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Abstract

We derive a Harnack type inequality for an equation with logarithmic

and singular weight having interior singularity.
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1 Introduction and Main Results

We set ∆ = ∂11 + ∂22 on open bounded domain Ω of R2.

We consider the following equation:

(P )







−∆u = − log
|x|

2d
V eu in Ω ⊂ R

2,

u ≥ 0 in Ω.

Here:

0 < a ≤ V ≤ b < +∞, u ∈ L∞
loc(Ω),

and,

d = diam(Ω), 0 ∈ Ω

This equation is defined in the sense of the distributions. Equations of the
previous type were studied by many authors, with or without the boundary
condition, also for Riemannian surfaces, see [1–20], where one can find some
existence and compactness results.

Among other results, we can see in [12] the following important Theorem

Theorem A(Brezis-Merle [12]).If (ui) is a sequence of solutions of problem

(P ) with (Vi) satisfying 0 < a ≤ Vi ≤ b < +∞ and without the term − log
|x|

2d
,

then, for any compact subset K of Ω, it holds:
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sup
K
ui ≤ c,

with c depending on a, b,K,Ω
One can find in [12] an interior estimate if we assume a = 0, but we need an

assumption on the integral of eui , namely, we have:

Theorem B(Brezis-Merle [12]).For (ui)i and (Vi)i two sequences of func-

tions relative to the problem (P ) without the term − log
|x|

2d
and with,

0 ≤ Vi ≤ b < +∞ and

∫

Ω

euidy ≤ C,

then for all compact set K of Ω it holds;

sup
K
ui ≤ c,

with c depending on b, C,K and Ω.

If we assume V with more regularity, we can have another type of estimates,
a sup+ inf type inequalities. It was proved by Shafrir see [20], that, if (ui)i is a
sequence of functions solutions of the previous equation without assumption on
the boundary with Vi satisfying 0 < a ≤ Vi ≤ b < +∞, then we have a sup+ inf
inequality.

The point 0 ∈ Ω is a conical singularity and an interior singularity and
called a divisor and an ideal point. See for example the papers of Hulin and
Troyanov, [16, 17, 22].

Here, we have:

Theorem 1.1 For sequences (ui)i and (Vi)i of the Problem (P ), for all com-
pact subset K of Ω we have:

||ui||L∞(K) ≤ c(a, b,K,Ω).

Consider a positive number M > 0, if we assume ui ≥ −M , we can extend
the previous result to any function u bounded from below by −M . If we consider
the function vi = ui + M , then vi satisfies all the condition of the previous
theorem.

Here we have, if we replace the condition ui ≥ 0 by ui ≥ −M :

Corollary 1.2 For sequences (ui)i and (Vi)i of the first equation of (P ), for
all compact subset K of Ω we have:

||ui||L∞(K) ≤ c(a, b,M,K,Ω).

1) We have an example of the previous problem with ui ≥ 0 if we add
the Dirichlet condition and use the maximum principle (in this case we assume

u ∈ W 1,1
0 (Ω) and − log

|x|

2d
eu ∈ L1(Ω) or u ∈ W 1,2

0 (Ω) ⇒ eu ∈ Lk(Ω), ∀k ≥ 1

as a solution of a variational problem). From the counterexample constructed
in the paper of Brezis and Merle, see [12], one can have an example of solutions
with Dirichlet condition (but blowing-up solutions on the boundary).
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2) We can replace the assumption u ∈ L∞
loc(Ω) by:

u ∈ L1
loc(Ω) and (− log

|x|

2d
)eu ∈ L1

loc(Ω),

this imply that u ∈ L∞
loc(Ω).

Indeed, by solving a Dirichlet Problem and use Theorem 1 of the paper of
Brezis and Merle, see [12], and Weyl theorem one can have e|u| ∈ Lk

loc(Ω), ∀k ≥
1, the resut follow by the elliptic estimates of Agmon.

A consequence of the previous corollary we have:

Corollary 1.3 For a solution u with V of the first equation of (P ), for all
compact subset K of Ω we have:

sup
K
u ≤ c(a, b, inf

Ω
u,K,Ω).

It is an estimate of the maximum on each compact subset of Ω of the solutions
by mean of the infimum on Ω and a, b,K and Ω. (Also we have an a priori
estimate).

We ask the following questions about explicit dependance of supK u in terms
of infΩ u and inequality of type sup+ inf, as in the work of Shafrir [20] and the
work of Tarantello, see [21] and Bartolucci-Tarantello, see [9]:

Problems. 1) Consider the Problem (P ) without the boundary condition
(without Dirichlet condition) and assume that:

0 < a ≤ V ≤ b < +∞,

Does exists constants C1 = C1(a, b,K,Ω), C2 = C2(a, b,K,Ω) such that:

sup
K
u+ C1 inf

Ω
u ≤ C2,

for all solution u of (P ) ?

2) If we add the condition ||∇V ||∞ ≤ A, can we have a sharp inequality:

sup
K
u+ inf

Ω
u ≤ c(a, b, A,K,Ω)?

2 Proof of the Theorem

We have:

ui ∈ L∞
loc(Ω).

Thus by the local boundedness elliptic esitmates of Agmon and the Sobolev
embedding, see [1, 2], we have:

ui ∈W 2,k
loc (Ω) ∩ C

1,ǫ(Ω), k > 2.

Step 1: For all x0 ∈ Ω, there is r > 0 such that:
∫

B(x0,r)
− log

|x|

2d
euidx is

bounded.

