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The study of the genesis of novel
mathematical and mechanical theories

provides an inspiration for future original
research

Mario Spagnuolo, Francesco dell’Isola and Antonio Cazzani

M&MoCS International Center for Mathematical and Mechanics Complex Systems

Abstract
In this introductory chapter we present the motivations that prompted the

authors and editors to work on this volume. The fil rouge followed in the dis-
cussion presented below is based on the following consideration: the study of
the genesis of mathematical and mechanical theories does not have a merely
philological purpose, but can influence and even inspire the development of new
original ideas. We present some examples that clarify our thesis: the devel-
opment of the model of planetary motion and a historical-critical study of the
development of Continuum Mechanics. Clearly understanding the main errors
and misunderstandings that other than pure research logics have introduced in
the scientific discussion is the only way to learn a serious and rigorous approach
to Science. An idea that has guided us in the development of this chapter is that
fragmentation of culture brings to inability to deal with complexity. The only
way to study and, above all, understand the complexity of our world is through
a unified vision of knowledge.

1 Introduction
This Introductory Chapter is conceived in order to make explicit the motivations
that led the authors and the editors to work on this volume. The reader will
find additional arguments and considerations on some of the epistemological and
methodological questions discussed here in the Chapter referred to in [1]: we
will however try to present self-consistent reasonings, so that one is not expected
to complement this chapter with other readings, if she/he does not wish. The
question we want to face is simply stated as follows: Can we find a meta-theory
teaching us to formulate a set of specific theories each of them being suitable
to describe a well-precise set of phenomena? Unfortunately, it seems that to
this question there are not fully satisfactory answers yet. There is not, in facts,
any kind of algorithm following which one can construct a reasonably efficient
theory: whatever it may be said by the supporters of Data Science it is not
possible, in this moment of the scientific development, to replace the creativity
act of a scholar in formulating a model with any kind of Big Data algorithm.
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We do not want to say that such a possibility is precluded to humankind: after
having invented robots that relieved us from the greatest part of manual work, it
is possible, if not likely, that in future we will be relieved by Artificial Intelligence
from the greatest part, or maybe from all, the intellectual work. What has to be
clear is that, notwithstanding the trends and pretensions of many, the ambitious
program of replacing human mind in its formulation of mathematical models is
by far out of the reach of present times science. We will not dare to give some
timeline indication concerning the occurrence of such a gigantic innovation, as
the second author did remember very well when a famous scientist, who was his
professor in electronics, announced that it was not conceivable the construction
of a computer which could beat a human champion in a chess game. It was not
earlier than 1983, and Deep Blue in 1996 did manage in the endeavor. We want
to underline that we are, however, confident that such a progress will occur,
and, that it will revolutionize our life, possibly our species biology and, surely,
it will open a new era in Natural History. However exactly as Eugenics did not
represent any true advancement of science (nothing even barely comparable with
modern molecular genetics, whose successes seem to be limitless), present time
Data Science seems to be a fashion that is simply exploited by some scholars who
are trying to get more academic (and maybe economical) power. The situation,
as realistically presents itself in the current historical moment, is really clear:
one can teach to young generations how to formulate a scientific model in only
one way, that is by showing them how successful scientific models were at first
formulated. This aim motivates the entire content of this work.

2 The process of knowledge transmission: a so-
ciological problem that needs to be studied by
using the scientific method

The present work has been produced by the collaboration of scholars whose com-
petences are relatively varied. However all of them never accepted a deleterious
concept that is at the basis of modern organization of scientific research: that
which lead to fragmentation of knowledge into hyper-specialized sub disciplines
rigidly divided by sharp boundaries.

2.1 Fragmentation of culture brings to inability to deal
with complexity

Albeit nearly all authors and editors can be defined to be (Applied) Mathe-
maticians, Physicists (or Mechanicians) or Engineering Scientists, all of them
were exposed to humanistic culture and greatly value multidisciplinar studies.
They all agreed that it is really dangerous, and surely pitiful, that, in the mod-
ern more fashionable attitudes of academic milieux, the fundamental unity of
human knowledge is being unrecognized as a founding and strong feature of
scholarly activity. As a consequence, quickly and systematically, Western Cul-
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ture has experienced a decay of the capacity of addressing complex problems
with a unitary vision of all their various facets.

In the short span of few scholars’ generations there was a dramatic change in
the perception of the role of a scholar: in present times the fields of expertise are
being more and more carefully delimited by boundaries that are more and more
difficult to trespass. Therefore one may wonder if, in present days, a scholar like
Johan Ludvig Heiberg (1854-1928) would have been produced by the current
academic system. Heiberg not only mastered fully the Ancient Greek language,
in its main versions, including Doric Greek, together with Latin. What makes
his personality really unique is that he has systematically shown to master some
not easy parts of mathematics, as he could perfectly understand very deep texts
by Archimedes, those contained in the famous Palimpsest. Postponing to the
subsequent chapters of this work some relevant and more detailed discussion
about this text, we start recalling here that it is a parchment codex palimpsest,
containing, after having scratched the first written text, some prayers. How it
could be possible that a scholar did manage to abrade a text by the greatest rec-
ognized scientist who ever wrote in Greek language has to be studied carefully,
and is one of the problems that we signal for future scientific investigations.
In facts the original text is a Byzantine Greek copy of a compilation of works
by many authors among whom Archimedes seems to be the most prominent.
This original text contained two previously unknown very important texts by
Archimedes i.e. the Stomachion and theMethod of Mechanical Theorems (which
is shortly referred to as The Method). Moreover it contains also the only sur-
viving original Greek manuscript of the celebrated Archimedean work on On
Floating Bodies. Heiberg, following the tradition of Western Culture, did trans-
late the Greek Archimedean text into Latin, whose role of lingua franca has
been recognized nearly universally. Unfortunately after the 1906 Heiberg’s dis-
covery and the subsequent publication of his Archimedis Opera Omnia (i.e. The
complete works of Archimedes), and after a short period in which French seemed
to have replaced Latin, English established itself as the modern, possibly even
more universal, lingua franca.

As a consequence of this sudden change, a text written in Latin (but un-
fortunately also if it was written in any living language different from English)
became not readable by nearly every modern scholar (sometimes even by some
professor of Latin Language!). As it always happened when a change of the used
language in science occurred, there is a very likely phenomenon that systemat-
ically occurs: a large part of the knowledge accumulated in the old language
is forgotten and lost. Another part of this knowledge resurfaces in the new
dominant language (the part of Archimedean results that resurfaced thanks to
Tartaglia gives an example of such a phenomenon, see the following chapters)
and is rediscovered several times. This rediscovers occurs in several difference
space locations, in different times (many anachronisms may be explained in this
way) and also in different languages. Useless to say, this process of systematic
rediscovery slows a lot the advancement of science and is really detrimental, as
it systematically causes regressions in technology.

An example of the rediscovery of a body of knowledge lost because of linguis-

3



tic barriers that we will examine concerns the works by Gabrio Piola (see [2–6]).
Piola’s work were nearly completely ignored for a long period and were recovered
because of a series of fortuitous events. In facts Piola’s works were written in
Italian and because of the wrong choice of the used language their diffusion was
strongly limited. In this work we will prove that there are, also in mechanical
science, very interesting ideas that were originally written in different languages
than English.

