
ultrametric on G . These two key elements are combined to define the follow-
ing minimization problem over W, w∗ = arg minw̃∈W J(ΦG(w̃), w), where the
function J is a differentiable loss function to optimize. In particular, since the
metrics w̃ are indeed vectors of R|E|, the authors propose to use the L2 distance
as a natural loss function. Furthermore, they come up with other regularization
functions, such as a cluster-size regularization, a triplet loss, or a new differen-
tiable relaxation of the famous Dasgupta’s cost function [1]. The contribution
of [3] is twofold. On the one hand, inspired by the work of [4], they propose to
find an optimal embedding of the graph nodes into the Poincaré Disk, observing
that the internal structure of the hierarchical tree can be inferred from leaves’
hyperbolic embeddings. On the other hand, they propose a direct differentiable
relaxation of the Dasgupta’s cost and prove theoretical guarantees in terms of
clustering quality of the optimal solution for their proposed function compared
with the optimal hierarchy for the Dasgupta’s function. As said before, both ap-
proaches assume a dataset D containing n datapoints and pairwise similarities
(wij)i,j∈[n] between points are known in advance. Even though this is a very gen-
eral hypothesis, unfortunately, it does not include cases where part of the data
is unknown yet or the number of points cannot be estimated in advance, for
example point-cloud scans. In this paper, we investigate a formalism to extend
previous works above to the case of n varies between examples. To be specific,
we cannot assume anymore that a given graph is known in advance and thus we
cannot work on the earlier defined set of functions W, but we would rather look
for optimal embeddings of the node features. Before describing the problem, let
us review hyperbolic geometry and hyperbolic hierarchical clustering.

2.1 Hyperbolic Hierarchical Clustering

The Poincaré Ball Model (Bn, gB) is a particular hyperbolic space, defined by
the manifold Bn = {x ∈ Rn | ‖x‖ < 1} equipped with the following Riemani-
ann metric gBx = λ2xg

E , where λx := 2
1−‖x‖2 , where gE = In is the Euclidean

metric tensor. The distance between two points in the x, y ∈ Bn is given by

dB(x, y) = cosh−1

(
1 + 2

‖x−y‖22
(1−‖x‖22)(1−‖y‖22)

)
. It is thus straightforward to prove

that the distance of a point to the origin is do(x) := d(o, x) = 2 tanh−1(‖x‖2).
Finally, we remark that gBx defines the same angles as the Euclidean metric.
The angle between two vectors u, v ∈ TxBn \ {0} is defined as cos(∠(u, v)) =

gBx(u,v)√
gBx(u,u)

√
gBx(v,v)

= 〈u,v〉
‖u‖‖v‖ , and gB is said to be conformal to the Euclidean met-

ric. In our case, we are going to work on the Poincaré Disk that is n = 2. The
interested reader may refer to [5] for a wider discussion on Hyperbolic Geome-
try. Please remark that the geodesic between two points in this metric is either
the segment of the circle orthogonal to the boundary of the ball or the straight
line that goes through the origin in case the two points are antipodal.The intu-
ition behind the choice of this particular space is motivated by the fact that the
curvature of the space is negative and geodesic coming out from a point has a
”tree-like” shape. Moreover, [3] proposed an analog of the Least Common An-
cestor (LCA) in the hyperbolic space. Given two leaf nodes i, j of a hierarchical
T , the LCA i ∨ j is the closest node to the root r of T on the shortest path πij
connecting i and j. In other words i ∨ j = arg mink∈πij

dT (r, k), where dT (r, k)
measures the length of the path from the root node r to the node k. Similarly,
the hyperbolic lowest common ancestor between two points zi and zj in the hy-
perbolic space is defined as the closest point to the origin in the geodesic path,
denoted zi zj , connecting the two points: zi ∨ zj := arg minz∈zi zj d(o, z).
Thanks to this definition, it is possible to decode a hierarchical tree starting
from leaf nodes embedding into the hyperbolic space. The decoding algorithm
uses a union-find paradigm, iteratively merging the most similar pairs of nodes
based on their hyperbolic LCA distance to the origin. Finally [3] also proposed
a continuous version of Dasgupta’s cost function. Let Z = {z1, . . . , zn} ⊂ B2 be
an embedding of a tree T with n leaves, they define their cost function as:

CHYPHC(Z;w, τ) =
∑
ijk

(wij + wik + wjk − wHYPHC,ijk(Z;w, τ)) +
∑
ij

wij , (1)

where wHYPHC,ijk(Z;w, τ) = (wij , wik, wjk) · στ (do(zi ∨ zj), do(zi ∨ zk), do(zj ∨
zk))>, and στ (·) is the scaled softmax function στ (w)i = ewi/τ/

∑
j e
wj/τ . We

recall that wij are the pair-wise similarities, which in [3] are assumed to be
known, but in this work are learned.