Let us consider x0 ∈ Ω and set φ1 the first eigenfunction of the Laplacian
with Dirichlet condition and with corresponding eigenvalue λ1 > 0 for the ball
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B(x0, 2r) ⊂ Ω. We use integration by parts between ui and φ1. The Stokes
formula gives:

∫

B(x0,2r)

− log
|x|

2d
Vie

uiφ1dx = λ1

∫

B(x0,2r)

uiφ1dx−

∫

∂B(x0,2r)

∂νφ1uidx,

We write:

uiφ1 = ui

√

− log
|x|

2d
φ1 ×

√

√

√

√

1

− log
|x|

2d

φ1,

We use Cauchy-Schwarz inequality to have:

∫

B(x0,2r)

uiφ1 ≤ C||(− log
|x|

2d
)u2iφ1||

1/2
L1(B(x0,2r))

,

But, ui ≥ 0 and ∂νφ1 ≥ 0, thus:

∫

B(x0,2r)

− log
|x|

2d
euiφ1dx ≤ C,

since φ1 > 0 the result follows.

Step 2: u+i = ui is locally bounded in L1.

We have, ui ≥ 0 and we write:

ui = ui(− log
|x|

2d
)× (

1

− log
|x|

2d

) ≤ Cui(− log
|x|

2d
) ≤ Ceui(− log

|x|

2d
)

By the result of step 1, we obtain:

||ui||L1(B(x0,r0)) ≤ C.

Since,

∫

B(y,r)

− log
|x|

2d
Vie

uidx ≤ C,

We have a convergence to a nonegative measure µ:

∫

B(y,r)

− log
|x|

2d
Vie

uiφdx→

∫

B(y,r)

φdµ, ∀ φ ∈ Cc(B(y, r)).

We set S the following set:

S = {x ∈ B(y, r), ∃ (xi) ∈ Ω, xi → x, ui(xi) → +∞}.

We say that x0 is a regular point of µ if there function ψ ∈ Cc(B(y, r)),
0 ≤ ψ ≤ 1, with ψ = 1 in a neighborhood of x0 such that:

∫

ψdµ < 4π. (1)

We can deduce that a point x0 is non-regular if and only if µ(x0) ≥ 4π.
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A consequence of this fact is that if x0 is a regular point then:

∃ R0 > 0 such that one can bound (ui) = (u+i ) in L
∞(BR0

(x0)). (2)

We deduce (2) from corollary 4 of Brezis-Merle paper, and − log |x|
2d ∈ Lr, ∀ 1 ≤

r < +∞, we have by step 2 the inequality:

||u+i ||1 = ||ui||1 ≤ c.

We denote by Σ the set of non-regular points.

Step 3: S = Σ.

We have S ⊂ Σ. Let’s consider x0 ∈ Σ. Then we have:

∀ R > 0, lim ||u+i ||L∞(BR(x0)) = +∞. (3)

Suppose contrary that:

||u+i ||L∞(BR0
(x0)) ≤ C.

Then:

||eui
k ||L∞(BR0

(x0)) ≤ C, and

∫

BR(x0)

− log
|x|

2d
Vike

ui
k = o(1).

For R small enough, which imply (1) for a function ψ and x0 will be regular,
contradiction. Then we have (3). We choose R0 > 0 small such that BR0

(x0)
contain only x0 as non -regular point. Σ. Let’s xi ∈ BR(x0) scuh that:

u+i (xi) = max
BR(x0)

u+i → +∞.

We have xi → x0. Else, there exists xik → x̄ 6= x0 and x̄ 6∈ Σ, i.e. x̄ is a
regular point. It is impossible because we would have (2).

Since the measure is finite, if there are blow-up points, or non-regular points,
S = Σ is finite.

Step 4: Σ = {∅}.

Now: suppose contrary that there exists a non-regular point x0. We choose
a radius R > 0 such that BR(x0) contain only x0 as non-regular point. Thus
outside Σ we have local unfirorm boundedness of ui, also in C1 norm. Also, we
have weak *-convergence of Vi to V ≥ 0 with V ≤ b.

Let’s consider (by a variational method):

zi ∈ W 1,2
0 (BR(x0)),

−∆zi = fi = − log
|x|

2d
Vie

ui in BR(x0), et zi = 0 on ∂BR(x0).

By a duality theorem:

5



zi ∈W 1,q
0 (BR), ||∇zi||q ≤ Cq.

By the maximum principle, ui ≥ zi in BR(x0).

∫

− log
|x|

2d
ezi ≤

∫

− log
|x|

2d
eui ≤ C. (4)

On the other hand, zi → z a.e. (uniformly on compact sets of BR(x0)−{x0})
with z solution of :

−∆z = µ in BR(x0), et z = 0 on ∂BR(x0).

Also, we have up to a subsequence, zi → z in W 1,q
0 (BR(x0)), 1 ≤ q < 2

weakly, and thus z ∈W 1,q
0 (BR(x0)).

Then by Fatou lemma:

∫

− log
|x|

2d
ez ≤ C. (5)

As x0 ∈ S is not regular point we have µ({x0}) ≥ 4π, which imply that,
µ ≥ 4πδx0

and by the maximum principle inW 1,1
0 (BR(x0)) (obtainded by Kato’s

inequality)

z(x) ≥ 2 log
1

|x− x0|
+O(1) if x→ x0.

Because,

z1 ≡ 2 log
1

|x− x0|
+ 2 logR ∈ W 1,s

0 (BR(x0)), 1 ≤ s < 2.

Thus,

− log
|x|

2d
ez ≥

−C log
|x|

2d
|x− x0|2

, C > 0.

Both in the cases x0 = 0 and x0 6= 0 we have:

∫

BR(x0)

− log
|x|

2d
ez = ∞.

However, by (5):

∫

− log
|x|

2d
ez ≤ C.

which is a contradiction.
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