The aim of the present work is to prove that, differently from what has
been too often conjectured, scientific knowledge transmission is not a simple
process: the vision of science as a continuous and endless progress from less
advanced to more advanced stages has been falsified even too many times in the
history of science. Surely there are the problems related to linguistic barriers,
when the lingua franca changes because of one of the many possible social
reasons. Many scientific ideas were lost in translation! However there are also
some psychological and barely survival mechanisms that causes erasures, loss
and deformation of the scientific knowledge in its transmission process. These
mechanisms play a crucial role in the advancement of science, whatever may be
believed by some right-thinking scholars. These scholars believe that one has
to avoid the consideration, when studying knowledge transmission processes,
of the social phenomena related to jealousy, revenge, inflated self-esteem, bare
ignorance, arrogance, need of earning from academic positions, every form of
nepotism and use of scientific knowledge for getting any form of power. Many
are embarrassed when the existence of these social and psychological mechanism
are evoked and when one expresses the opinion that they may play a crucial role
in the rise of any form of Dark Ages. In facts their consideration is considered
not politically correct and trying to take into account their influence in history
of science a form of mental disorder of the kind of paranoia. Instead, exactly as
Alfred Kinsey has scientifically shown how important is sexuality in human life
and in the psychopathology of humankind, we believe that the social forces that
are shaping human psychology are of great relevance in the mechanisms that
produce scientific research. Such an obvious statement, as a similarly obvious
consequence, implies that it is possible that a deep scientific theory, a useful
body of knowledge or an effective mathematical model may be erased, lost, or,
in the best case, forgotten for a while in a scientific group, simply because of
a series of socio-psychological reasons which are completely unrelated to their
absolute scientific merit. Aforementioned right-thinking scholars will claim that
science is objective and that even considering the possibility of any influence
of the dark side of human mind on its development is harmful for humankind.
This reasoning may be considered equivalent to believing that one can defeat
an epidemics simply ignoring its existence: an action whose consequences are
well-known. The story of the struggles of Tartaglia (1499-1557) to persuade
all his contemporaries that he could understand and translate the Archimedean
works, as reconstructed objectively by Heiberg, gives us a paradigmatic and
incontrovertible evidence that our thesis is very well-grounded.
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2.2 Why to try to establish how and when a scientific
theory was first formulated? Difficulties in this en-
deavour

In the discussion that we will develop in our work we will focus on at least
two important aspects of the considered question. The first aspect concerns the
importance of study of the true origins of the scientific theories. One may argue
that the value of a scientific theory resides in its predictive capacity, and that
it is enough to supply a whatsoever rigorous and precise formulation for it. If
one accepts this point of view then, when a theory is formulated in a way or in
another equivalent way then she/he can choose the preferred way based on any
reasonable and useful criterion. Our point of view is, instead, that if one wants
to learn how to formulate a completely new theory, a theory that was never
formulated before, she/he has to learn, in absence of the meta-theory invoked
and dreamed before, how the successful theories have been formulated first, and
how they were subsequently developed. To see how old and established theories
were born may be of use in the process of inventing a completely new one. In
facts, we do not have, presently, any way to supply to younger generations any
other well-working method for teaching them how to build theories that are
efficiently capable to give the correct predictions for both observed and not-yet-
observed phenomena.

As a consequence we are obliged to follow the educational methods of those
ancient Renaissance Maestri, who trained their pupils to sculpture or painting
simply by showing them as the Maestro was painting or sculpting. Unfortu-
nately there are very few great Maestri alive in a certain historical moments
and, moreover, their workshops are already full of pupils. Therefore one has to
show to those young scholars, who aspire to invent something original, how the
available theories, relevant in the chosen disciplines, were first conceived and
developed: in this way we hope that the lesson given by great scholars example
will guide new generations. For this reason a presentation of available theories
must follow, as carefully as possible, the original invention process that led their
inventors to get them1.

The second aspect, on which our analysis will particularly focus, concerns
the process of transmission of knowledge from competent scholars to compe-
tent scholars via intermediate scholars who are not so competent. Albeit the
transmission of science is based on written texts, the role of the scholars partic-
ipating to the editing of the texts and using them as textbooks for their young
pupils cannot be neglected. When the books were handwritten, their relatively
enormous economical value introduced a further selection filter in knowledge
transmission: the economical costs imposed a selection of what could be copied
and what deserved oblivion. In this choice the Archimedean Palimpsest was
sacrificed for a book of prayers against diseases, a subject that seemed more
“practical” than abstract mathematics. A scholar choosing what kind of text-

1The second author is greatly indebted to Prof. Roberto Stroffolini (Università di Napoli
Federico II) for having shown him how such a teaching method has to be pursued.
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book deserves to be transmitted plays a relevant role also in the era of printed
books: many books are not reprinted and remain in fewer and fewer exemplars
in the storages of libraries, virtually disappearing from the attention of younger
generations. In our (unfortunate) époque of citations metrics another method
has been conceived to condemn to oblivion a certain textbook, authors or the-
ory: it is enough to forget to cite them, and soon nobody will find these works
in the mare magnum of modern literature, which is literally overflown with too
many ripetitive and not original papers and textbooks.

Finally, an influential compiler of a textbook, having many students may
influence many of them with his biased choices. In the milieux of mechanical
sciences there are many textbooks that were very successful in transmitting the
correct ideas to clever students, albeit it is clear that their compilers did not
understand very much the scientific results that they had carefully copied from
reliable sources. There are, also, examples of textbooks that deformed the true
intent of their sources, imposing to too many younger scholars wrong points of
view or making for them every original research extremely difficult. We will
fully describe, under the guidance of the authoritative Heiberg’s analysis, how
Tartaglia did manage to have a relevant role in the translation in the language
used by Western Science of some of the most relevant works by Archimedes. Al-
beit this may seem rather simple (and most likely also very useful), we will not
try to establish any relationship between the publishing (and survival) strategy
chosen by Tartaglia and that chosen by (too) many more modern scientists. In
facts, the need of getting a salary seems to allow for any kind of deplorable
choice, while Tartaglia features a “representative” scholar, belonging to a spe-
cific kind. This kind of scholar is observed nearly ubiquitously in history of
science: one can find examples of it in any social group, language, scientific
discipline, historical period, geographical location and economical and political
organization.

Instead of looking for specific examples of such kind of scholar, we will try
to phenomenologically describe their behavior, the effects of their existence on
science transmission and on its accumulation and loss. We will try to apply the
scientific method in our phenomenological description and in our first efforts of
looking for a model of it. The phenomenology can be shortly resumed as follows:
in the competition that they need to accept in order to have recognized their
own scientific capacities, many scholars systematically want to ignore any signal
indicating that they are not original enough to deserve an academic position.
They badly need the sinecura that they believe to be associated to it, and
therefore try to prove, in any possible way, that they do deserve highly ranked
positions. If they meet somebody indicating how weak their scientific skills are,
then they may react in two different ways: i) they start believing that there is
a conspiracy against them or ii) albeit they may understand that the criticism
against them is well-founded, they manage to persuade themselves that since
there are so many incompetent scholars, then their own exclusion from academia
is not moral. These scholars, either if they are conscious of their weaknesses or if
they sincerely believe to be clever enough for their ambitions, try to make their
best to persuade all other scholars that they can be considered original thinkers.
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Sometimes, exactly as it was done by Tartaglia, these self-proclaimed scientists
reformulate, make rigorous, translate, clarify or make more precise works that
they have found in the literature. Exactly as Tartaglia included in the title of one
of his presumed translations the following statement: “here I make clear what
it was not possible to understand in Archimedes works”, his epigones manage
to declare that they “clarified” the previously “obscure” theories, while in fact
they are completely misunderstanding them.

2.3 To unveil the real contribution of Tartaglia (and his
Encyclopaedic or polymath epigones) to science is not
easy

The capacity of some scholars in avoiding any discussion about the merit of their
scientific contributions is legendary. They manage to bend even mathematical
argument to their aims, making any discussion about what they claim to have
discovered completely useless. One has to avoid any effort in trying to prove
that a single specific scholar is not producing any original contribution or any
original view in presenting already known results. Instead it is very useful to
describe from a general point of view the kind of effect that the existence of the
aforementioned type of scholars has on science transmission and development.
If this phenomenology is understood then, most likely, some countermeasures
can be acted to limit the unavoidable impact of such scholars on the destinies
of science.

Albeit this information seems to have been somehow forgotten, Heiberg hap-
pened to discover, while reordering and preparing for his edition the whole avail-
able texts by Archimedes, that, in reality, the only merit one can attribute to
Tartaglia, for what concerns the appreciation of Archimedes work, is purely
propagandistic. Tartaglia contributed to revive the interest in Archimedes.
Heiberg, while prefacing his Complete Works by Archimedes, gathered all neces-
sary evidence to prove that Tartaglia’s capacity in writing in a correct Latin was
rather scarce. One can deduce therefore that he could never have the possibility
to translate, from the Doric Greek used by Archimedes into Latin, a complex
text of advanced mathematics.