3 End-to-End Similarity Learning and HC

Let us consider the example of k continuous random variables that take values

over an open set Ω ⊂ Rd. Let Xt = {x(t)1 , . . . , x
(t)
nt } a set of points obtained

as realization of the k random variables at step t. Moreover, we assume to be
in a semi-supervised setting. Without loss of generality, we expect to know the
associated labels of the first l points in Xt, for each t. Each label takes value

in [k] = {1, . . . , k}, and indicates from which distribution the point has been
sampled. In our work, we aim to obtain at the same time a good similarity
function δ : Ω × Ω → R+ that permits us to discriminate the points according
to the distribution they have been drawn and an optimal hierarchical clustering
for each set Xt. Our idea to achieve this goal is to combine the continuous
optimization framework proposed by Chami [3] along with deep metric learning
to learn the similarities between points. Hence, we look for a function δθ : Ω ×
Ω → R+ such that

min
θ,Z∈Z

CHYPHC(Z, δθ, τ) + Ltriplet(δθ;α). (2)

The second term of the equation above is the sum over the set T of triplets:

Ltriplet(δθ;α) =
∑

(ai,pi,ni)∈T

max(δθ(ai, pi)− δθ(ai, ni) + α, 0), (3)

where ai is the anchor input, pi is the positive input of the same class as ai, ni is
the negative input of a different class from ai and α > 0 is the margin between
positive and negative values. One advantage of our formalism is that it allows
us to use deep learning approach, i.e., backpropagation and gradient descend
optimization to optimize the model’s parameters. As explained before, we aim
to learn a similarity function and at the same time find an optimal embedding
for a family of point sets into the hyperbolic space which implicitly encodes a
hierarchical structure. To achieve this, our idea is to model the function δθ using
a neural network whose parameters we fit to optimize the loss function defined
in (2). Our implementation consists of a neural network NNθ that carries out a
mapping NNθ : Ω → R2. The function δθ is thus written as:

δθ(x, y) = cos(∠(NNθ(x),NNθ(y))), (4)

We use the cosine similarity for two reasons. The first comes from the intuition
that points belonging to the same cluster will be forced to have small angles
between them. As a consequence, they will be merged earlier in the hierarchy.
The second reason regards the optimization process. Since the hyperbolic met-
ric is conformal to the Euclidean metric, the cosine similarity allows us to use
the same the Riemannian Adam optimizer [6] in (2). Once computed the sim-
ilarities, the points are all normalized at the same length to embed them into
the Hyperbolic space. The normalization length is also a trainable parameter of
the model. Accordingly, we have selected two architectures. The first is a Multi-
Layer-Perceptron (MLP) composed of four hidden layers, and the second is a
model composed of three layers of Dynamic Graph Egde Convolution (DGCNN)
[7].

4 Experiments

Experiments setup: Inspired by the work of [2] we took into account four sample
generators in Scikit-Learn to produce four datasets as it is illustrated in Fig. 1.

−1 0 1
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
Noise 0.00

−1 0 1
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
Noise 0.04

−1 0 1
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
Noise 0.08

−1 0 1
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
Noise 0.12

−1 0 1
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
Noise 0.16

−1 0 1 2 3 4
−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Noise 0.00

−1 0 1 2 3 4

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Noise 0.04

−1 0 1 2 3 4
−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Noise 0.08

−1 0 1 2 3 4

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Noise 0.12

−1 0 1 2 3 4

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Noise 0.16

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
Std 0.01

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
Std 0.04

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
Std 0.08

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
Std 0.12

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
Std 0.16

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
Std 0.01

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
Std 0.04

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
Std 0.08

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
Std 0.12

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
Std 0.16

Fig. 1. Different examples of circles, moons, blobs and anisotropics that have been
generated varying noise value to evaluate robustness and performance of proposed
method.