Heiberg argument seems to us very detailed, serious and careful: unfortu-
nately this argument was buried in the Prolegomena of the famous Archimedes
Edition. We could say it was buried since this Prolegomena (as well as the whole
translation of Greek text) was written into Latin. While there are many valu-
able translations into English of Heiberg’s Latin text, the Prolegomena, to our
knowledge, were never translated into any modern language. Therefore we were
motivated to translate in this work aforementioned Prolegomena and to add our
own comments to it, in order to highlight those aspects of the phenomenology of
knowledge to which we are particularly interested. The sociological and cultural
phenomena that are surfacing from this reading deserve, in our opinion, a great
attention.

Their importance cannot, indeed, be underestimated: if one wants to de-
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scribe carefully the process of birth of a novel theory she/he must establish
exactly when, how and in which formulation, it was first conceived. This de-
scription is essential for pedagogical aims: younger generations of scientists must
learn how to formulate novel theories by looking at the invention process of the
most successful ones. The phenomenon of science transmission is rather com-
plex and manifold: one can find many of its aspects that are of great relevance.
One that plays an important role concerns the systematizing and paradigmatic
role of Encyclopaedias and Encyclopaedic compilations. Because of their true
nature, they gather many important aspects of knowledge into a well-organized
and unitary way, by using a common formalism and vision. Moreover they give
a synthetic account of all human knowledge, in the most ambitious projects,
or for a specific group of disciplines, in other cases. Encyclopaedias supply a
precious support for subsequent generations of scholars, as they supply a global
understanding of the state of the art, in a given group of scholars, place and
époque. By sacrificing some technical details, they resume large bodies of knowl-
edge in an agile presentation and indicate where the interested scholar can find
the details that she/he may need. However the existence of Encyclopaedic sum-
maries makes more difficult to understand if a certain scholar did really master
her/his discipline, or if she/he did simply adsorb superficially one of the available
Compendia.

Our attention has been attracted, in this context, by the 1913 Hellinger’s
Entry of German Encyclopaedia of Mathematics whose aim was to give an
overview of then current state of the art in Continuum Mechanics and list some
research perspectives that seemed promising to the author. This text has not
been translated into English until recently (see [7–9]) and proves that, in facts,
Continuum Mechanics has been “frozen” because of the establishment of English
as the novel lingua franca, and by the incapacity of the community of experts
in Mechanics to read French, Italian or German.

The summary and the analysis presented by Hellinger is really clear and far
reaching. Moreover the research perspectives, read by somebody in 2021, seem
to be visionary: only recently some of them are being developed. It is remark-
able that Hellinger could forecast the main directions of future development of
Continuum Mechanics with such a large anticipation. The question therefore is:
why Hellinger’s work has been removed by the list of the most used sources of
XX century by the great majority of scholars in Mechanics? A partial answer
is that it was written in German. Moreover the author was Jewish and, un-
fortunately, this did not help the diffusion of his work in the milieu of German
speaking Mechanicians, at least until the end of Second World War.

Such an erasure resulted in a great damage to the advancement of Mechani-
cal Sciences. The loss of the consciousness of Hellinger’s analysis in the German
speaking Mechanics community had rather singular effects. Indeed, while many
authors showed to be aware of the results presented in his work, the information
about the fundamental fact that these results were, for the first time, obtained
by using variational principles was lost. Therefore, exactly as it was done by
Tartaglia, the secondary sources from Hellinger (some of them emigrated in the
USA, together with their authors) presented some reworks of Hellinger’s Com-
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pendium in such a way that it was impossible to get from them any hint about
the heuristic method used for finding the presented results. These Compen-
dia were presented as if they were a completely original contribution of their
authors, who seemed to have had an out of the blue inspiration. This feel-
ing impresses on the readers the false belief that science is an epic endeavor
where few, particularly gifted scientists, wake up one morning and without any
apparent cause, simply because they are geniuses, manage to invent a novel
theory. In facts any theory is the result of a choral work of generations of
scholars: what is found in some modern textbooks in Continuum Mechanics
is the elaboration, hiding the variational procedure first used for finding them,
of the contribution to the discipline given by many scholars, starting from La-
grange [10–12], Piola [2–4,13,14], the Cosserat brothers [15–19], and continuing
with Sedov [20–22], Toupin [23] and Mindlin [24], among many others [25–29].
The Entry by Hellinger represents a deep scientific contribution to Mechanics,
as it originally reorganizes, with the rigor of a gifted mathematician, all results
available up to 1913. It could have given an impressive impulse to the develop-
ment of 20th century Continuum Mechanics if only it had been understood by
the scientific community.

It has to be said that there is a possible misuse of the Encyclopaedic Entries,
and this misuse concerned also that by Hellinger: indeed, the results presented in
this kind of Compendia may be adsorbed and reworked by Tartaglia’s epigones,
who will present them from different, and sometimes twisted, points of view.
Moreover the existence of Encyclopaedic Entry make possible the existence of
so called-polymath scholars: these scholars, who probably have the access to
Encyclopaedia Entry, are claimed to have a universal knowledge. Instead, most
probably, they simply had access to a, very often lost, Encyclopaedic Entry.
In particular Hellinger’s work is surely the starting point of the reworking of
Continuum Mechanics as presented by those scholars who do refuse Variational
Postulation. Knowing in advance the correct results it is easy to deduce them
by a series of ad hoc postulates, claiming that they are induced by experimental
evidence. We will more diffusely present this point in the following sections of
this Chapter. Of course this misuse was not intended by Helinger when he con-
ceived his Entry. Unfortunately, until very recently, as a direct source this Entry
was completely ignored. We could find a few fugitive mentions of it, where it has
been rather harshly criticized. What we have just described is another of the
sociological phenomena that must be studied and understood. Understanding
it will have an important consequence: thanks to the obtained insight one can
find operative methods for organizing the recruitment of academic bodies in a
more efficient way.

2.4 Archimedes: “The Method of Mechanical Theorems”
is an authoritative source confirming our thesis

To our knowledge, Archimedes is the first known scientist who described ex-
plicitly a heuristic way for finding novel theories, theorems and mathematical
models. Archimedes’ mastering of the concept of “model” of physical reality
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by using mathematical deductive theories has pushed us to conjecture that his
epistemological vision may be considered, in essence, to be that of a falsifica-
tionist.

This statement may need further deepening: here we consider sufficient to
quote, once more, and to give some further few comments, what Archimedes
wrote at the beginning of his “The Method of Mechanical Theorems, for Er-
atosthenes”. The Archimedean text was written in Doric Greek, and it is a
difficult issue to decide which English translation transmits more faithfully the
original ideas and spirits. It seems that the scholarly work of those who are
capable to understand mathematics, physics, model theory and Doric Greek is
very useful also nowadays. The English text which we are going to reproduce
here is, in facts, the final results of many transformations: the Greek text found
by Heiberg was translated by Heiberg himself into (Modern) Latin (in his cele-
brated Edition of Archimedes’ Works). Heiberg’s Latin text was then translated
into Dutch by E.J. Dijksterhuis in 1938 and then into English by C. Dikshoorn
in 1956 (see [30]). Notwithstanding this subsequent translation we believe to
see more clearly the ideas of Archimedes in the presented text than, by analogy,
what we can read in the translation presented in [7–9] for the Hellinger’s ideas.
There are also some hints about the way in which Hellenistic culture organized
science in this text. In facts Archimedes starts his “cover letter” by recognizing
to Eratosthenes a scholarly preeminence but only as a “manager of scientific
research” and as “editor-in-chief” of the publications and manuscripts produced
by the library of Alexandria: “Since, as I said, I know that you are diligent,
an excellent teacher of philosophy, and greatly interested in any mathematical
investigations that may come your way, I thought it might be appropriate to
write down and set forth for you in this same book a certain special method, by
means of which you will be enabled to recognize certain mathematical questions
with the aid of mechanics.”

This preamble may be interpreted as a kind of captatio benevolentiae. Now,
from all sources we know how great was the fame that Archimedes enjoyed also
during his life. Why did he need to be so careful in sending his paper to Er-
atosthenes? One can conjecture that also in Hellenistic scientific milieux it was
possible to observe a phenomenon that to a much larger extent has been devel-
oped later: the diffusion of culture happens to be controlled by few powerful
scholars, whose decision can greatly influence the destiny of any scientific work,
including those written by outstanding persons, as Archimedes was already rec-
ognized to be. The existence of “well-established” scientific personalities who
had the power to control what can be published or what must be bound to
oblivion seems to be therefore attested already at the époque of the library of
Alexandria, and seems to be an unavoidable side effect of any form of organiza-
tion of Big Science.

Eratosthenes of Cyrene (about 276 BC – about 195/194 BC) was probably
one of the most influential personality of Hellensitic science. Obviously, having
the control and full access to the biggest source of scientific knowledge of antiq-
uity, he is often described as a polymath. It is interesting to remark here that
the etymology of the word “polymath” goes back to ancient Greek. The Greek
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word πολυμαθής can be translated as follows: “[somebody] having learned much”.
The translation that has been more often used in Latin is: homo universalis.
i.e., “universal man”. We believe that too often polymaths are simply scholars
who managed to better reorganize the results found by other, more original,
scientists. Very often the compiler of Compendia or Encyclopaedia Entries are
this kind of erudite polymath. The most skilled among polymaths, however, are
very precious: they allow for the diffusion of specialist theories among a wider
set of scholars: we believe that Hellinger, being an original mathematician him-
self, when accepting to write an Entry about Continuum Mechanics did cleverly
master the subject and then could give the best indications about its future
paths of development.

Eratosthenes’ interests apparently spanned mathematics, poetry, geography,
astronomy and music theory. In fact, most likely he was an erudite who managed
to persuade the Pharaoh Ptolemy III Euergetes to nominate him as a “chief-
librarian” at the Library of Alexandria in the year 245 BC. One has to consider
that the choice was really appropriate: as head of such an institution one needs
indeed a true and gifted polymath. He was the leader of the group of scientists
and technicians that founded scientific geography and he is best known for
having directed the group of scholars that obtained a careful calculation of the
circumference of the Earth and the tilt of the Earth’s axis. He introduced the
first global planar projection of the world, by using parallels and meridians.
Most likely he has also calculated the distance from the Earth to the Sun and
understood the need of the leap day for a precise Calendar. In number theory,
the sieve of Eratosthenes, an efficient algorithm for calculating prime numbers
is attributed to him. In the entry of the Suda2 concerning Eratosthenes it
is reported that his critics called him Beta (that is: the “second”, as beta is
the second letter of the Greek alphabet). This scornful attribute had been
chosen to underline that he was the second biggest expert in all his domains
of competence. On the other hand, without denying this circumstance and
even confirming it, his supporters called him Pentathlos after the Olympian
Athletes competing in the pentathlon, i.e. athletes being “well-rounded” in five
different sports. Eratosthenes’ approach to science can be positively interpreted
by stating that he tried to dominate the complexities of reality (in facts his
appointment at the Library required this kind of skills!) and, for this reason, he
had to prove to have talents in a large variety of disciplines. He was capable to
understand many things and wanted to use every kind of information which he
could achieve. As a consequence he could not be the best expert in anything, but
he could play a role in transmitting knowledge from a discipline to another. In
facts, as reported by Strabo: Eratosthenes was regarded to be a mathematician

2The Suda is a Byzantine encyclopedia, written during the 10th-century after Christ. It is a
Greek lexicon, having 30,000 entries and including many drawings copied from ancient sources,
sources which have been, unfortunately, subsequently lost. The name derives probably from
the Byzantine Greek word “souda”, which means “stronghold [of knowledge]”. Eustathius,
misunderstanding the etymology of the title, declared that Suda was a deformation of the
name Suidas, that was his author’s name.
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among geographers and a geographer among mathematicians3.
His skills placed Eratosthenes in a very privileged position: he could decide

what had to be published becoming a book stored in the library of Alexandria,
and therefore, considering the importance of this library, which book could
be transmitted to future generations. Without any doubt, Eratosthenes be-
longed to the timocratic scientific élite, i.e. the dominant group of intellectuals
of his epoch. Archimedes, who usually could not hide his great self-esteem
(see [30, 31]), was, however, obliged to treat with great reverence such an im-
portant person. He, therefore, called him a “diligent”, “an excellent teacher
of philosophy”, and “greatly interested in any mathematical investigations that
may come your way”. Archimedes, as modern scholars are often doing when
submitting a paper, writes clearly to the editor-in-chief about its motivations:

I am convinced that this [heuristic method] is no less useful for find-
ing the proofs of these same theorems. For some things, which first
became clear to me by the mechanical method, were afterwards proved
geometrically, because their investigation by the said method does not
furnish an actual demonstration.

The reader must remember here that the expression “proved geometrically”
is a precise calque of the Greek original expression. It has to be understood, in
modern language, as follows: “proved with mathematical rigor”. Archimedes has
a great standard of mathematical rigor. He states that something is “proven”
only when he finds a logically precise sequence of statements which can be de-
duced, one after the other, from his axioms. A heuristic reasoning is NOT a
theorem, for every mathematician since the Greek invention of rigorous mathe-
matics. The use of the word “geometry” in Archimedes’ text is simply related to
the fact that, in Hellenistic science, the theory of real numbers was formulated
in terms of geometrical entities like segments, areas and volumes (see e.g. [32]).
The argument of Archimedes continues as follows:

For it is easier to supply the proof when we have previously acquired,
by the method, some knowledge of the questions than it is to find
it without any previous knowledge. That is the reason why, in the
case of the theorems, the proofs of which Eudoxus was the first to
discover, viz. on the cone and the pyramid, that the cone is one-
third [of the volume] of the cylinder and the pyramid one-third of
the prism having the same base and equal height, no small share of
the credit should be given to Democritus, who was the first to state
the fact about the said figure, though without proof.

Archimedes is aware of the importance of both the heuristic, creative invention
act which leads to the conjecture of a mathematical result and the technical
rigorous demonstration which is needed to state that such a theorem is true. He

3This destiny is bounded to modern mathematical physicists: they are neither mathemati-
cians nor physicists. However they can be useful in allowing for the communication among
the two groups.
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distinguishes between the inventor of a mathematical proof and the discoverer,
who is aware of a well-conceived conjecture, whose result is left to be proven.
Then he discusses the specific heuristic procedure, based on his understanding
of a problem of mechanics, which lead him to calculate the area of a parabolic
section:

My own experience is also that I discovered the theorem now pub-
lished, in the same way as the earlier ones [the theorems conjectured
by Democritus and proven by Eudoxus]. I now wish to describe the
method in writing, partly, because I have already spoken about it be-
fore, that I may not impress some people as having uttered idle talk

Archimedes wants to underline that his creative work has to be split into two
parts: i) the conjecture of the statement of the theorem, based on a heuristic
argument, and ii) the rigorous proof of the theorem, based on a logical procedure,
starting from the axioms he has accepted. It has to be remarked here explicitly
that Archimedes calculates the aerea of a parabolic section by what will be called
later an integration method. For doing so, he needs the rigorous definition of
the set of real numbers, which Archimedes attributes to Eudoxus of Cnidus.
On the other hand he conjectures that the area of the parabolic section has
a certain value by means of an experimental measure. Archimedes, following
a habit that is unfortunately too often spread among pure mathematicians,
communicated his rigorous proof without any reference to his heuristic mental
process. However he had spoken about it while discussing with his colleagues:
he feels the need to describe it in a written form. He is doing this in order to
keep his reputation of serious scientist, who is not talking in vain. However to
keep his own high reputation is not the only reason for which he discloses his
way of reasoning:

partly because I am convinced that it will prove very useful for math-
ematics; in fact, I presume there will be some among the present as
well as future generations who by means of the method here explained
will be enabled to find other theorems which have not yet fallen to
our share.

Archimedes wants to show to future generations how a theorem is conjectured:
he is not happy to give the rigorous proof of it, only. As he has not a technique
of discovery which can be formally presented to the reader, he explains his
own mental process, based on a clear understanding of mechanical phenomena.
Finally he gives us the specific technical details concerning his theorem

We will now first write down what first became clear to us by the
mechanical method, viz. that any segment of an orthotome4 is larger
by one-third than the triangle which has the same base and equal
height, and thereafter all the things that have become clear in this

4An old name first used by Menaechmus to designate the particular conic section result-
ing from cutting a right-angled cone by a plane which is perpendicular to its surface, thus
producing a parabola
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way. At the end of the book we will give the geometrical proofs of
the theorems whose propositions we sent you on an earlier occasion.