For each dataset we generate, the training set is made of 100 samples and the
validation set of 20 samples. The test set contains 200 samples. In addition, each
sample in the datasets contains a random number of points. In the experiments
we sample from 200 to 300 points each time and the labels are known only for the
30% of them. In circles and moons datasets increasing the value of noise makes
the clusters mix each other and thus the task of detection becomes more diffi-
cult. Similarly, in blobs and anisotropics, we can increase the value of standard
deviation to make the problem harder. Our goal is to explore how the models
embed the points and separate the clusters. Moreover, we want to investigate
the robustness of the models to noise. For this reason, in these datasets, we set
up two different levels of difficulty according to the noise/standard deviation
used to generate the sample. In circles and moons datasets, the easiest level is
represented by samples without noise, while the harder level contains samples
whose noise value varies up to 0.16. In Blobs and Anisotropic datasets, we chose
two different values of Gaussian standard deviation to generate the sample. In
the easiest level, the standard deviation value is fixed at 0.08, while in the harder
level is at 0.16. For each level of difficulty, we trained the models and compared
the architectures. In addition, we used the harder level of difficulty to test all
the models.

Architectures: The architectures we test are MLP and DGCNN. The dimension
of hidden layers is 64. After each Linear layer we apply a LeakyReLU defined as
LeakyReLU(x) = max{x, ηx} with a negative slope η = 0.2. In addition, we use
Batch Normalization [8] to speed up and stabilize convergence.

Metrics: Let k the number of clusters that we want to determine. For the evalu-
ation, we consider the partition of k clusters obtained from the hierarchy and we
measure the quality of the predictions using Average Rand Index (ARI), Purity,
and Normalized Mutual Information Score (NMI). Our goal is to test the ability
of the two types of architectures selected to approximate function in (4).

Visualize the embeddings: Let first discuss the results obtained on circles and
moons. In order to understand and visualize how similarities are learned, we first
trained the architectures at the easiest level. Fig. 2 illustrates the predictions car-
ried out by models trained using samples without noise. Each row in the figures
illustrates the model’s prediction on a sample generated with a specific noise
value. The second column from the left of sub-figures depicts hidden features
in the feature space H ⊂ R2. The color assigned to hidden features depends on
points’ labels in the ground truth. The embeddings in the Poincaré Disk (third
column from the left) are obtained by normalizing the features to a learned scale.
Furthermore, the fourth column of sub-figures shows the prediction obtained by
extracting flat clustering from the hierarchy decoded from leaves embedding in
the Poincaré Disk. Here, colors assigned to points come from predicted labels.
The number of clusters is chosen in order to maximize the average rand index
score. It is interesting to remark how differently the two architectures extract
features. Looking at the samples without noise, it is straightforward that hidden

features obtained with MLP are aligned along lines passing through the origin.
Especially in the case of circles (Fig. 2), hidden features belonging to differ-
ent clusters are mapped to opposite sides with respect to the origin, and after
rescaling hidden features are clearly separated in the hyperbolic space. Indeed,
picking cosine similarity in (4) we were expecting this kind of solution. On the
other hand, the more noise we add, the closer to the origin hidden features are
mapped. This leads to a less clear separation of points on the disk. Unfortu-
nately, we cannot find a clear interpretation of how DGCNN maps points to
hidden space. However, also in this case, the more noise we add, the harder is
to discriminate between points of different clusters1.

Comparison with classical HC methods: In Fig. 3 we compare models trained
at easier level of difficulty against classical methods such as Single, Complete,
Average and Ward’s method Linkage on circles, moons, blobs and anisotropics
respectively. The plots show the degradation of the performance of models as we
add noise to samples. Results on circles say that Single Linkage is the method
that performs the best for small values of noise. However, MLP shows better ro-
bustness to noise. For high levels of noise, MLP is the best method. On the other
hand, DGCNN exhibits a low efficacy also on low levels of noise. Other classical
methods do not achieve good scores on this dataset. A similar trend can also be
observed in the moons dataset. Note that, in this case, MLP is comparable with
Single Linkage also on small values of noise, and its scores remain good also on
higher levels of noise. DGCNN and other classical methods perform worse even
in this data set. Results obtained by MLP and DGCNN on blobs dataset are
comparable with the classical methods, even though the performances of models
are slightly worse compared to classical methods for higher values of noise. On
the contrary, MLP and DGCNN achieve better scores on the anisotropics dataset
compared to all classical models. Overall, MLP models seem to act better than
DCGNN ones in all the datasets.

Benchmark of the models: Table 1 reports the scores obtained by the trained
models on each dataset. Each line corresponds to a model trained either at an
easier or harder level of difficulty. The test set used to evaluate the results con-
tains 200 samples generated using the harder level of difficulty. Scores obtained
demonstrate that models trained at the harder levels of difficulty are more ro-
bust to noise and achieve better results. As before, also in this case MLP is, in
general, better than DGCNN in all the datasets considered.