The few sentences cited above were considered by Heiberg, their modern dis-
coverer, as possibly the most important ones uttered by Archimedes. Archimedes
transmits to us the mental process which occurred in his mind during his math-
ematical creation. Rather seldom such a clear perspective is given in a math-
ematical text. Hellenistic Mathematics, and also all subsequent mathematical
tradition, is characterized and founded on the logical rigor of the presentation.
The economy of thought and its precise formulation are considered the preva-
lent criterion when presenting mathematical results. A mathematical text, since
Hellenistic mathematicians, is a sequence of logical conclusions, obtained with
correct deduction rules, starting from the accepted hypotheses, conceived in
such a way that the theses are related to the hypotheses by a irrefutable rea-
soning. While this demand of rigor is essential for the development of hard
sciences, it is also undoubtedly true that this style of presentation, giving the
synthetic final result of the process of demonstration, is ignoring the equally im-
portant demand of understanding the reasons which led the mathematician to
the presented demonstration and the heuristic method using which this demon-
stration was found for the first time. Risking to spoil the myth of his own genius,
Archimedes reveals spontaneously how himself, before even starting to try to
prove his theorems, conjectured their theses and managed to be persuaded that
they were true.

3 An epistemological intermezzo: inductivism ver-
sus falsificationism

Without any hope to succeed in presenting an exhaustive report of the episte-
mological knowledge that led us to understand how scientific theories are built,
for seek of self-consistency we sketch here those most fundamental ideas that
should guide a mathematical physicist in his scientific practice.

We have been sometimes very surprised in discovering that otherwise very
gifted scholars may have a too naive vision about the epistemological concepts
which are needed for correctly guiding their scientific research. In general, for
what concerns the postulation scheme used in Continuum Mechanics we have
seen too many presentations in which a series of ad hoc postulates are accepted
based on experimental evidence or even claiming that they are induced by ex-
perience. These approaches led to an occlusion of Continuum Mechanics in a
stage that was already recognized to be too particular in the works of Gabrio
Piola [2–6,13,33].

In order to get rid of the limiting scheme of Continuum Mechanics as elab-
orated by Cauchy and imposed in Engineering Sciences by its undoubted suc-
cesses in predicting deformative behavior of bodies, it is necessary to resort
to a truly falsificationist approach in the comparison of different mathematical
models used for describing reality.
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3.1 Relation between Science and Technology: a view back
through History of Science

For the kind of analysis we want to conduct, it is of primary importance to
ask what is the effective relationship between Science and Technology. Is there
a theory that describes the birth, growth and decay of Scientific Theories and
Scientific Technology? To get answers in this direction it is necessary to refer
to concepts that are the specific object of History and Philosophy of Science.
If thinking about History of Science does not confuse us, because we can eas-
ily recognize in it the ordered set of observed facts, discussing Philosophy of
Science may induce misunderstandings. We refer to Philosophy of Science as
that meta-theory which, by organizing the set of available information about
the way in which well-established theories were constructed, tries to supply ef-
ficient methodologies apt to formulate new theories. In the perspective of a
mathematical physicist, therefore, a Philosophy of Science is indispensable.

But let’s go back to the original question that we believe has a basic im-
portance: what is the relationship between the development of an organized
Science and the technological progress of a society? The answer to this question
is extremely complex, but we can already get a clear idea by considering on an
imaginary time line the focal points of human technological development and
then, on the same time line, place the cornerstones of scientific development.
What would immediately appear is that for about two million years man has
used chops and more or less polished stones for hunting, working skins, cutting
wood and other subsistence activities. A few thousand years before Christ, man
began to build the first instruments. Gradually technological advances have
increased, but there has been an incredible acceleration in correspondence with
the birth of Hellenistic Science: the ballista, the Syracusia ship, the astronom-
ical calculator of Antikythera, just to name a few. It has to be remarked that
the existence of disk of Nebra (we will give details about it in the following)
seems to indicate that, albeit we do not have any written evidence about it, the
great development of the technology related to the Bronze Age may be related
to a first elaboration of a proto-Science.

One can follow this imaginary timeline up to the present day by observing
how the relationship between scientific development and technological develop-
ment is inextricably linked. A society that abandons Science, after a suitable
time-delay, goes through three successive phases:

i. it no longer produces any kind of new technological development,

ii. it loses the knowledge related to the use of technological tools developed
in a previous era of scientific flowering and

iii. transforms (in the best case) such tools into religious objects.

We will see how this decline of Science, and consequently of Technology, is inex-
orable when certain conditions are created in a given society. One can possibly
explain the fall of Western Roman Empire relating it to the loss of awareness
about the importance of Hellenistic Science and the related slower, but equally
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inexorable, loss of technological capacity. We believe that there is an exemplary
case that deserves to be shortly discussed here: we mean the use of gravity
aqueduct. Hellenistic hydraulics did know a form of the law that has been
named after Bernoulli. This theoretical knowledge allows for the conception
and construction of the cheaper pressurized aqueduct. In fact, in Pompei we
can see a network of pipes distributing the water in the city with a small local
pressurized aqueduct. However, building a large aqueduct is not a very frequent
need. In the Pergamon Museum in Berlin important parts of a large pressurized
aqueduct serving the Pergamon Acropolis are shown. We do not know when the
needed theoretical knowledges of hydraulics were lost: for serving Rome, unfor-
tunately, engineers who ignored hydraulics built gravity aqueducts, causing a
large economical loss. A sum of such losses most likely made the difference of
the destiny between Western and Eastern Roman Empires. One may consider
that for some unknown reason the advanced topographic knowledge needed for
building a gravity aqueduct were not lost in the passage between Hellenistic and
Roman cultures: the reasons for which Romans did manage to preserve a part
of Engineering Sciences (Topography) while loosing another part (Hydraulics)
maybe be related to arbitrary choice of a librarian who could not understand the
mathematically difficult arguments in Hydraulics while could catch the simpler
reasonings used in Topography, probably because this last can be synthesized
using drawings and simple Euclidean Geometry.

An interesting philosophical question that arises spontaneously when we try
to organize the phenomenology of scientific progress of human societies is to
wonder if the path of human history is a progression of stages that has been
repeated many times, independently by different groups, in the same order or if
each progress has occurred only once and then it has consequently widespread.
This distinction between social determinism and diffusionism finds its basis in
the thought of Giambattista Vico, who wrote

Similar ideas that originate from entire peoples unknown to each
other must have a common basis of truth.

We tend, differently by what appears in Vico’s thought, towards a diffusionist
approach. This approach explains better the phenomena related to the scientific
flowering which occurred in the Renaissance. Is there really anyone who can
believe that the Renaissance evolved in a completely autonomous way? Can
anyone really continue to deny the very strong influences that Hellenistic thought
had on Renaissance thought? And if there are still few who deny such influences,
why, instead, are there still so many who deny the importance of Hellenistic
Science and even deny it a classification as a truly “modern” Science?

The library of Cardinal Bessarion is the first fundamental part of Marcian
Library in Venice and was constituted mainly by Greek codices. Based on
the transport of Hellenistic Science via Greek manuscripts arriving in Europe,
the main characters of Italian Renaissance started the re-discovery of ancient
Science not always recognizing their debt towards their sources.
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3.2 Approaches to Science: Falsificationism or Inductivism?
In the formulation of a scientific theory at least two alternative approaches
can be used. Following the standard nomenclature in the literature, they are
called inductivism and falsificationism. We are aware of the fact that more
sophisticated conceptual frames have been adopted in Philosophy of Science.
However, discussing only these two approaches is enough for our aims. Both of
these visions can be traced back throughout the History of Science. As far as we
will discuss in the following of this chapter, we are interested in how they were
declined in Hellenistic thought, as we will analyze the development and decline
of the models introduced for the description of the motion of the planets, and
how they were used within the group of scientists who in the XIX century and
later developed modern Continuum Mechanics.