5 Conclusion

In this paper, we have studied the metric learning problem to perform hierar-
chical clustering where the number of nodes per graph in the training set can
vary. We have trained MLP and DGCNN architectures on five datasets by using

1 Supplementary Figures are available at https://github.com/liubigli/

similarity-learning/blob/main/GSI2021_Appendix.pdf

https://github.com/liubigli/similarity-learning/blob/main/GSI2021_Appendix.pdf
https://github.com/liubigli/similarity-learning/blob/main/GSI2021_Appendix.pdf

our proposed protocol. The quantitative results show that overall MLP performs
better than DGCNN. The comparison with the classic methods proves the flex-
ibility of the solution proposed to the different cases analyzed, and the results
obtained confirm higher robustness to noise. Finally, inspecting the hidden fea-
tures, we have perceived how MLP tends to project points along lines coming out
from the origin. To conclude, the results obtained are promising and we believe
that it is worth testing this solution also on other types of datasets such as 3D
point clouds.

− 1.0 − 0.5 0.0 0.5 1.0

− 1.00

− 0.75

− 0.50

− 0.25

0.00

0.25

0.50

0.75

1.00

Ground Truth. Noise 0.00

− 0.75 − 0.50 − 0.25 0.00 0.25 0.50 0.75

− 0.75

− 0.50

− 0.25

0.00

0.25

0.50

0.75

Em bedding w/out resca ing

− 1.0 − 0.5 0.0 0.5 1.0

− 1.00

− 0.75

− 0.50

− 0.25

0.00

0.25

0.50

0.75

1.00

Em bedding w Resca ing. 2 C usters

− 1.0 − 0.5 0.0 0.5 1.0

− 1.00

− 0.75

− 0.50

− 0.25

0.00

0.25

0.50

0.75

1.00

Predict ion. RI Score 1.00 Dendrogram 2-c usters

− 1.0 − 0.5 0.0 0.5 1.0

− 1.0

− 0.5

0.0

0.5

1.0

Ground Truth. Noise 0.12

− 1.5 − 1.0 − 0.5 0.0 0.5 1.0 1.5

− 1.5

− 1.0

− 0.5

0.0

0.5

1.0

1.5

Em bedding w/out resca ing

− 1.0 − 0.5 0.0 0.5 1.0

− 1.00

− 0.75

− 0.50

− 0.25

0.00

0.25

0.50

0.75

1.00

Em bedding w Resca ing. 2 C usters

− 1.0 − 0.5 0.0 0.5 1.0

− 1.0

− 0.5

0.0

0.5

1.0

Predict ion. RI Score 0.81 Dendrogram 2-c usters

− 1.5 − 1.0 − 0.5 0.0 0.5 1.0

− 1.0

− 0.5

0.0

0.5

1.0

Ground Truth. Noise 0.16

− 2 − 1 0 1 2

− 2.0

− 1.5

− 1.0

− 0.5

0.0

0.5

1.0

1.5

2.0

Em bedding w/out resca ing

− 1.0 − 0.5 0.0 0.5 1.0

− 1.00

− 0.75

− 0.50

− 0.25

0.00

0.25

0.50

0.75

1.00

Em bedding w Resca ing. 3 C usters

− 1.5 − 1.0 − 0.5 0.0 0.5 1.0

− 1.0

− 0.5

0.0

0.5

1.0

Predict ion. RI Score 0.73 Dendrogram 3-c usters

Fig. 2. Effect of noise on predictions in the circles database. The model used for
prediction is an MLP trained without noise. From top to bottom, each row is a case
with an increasing level of noise. In the first column input points, while in the second
column we illustrate hidden features. Points are colored according to ground truth. The
third column illustrates hidden features after projection to Poincaré Disk. The fourth
column shows predicted labels, while the fifth column shows associated dendrograms.

References

1. Dasgupta, S.: A cost function for similarity-based hierarchical clustering. In: Pro-
ceedings of the 48 annual ACM symposium on Theory of Computing. (2016) 118–127

2. Chierchia, G., Perret, B.: Ultrametric fitting by gradient descent. In: NIPS. (2019)
3181–3192

3. Chami, I., Gu, A., Chatziafratis, V., Ré, C.: From trees to continuous embeddings
and back: Hyperbolic hierarchical clustering. NIPS 33 (2020)

4. Monath, N., Zaheer, M., Silva, D., McCallum, A., Ahmed, A.: Gradient-based
hierarchical clustering using continuous representations of trees in hyperbolic space.
In: 25th ACM SIGKDD Conference on Discovery & Data Mining. (2019) 714–722