As for Hellenistic Science, as we shall see, unfortunately surviving sources are
so rare that it is difficult to tell in which form the debate on inductivism and fal-
sificationism took place among Hellenistic scientists. The echoes of this debate,
however, are resonating in a significantly later period: Proclus (412-485) dis-
cusses the nature of epicycles (we will see below the details of the deferent-epicle
model) and asks himself whether they exist or are pure mathematical hypotheses
in his treatise Hypotyposis (i.e. Exposition of Astronomical Hypotheses). As we
will see, for scientists of the Hellenistic age, as Apollonius of Perga who first in-
troduced planet models using deferents and epicycles, it was obvious that these
were simple mathematical objects and that they are not objects in the physical
world. They loose every meaning if not contextualized in the model where they
were introduced. As Proclus is a post-scientific philosopher, he seems to report
about an ancient debate and, being completely unable to fully understand its
content, he manages to deny the validity of both positions. However, Proclus
claims to be a follower of the philosophical thought of the Platonic school: there-
fore, he should be able to see a difference between mathematical and physical
objects, albeit believing that one can experience, in the world of mathematical
ideas, some experiences leading mathematicians to mathematical theorems.

When Platonism is adopted in the development of mathematical thought,
then extreme positions are generated. In fact, according to Hardy [34], mathe-
matical platonism is based on the statement

Mathematical reality lies outside of us and our function is to discover
and observe it and the theorems we prove [...] are simply the accounts
of our observations.

According to mathematical Platonism, then, physicists discover physical re-
ality while mathematicians deal with mathematical reality. As we will see with
examples taken from both the development of models for the motion of the plan-
ets and the development of modern Continuum Mechanics, it is very dangerous
to confuse, or even identify, mathematical entities with the physical entities
of which they are assumed to be models. Moreover, there are some mathe-
matical entities for which one cannot find any physical correspondence: these
mathematical entities are useful only in the logical development of the formu-
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lated mathematical model. When one confuses the mathematical model with
the physical reality, it may happen that, instead of concluding that the specific
model is not suitable to describe physical evidence, one could believe that reality
is not self-consistent and may arrive at the conclusion that nature is intrinsically
paradoxical. This ontological point of view should be avoided if one wants to
have any hope to describe and predict physical phenomenology.

The confusion between models and physical reality is carefully avoided by
Platonic mathematicians: therefore, such a philosophical position is not im-
peaching the needed distinction between mathematical objects and the physical
objects they are modeling. Once one has distinguished between mathematical
models and real objects, it is easy to confute the so-called inductivist vision of
Philosophy of Science.

Inductivism has been considered for too long time as the true scientific
method that has to be practiced by diligent scientists. Unfortunately, it is
still a commonplace view in many scientific milieux to believe that one can in-
duce from many observations some physical laws, that belong to physical reality
and can be established once forever. Such a vision of the scientific method is
not efficient and effective to develop scientific theories, as an efficient process
like induction of a physical law cannot be established. In fact, inductivism is
based on the belief that a systematic research approach exists, that involves an
inductive reasoning (whatever it may mean) enabling scientists, when applied
with due diligence, to objectively discover the unique true theory describing ev-
ery phenomenon. The prescription of inductivism, when examined attentively,
presents a very ambiguous clause: the scientist must apply due diligence. There-
fore, when an induced physical law reveals some limits, naive inductivists are
simply stating that the scientist formulating it was not diligent enough. Such a
point of view is not at all scientific: how can a scientist know which is the due
diligence necessary for being sure that his law is “true”? The position of naive
inductivists has been ridiculed by Bertrand Russel with his famous anecdote
about the inductivist chicken [35, Ch. 6, p. 47]:

Domestic animals expect food when they see the person who usually
feeds them. We know that all these rather crude expectations of
uniformity are liable to be misleading. The man who has fed the
chicken every day throughout its life at last wrings its neck instead,
showing that more refined views as to the uniformity of nature would
have been useful to the chicken.

In a more picturesque way, Chalmers in [36] reformulates it as follows:

[We present] a gruesome example attributed to Bertrand Russell. It
concerns a turkey who noted on his first morning at the turkey farm
that he was fed at 9 am. After this experience had been repeated daily
for several weeks the turkey felt safe, in drawing the conclusion “I
am always fed at 9 am”. Alas, this conclusion was shown to be false
in no uncertain manner when, on Christmas eve, instead of being
fed, the turkey’s throat was cut. The turkey’s argument led it from a
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number of true observations to a false conclusion, clearly indicating
the invalidity of the argument from a logical point of view.

More seriously and shortly, but maybe in a more effective way, Einstein also
criticizes inductivism:

Any amount of experiments may prove that I am right; a single
experiment can prove that I am wrong [A. Einstein, letter to Max
Born on the December 4th of 1926].

In conclusion, the idea that theories can be derived from, or established on
the basis of, facts is a statement with an empty meaning, and we believe that
the same use of the world “theory” is not appropriate. In fact, a theory is,
etymologically a sequence of statements deduced logically from a conjectured
set of postulates. The commonplace statement which we have quoted before
should be rephrased by introducing instead the world “physical laws” if one
could give a meaning to such an expression.

Inductivism was formulated, in our opinion, while misunderstanding Hel-
lenistic sources that stressed the importance of the experimental verification
of formulated mathematical theories. Inductivism was developed during four
centuries and Francis Bacon was one of its champions. Western Europe’s pre-
vailing epistemological approach, in the époque of Bacon, was the so-called
scholasticism. Also scholasticism was based presumably on a misunderstanding
of Hellenistic sources: the philosophers of this school believed that, based on
preconceived beliefs, one could, without any interrogation of experimental evi-
dence, forecast the behavior of physical phenomena. Clearly, scholasticism was
accepting only partially what we presume was the true formulation of ancient
falsificationism. The falsificationist approach, which consists in conjecturing
a model having the aim of describing a set of observed facts, verifies only a
posteriori how much can be predicted on the basis of the assumed conjecture.

In fact, falsificationism bases its analysis of natural phenomena, and the
corresponding formulation of theories, on the conjecture of some basic postulates
from which the scientist must deduce consequences, to be used, when possible,
to predict physical phenomena. Therefore, while the stress of scholasticism
was presumably focused on the first part of the process of scientific invention as
described by ancient falsificationism and neglected the important required check
obtained by experiments, inductivism stressed only on experimental evidence,
by loosing the deductive part so highly considered in ancient falsificationism.
It is clear that the scholars of Middle Ages, having a partial understanding of
their sources, could catch only a part of the original complex epistemological
vision. This vision has been completely reconstructed only at the beginning of
20th century, when it was necessary in order to formulate really novel physical
theories like Quantum Mechanics or General Relativity.

A falsificationist does not try to induce his postulates, he only checks that all
the logical consequences of his postulates, for which this is possible, are verified
experimentally. Falsificationism has shown to be extremely advantageous in
the advancement of scientific progress, compared to a naive inductivism. We
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claim that one of the first implicit expositions of falsificationism can be found
in Archimedes’ Treatise on Method, in which the Syracusan scientist provides
guidance on how to proceed in conjecturing new theories correctly. If it were
not for the fact that modern Science is Archimedes’ progeny, we could say that
Archimedes has all the characteristics of a modern scientist!

Contrary to what History of Science has shown so far, i.e. that only a scien-
tific knowledge produces advances in Technology (therefore, we claim that the
only possible way to produce new technological advances is to develop new the-
ories that allow us to observe phenomena never observed before), unfortunately
today scientific progress appears to be stuck in the pointless debate on a data
driven or theory driven Science. This debate represents the modern rephrasing
of the debate between inductivism and falsificationism, that seems to have been
evoked by Proclus.

Proponents of the data driven strategy, strengthened by the fact that to-
day there is a relative overabundance of data available and computing capacity,
argue that the description of reality can be simply induced by means of the
manipulation of experimentally collected data. We will see, in the following, a
fundamental example of how even the modern critical interpretation of Hellenis-
tic Science is sometimes given in a data driven key. In fact, while Hipparchus
of Nicaea conjectured a priori the precession motion of the rotation axis of the
Earth, today’s modern inductivists, who are data driven, let us believe that
Hipparchus induced the precession law from a comparison of the positions of
certain stars as measured by him and those reported in a star catalog compiled
150 years before him. We believe, and we will describe extensively the reasoning
that leads us to this belief, that, instead, Hipparchus first conjectured Earth’s
axis precession and only after then, based on his conjecture, explained the dis-
crepancies between the two catalogs. Albeit we do not have the relevant sources
available (imagine if we could find Hipparchus counterpart of Archimedes’ On
the Method !), we can suppose that, after having seen the motion of a spinning
top (see below for more details), Hipparchus, knowing what he was looking for,
checked the star catalog for obtaining a confirmation of his conjecture.

The debate between inductivists and falsificationists is being repeated nowa-
days, for instance, also in the research field devoted to the invention of new
materials with properties which are not observed spontaneously (i.e. not too
frequently) in nature. In this area, which is also discussed extensively in other
chapters of this work, a “data driven” strategy is not only impractical, but also
conceptually wrong and economically disadvantageous. Therefore, we claim
that an awareness of epistemological basic concepts is needed also in nowadays
researchers studying basic problems in Engineering Sciences.

3.3 Underdetermination of Scientific Theories: a problem
for Inductivism?

In the conceptual framework we have discussed up to now, when formulating
a new theory a fundamental role is played by the basic hypotheses, or physical
postulates. In the falsificationist approach, starting from the basic hypotheses
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(postulates), and using rigorous logical procedures, one can deduce consequences
that can be confronted with experimental data. It has no sense wondering a
priori whether hypotheses are true or false: hypotheses can be only judged on
the basis of the comparison between the whole set of their consequences and
available experience. Moreover, hypotheses have to be contextualized in the
model for which they are formulated. It is a very common misunderstanding
the confusion between the hypotheses of a specific model and the hypotheses
of another model treating a different aspect of the same physical system. Also
if two models are describing the same physical entity, this does not imply that
one has to assume the same hypotheses in both of them, if the phenomena
to be described are sufficiently different. We present here some paradigmatic
examples of this underdetermination of scientific theories.

We do not believe into the inductivist approach, because, obviously, a col-
lection of phenomena concerning a physical system does not uniquely determine
the true and only scientific theory to be used for describing it. In fact, and as we
have stressed before, the used hypotheses may change when choosing a model
or another model for the same physical object. A very famous example of the
underdetermination of scientific theories is given by Archimedean study of the
mechanical behavior of Oceans.

Let us start from a strong ontological statement, clearly accepted by Ar-
chimedes: oceans exists and are always the same physical object where tides
occur and on which vessels float! Now Archimedes knows that the phenomena
involving the floating of vessels can be described by the model of planar surface
of oceans. In facts, Archimedes uses the hypothesis that the surface of seawater
is a horizontal plane (in the treatise On floating bodies) as a basic one when
he wants to establish the stability conditions for ships hull in the vertical con-
figuration. Archimedes had to develop his famous buoyancy law to found this
specific theory. However, somewhere else (we conjecture this happened when he
was preparing the model for describing tides, that we know has been developed
by Seleucus) Archimedes also proves, starting from other postulates, that the
surface of the Oceans has to be spherical!

He knew how to use different hypotheses, depending on the different type
of phenomena he wanted to describe. Can we find a contradiction between the
two models for the surface of Oceans? Is Archimedes, as it is claimed by some
modernistic historians of Science, a primitive and confused scholar? In fact,
the two visions of Nature, as described by the two Archimedean models, can
be reconciled. The floating phenomena of vessels, actually, can be described
either by assuming a planar ocean surface or by a spherical surface with a much
bigger Earth radius than the dimensions of the vessel. We can, then, easily
agree with the fact that a collection of phenomena does not uniquely determine
a scientific theory and that the basic hypotheses may change when considering
different models formulated for describing different phenomena involving the
same physical object.

How can we decide if the Earth surface is not more complicated than a
sphere? The ancient Greek observation that one sees at a distance the sails
of a ship before seeing its hull can be explained in different ways, attributing
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to the surface of the Earth different shapes. An application of Occam razor
suggests that it is wise to start with the simplest conjecture: that it is a sphere.
However, every surface locally similar to a sphere can, in principle, be adopted.
Once more naive inductivism seems to find an insurmountable obstacle.

Another useful example is given by the many different models introduced for
describing the physical objects planets (and specifically the Earth). The possi-
bility that one can model Earth as a moving material point (as it is done in Ce-
lestial Mechanics), or as a rigid sphere (in elementary Astronomical Geography),
or as a rigid geoid (in advanced Astronomical Geography), or as a deformable
geoid (in Seismology), or as a multi-phase deformable solid (in Geochronology),
implies that there are not preferential true hypotheses to adopt, but that for
a given set of phenomenological evidences a most suitable mathematical model
is conceivable and that the discussed underdetermination can be solved with a
kind of minimization principle, that is Occam razor.

In conclusion, we share the belief that (i) the basic postulates of a theory
are statements whose truth value can be uniquely posed a priori and (ii) only
their being false can be determined once for all. The previous statement is the
essence of falsificationist approach, while naive inductivism believes that the
basic postulates of a theory can be proven to be true by means of a series of
experiments. To believe into inductivism is a (negative) change of perspective
dating back to more recent times (i.e. Newton) with respect to the Hellenis-
tic view. This perspective change, we believe, corresponds to a diminution of
epistemological awareness.

In fact, Archimedes accepts that a certain theory is valid to describe the
phenomena of buoyancy and understands that for this theory to be predictive it
is necessary that a certain theorem be true, starting from some basic postulates.
So he commits himself to prove this theorem with mathematical rigor.

The example, to which we refer, requires the application of the law of buoy-
ancy and the demonstration of a theorem, which is given by Archimedes by
an argument of exhaustion. Archimedes understands that formulating postu-
lates is an important step in the procedure of developing any scientific theory
and that experimental evidence cannot be used to prove theorems, that is the
consequences of the accepted postulates.

The clarification of the role of mathematical deduction from postulates and
of their comparison with experiment represents the main ideas contained in
his treatise On the Method. The epistemological ideas at the basis of that
treatise are manifestly more modern than many contained in works that claim
to be milestones in modern Science. Paraphrasing Archimedes, we can say
that the fact that the law of buoyancy produces some predictions that can
be experimentally verified (using modern language) does not imply that the
equality is mathematically true, on the contrary it must be, in fact, proven
starting from the mathematical definition of the set of real numbers. Archimedes
is confident of the descriptive capacity of his model in explaining buoyancy
phenomena. Therefore, he is ready to assume that the entire mathematical
architecture needed in the deductive part of his theory is correct, and that the
predictivity of his model points the way to a demonstration of the mathematical
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theorem that must be true.
In doing so, we believe that Archimedes proves to be a falsificationist. More-

over, he is so aware of the importance of his Method that, as we have already
previously remarked, he claims:

I am persuaded that it [the Method of Mechanical Theorems] will
be of no little service to mathematics; for I apprehend that some,
either of my contemporaries or of my successors, will, by means of
the method when once established, be able to discover other theorems
in addition, which have not yet occurred to me.

History of Science teaches: developing mathematical models for describing
new phenomena can lead to unexpectedly useful results not only in inventing
new technological artifact, and predicting the existence of new phenomena, but
also in conjecturing new mathematical theorems. This point will be made clearer
in the next sections.

4 From the world reality to its mathematical model
and from the model to the replacement of the
world reality

In this section we present two paradigmatic cases of how several times human
society has seen the birth and subsequent decline of Science. A very interesting
aspect lies in the fact that the state of decline is generally not universally recog-
nized except by a few voices that are however isolated and, if possible, silenced.
The picture that comes out from the analysis of many cases of decline that have
affected human society is disconcerting: it could seem that this decline is the
result of an extremely organized operation rather than the result of a series of
unhappy choices, of either political or social nature. The question arises spon-
taneously: who would benefit most from the decline of a scientific society? Who
would have the courage to condemn the human society to a sort of Dark Ages
in order to favor their own interest?

The answer is not uniquely determined. Certainly when in human society
a few groups of unscrupulous individuals assume the leadership and replace in
power people who are prepared and work for the common good, the decline is
already at a very advanced stage. One aspect which is common to all moments
of decline is the relative importance that bureaucrats acquire. Bureaucrats who
should limit themselves to facilitating the choices of politicians replace them and
ensure that society remains entangled in useless discussions. When, in the late
Byzantine era, the highest scientific-philosophical discussion of the intelligentsia
of the time concerned the sex of angels, society had already been in decline since
long time and the conquest of Constantinople with the consequent collapse of
the Eastern Roman Empire in 1453 represented only the formal end of an era
that had already ended long before.
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The process that determines the decline of a society does not merely ensure
its end at a given historical moment, but often also ensures that not enough
traces of its civilization survive to determine a new cultural and scientific flow-
ering at a later time. This results in a veritable erasure of certain theories or of
the name of their founders.