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Noise

0.0

0.2

0.4

0.6

0.8

1.0
Sc

or
es

Circles - Ari
mlp
dgcnn
single
average
complete
ward

(a) Best ARI

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Noise

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or
es

Circles - Ari@K
mlp
dgcnn
single
average
complete
ward

(b) ARI @ K

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Noise

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or
es

Circles - Purity@K

mlp
dgcnn
single
average
complete
ward

(c) Purity @ K

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Noise

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or
es

Circles - Nmi@K
mlp
dgcnn
single
average
complete
ward

(d) Purity @ K

Fig. 3. Robustness to the noise of models on circles. We compare trained models against
classical methods as Single Linkage, Average Linkage, Complete Linkage, and Ward’s
Method. The models used have been trained on a dataset without noise. Test sets
used to measure scores contain 20 samples each. Plots show the mean and standard
deviation of scores obtained.

Dataset k Noise/Cluster std Model Hidden Temp Margin Ari@k ± s.d Purity@k ± s.d Nmi@k ± s.d Ari ± s.d

circle 2 0.0 MLP 64 0.1 1.0 0.871 ± 0.153 0.965 ± 0.0427 0.846 ± 0.167 0.896 ± 0.123
circle 2 [0.0 − 0.16] MLP 64 0.1 1.0 0.919 ± 0.18 0.972 ± 0.0848 0.895 ± 0.187 0.948 ± 0.0755
circle 2 0.0 DGCNN 64 0.1 1.0 0.296 ± 0.388 0.699 ± 0.188 0.327 ± 0.356 0.408 ± 0.362
circle 2 [0.0 − 0.16] DGCNN 64 0.1 1.0 0.852 ± 0.243 0.947 ± 0.116 0.826 ± 0.247 0.9 ± 0.115

moons 4 0.0 MLP 64 0.1 1.0 0.895 ± 0.137 0.927 ± 0.108 0.934 ± 0.0805 0.955 ± 0.0656
moons 4 [0.0 − 0.16] MLP 64 0.1 1.0 0.96 ± 0.0901 0.971 ± 0.0751 0.972 ± 0.049 0.989 ± 0.017
moons 4 0.0 DGCNN 64 0.1 1.0 0.718 ± 0.247 0.807 ± 0.187 0.786 ± 0.191 0.807 ± 0.172
moons 4 [0.0 − 0.16] DGCNN 64 0.1 1.0 0.917 ± 0.123 0.942 ± 0.0992 0.941 ± 0.0726 0.966 ± 0.0455

blobs 9 0.08 MLP 64 0.1 0.2 0.911 ± 0.069 0.939 ± 0.057 0.953 ± 0.025 0.958 ± 0.022
blobs 9 0.16 MLP 64 0.1 0.2 0.985 ± 0.0246 0.992 ± 0.0198 0.99 ± 0.0115 0.992 ± 0.00821
blobs 9 0.08 DGCNN 64 0.1 0.2 0.856 ± 0.0634 0.891 ± 0.0583 0.931 ± 0.025 0.921 ± 0.0401
blobs 9 0.16 DGCNN 64 0.1 0.2 0.894 ± 0.0694 0.92 ± 0.0604 0.95 ± 0.0255 0.948 ± 0.0336

aniso 9 0.08 MLP 64 0.1 0.2 0.86 ± 0.0696 0.904 ± 0.0631 0.922 ± 0.0291 0.925 ± 0.0287
aniso 9 0.16 MLP 64 0.1 0.2 0.952 ± 0.0503 0.968 ± 0.044 0.972 ± 0.0189 0.976 ± 0.0133
aniso 9 0.08 DGCNN 64 0.1 0.2 0.713 ± 0.0835 0.793 ± 0.0727 0.844 ± 0.0401 0.795 ± 0.0652
aniso 9 0.16 DGCNN 64 0.1 0.2 0.84 ± 0.0666 0.879 ± 0.0595 0.922 ± 0.0274 0.914 ± 0.0436

Table 1. Scores obtained by MLP and DGCNN on four datasets: circle, moons, blobs,
and anisotropics. In each dataset the models have been tested on the same test set
containing 200 samples.

5. Brannan, D.A., Esplen, M.F., Gray, J.: Geometry. Cambridge University Press,
Cambridge ; New York (2011)

6. Bécigneul, G., Ganea, O.E.: Riemannian adaptive optimization methods. arXiv
preprint arXiv:1810.00760 (2018)

7. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph cnn for learning on point clouds. Acm Transactions On Graphics (tog) 38(5)
(2019) 1–12

8. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

	End-to-End Similarity Learning and Hierarchical Clustering for unfixed size datasets