A notable example that reaches us from Greek antiquity is given by the case
of Archytas of Tarentum, who was several times strategos (i.e. general) of Tar-
entum (and therefore his name could not be erased completely from history).
He was the first to introduce the Principle of Virtual Work in the study of me-
chanical systems, but knowledge of this was lost until a few years ago when the
treatise Mechanica Problemata historically attributed to Aristotle was recog-
nized to be likely authored by Archytas, according to T.N. Winter (2007). On
the other hand, it was not lost the information that he had invented a mechan-
ical bird and a toy called ratchet. It is interesting to see that not only his name
was erased from the Mechanica Problemata (which, by the way, could be an
exercise book associated with a much deeper theoretical text), but it was trans-
mitted to us only that his main contribution in Mechanics was the invention of
toys. Instead, we believe that he was considering these toys as a way for explain
the basic mechanical principles exactly as Heron of Alexandria did later in his
Mechanica and Automata. The process of cancellation is systematic: not only
it does eliminate all original sources that it can, but when it cannot manage to
eliminate them altogether it makes them sound less authoritative. It is not easy
to establish if the erasure process which cancels the name of great scientists and
deforms or removes completely their theories is conscious or a consequence of the
lack of intelligence and capacity of understanding. This dilemma appears also
when discussing the motivations of those politicians mentioned before, whose
choices produce the cultural and scientific collapse of the societies that they
lead. Most likely the behavior of both scholars and politicians whose disastrous
choices were mentioned before can be described by a famous Friedrich Schiller’s
quote5:

Against stupidity the very gods themselves contend in vain.

One of the most frequent phenomena occurring in the phase of degeneration
of the scientific culture in a social group consists in the systematic confusion of
a mathematical model with the physical object that this mathematical model is
aimed to describe. Of course, this confusion is deadly because it poses a series
of apparent paradoxes which may lead to believe that the predictive limits of
the model represent instead an intrinsic self-contradicting nature of reality. The
destructive ontological consequences of these phenomena may lead to a violent
reaction against the process of mathematical modeling, that can be exempli-
fied by the skeptic philosophy that led Sextus Empiricus to abjure Hellenistic
Science.

We can recognize a repetitive pattern of growth, decline and collapse of
scientific theories and scientific cultures, so that we tend to generalize the anal-

5Die Jungfrau von Orleans (The Maid of Orleans) (1801), Act III, sc. vi (as translated by
Anna Swanwick)
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ysis by Giambattista Vico, originally limited to the cyclic repetition of social
structures, also to history of Science.

In order to show how the decline of a scientific society generally occurs, we
propose in the following two examples of models that, in the progress of time,
have been confused with reality itself and have, therefore, generated atrocious
misunderstandings. The first case consists in the observation of how the mathe-
matical model for the motion of the planets, formulated in an extremely accurate
way and also by means of advanced mathematics in the Hellenistic age, has been
abused and completely misunderstood until producing in the Middle Ages the
idea that the planets actually moved on metallic guides placed in the heavens.
The second case that we will deal with is that of Continuum Mechanics, where
starting from a certain époque, the concept of force, which was introduced only
to simplify the mathematical formulation of the Principle of Virtual Work, has
assumed a completely unjustified fundamental role in the postulation of basics
Mechanics principles. We observe here that it is possible to recognize a pro-
cess of materialization or transformation into a real object for the completely
abstract concept of force. In a kind of Platonistic delirium many scholars man-
aged to persuade themselves, and to persuade their pupils, that forces are real
objects that one can meet in everyday life: the resulting confusion between
physical objects and mathematical objects used in a model for describing real
world phenomena is extremely misleading. Those who believe in the reality of
forces want to give at any cost to this object a wrong ontological essence.

5 Reconstruction, partly conjectural, of the birth
and decline of the mathematical models for
planetary motion

We now want to mention a reconstruction, clearly partly conjectural, of the
evolution of the mathematical models for the motion of the planets. It is neces-
sary to make two premises: (1) the purpose of what we will describe is not the
in-depth historical study of given scientific theories (for this there are several
texts available in the literature [32,37]), but rather to show a sociological aspect
of the transmission of scientific culture, which, of course, can be studied only
by resorting to the development of the models in non-negligible periods of time;
(2) the reconstruction that we will present of the evolution of the motion of
the planets is obviously conjectural, in the sense that not all sources are avail-
able, but, from the few sources that have come down to us and from secondary
sources, it is possible to conjecture the scientific panorama of the Hellenistic
age to obtain a vision about Hellenistic Science that is, in many aspects, really
surprising.
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5.1 An example of precursory proto-model before Hel-
lenistic Astronomy

Before properly analyzing Greek astronomy, it is appropriate that we mention
an object dating back to the Bronze Age recently found near the German town
of Nebra. It is a bronze disc with gold applications representing the sky, which
was most likely used in the period 2100 BC - 1700 BC. Specifically one can
recognize the crescent Moon, the Pleiades and a disk that could be the Full
Moon or the Sun. Two arches are affixed to the edges of the disk. In more
recent times it has been added a small arch that could represent a solar boat,
typical of a religious representation and also found in other cultures such as the
Egyptian one.

It has been conjectured that the disk could be used to precisely determine
the equinoxes and solstices, aligning it with the stars at certain times of the year
and taking into account the orography of the place where it was found. So it
would be a rudimentary scientific instrument used for determining the calendar
of agricultural activities: it is therefore one of the first available examples of
a technological tool developed on the basis of a predictive model about the
universe but used for practical applications. The subsequent affixing of the
solar boat suggests that the scientific instrument has been transformed into an
object of cult and then was finally buried in a tomb. The story of the disk
of Nebra is the story of a scientific society, obviously in its embryonic state,
that arises and produces useful instruments and then declines making what is
no longer understood to become a religious cult. The fact that the fate of a
scientific instrument, which is no longer useful because it has been transformed
into a cultic object, is the tomb is very explanatory.

The disk of Nebra gives a strong support to the vision of history of Science
that considers cyclic cultural declines as frequent social phenomena. It supports
Giambattista Vico’s vision of cyclicality of social phenomena and completely
falsifies the belief that human progress is only proceeding towards higher cultural
consciousness.

5.2 Eudoxus and the model of homocentric spheres
The first known scientific model describing the motion of the planets is due
to Eudoxus of Knidos (408 BC - 355 BC). Eudoxus was a mathematician and
astronomer. It is one of the fathers of mathematics. Pupil of Archytas of
Tarentum, among other things he studied the problem of finding the algorithm
(with ruler and compass) for the duplication of the cube. The problem of
the duplication of the cube is an absolutely non-trivial problem, since to be
treated properly one must master the concept of irrational numbers, that before
Eudoxus most likely had not been developed. It has to be remarked that, when
Pythagoreans discovered that the hypothenuse of an isosceles right triangle is
incommensurable with the catheti, the first reaction was to believe that nature
was paradoxical. In fact, Pythagoreans did confuse the mathematical model
rational numbers with the concept of length of a segment : when it was proven

26



that the above-mentioned hypothenuse could not be represented by a fraction
they were led to believe that such hypothenuse did not exist. The reader is
invited to consider this as a paradigmatic example of the disastrous potential
consequences of the epistemological and ontological mistake which is intrinsic in
the confusion of a mathematical model with the physical object that one intends
to describe.

It is not a coincidence, then, that Archimedes attributes to Eudoxus the in-
vention of the concept of real number in its geometric definition. Unfortunately,
all Eudoxus’ works are lost: we have only secondary sources. But these are
enough to give us an idea of the level of depth of Eudoxus’ discoveries. Among
the secondary sources, we recall the treatise of Theodosius of Bithynia Sphaer-
icae, which is probably based on his work. Of his other works we have received
only the titles: Eclipses of the Sun, Octaeterides (solar lunar cycle of eight
years), Phenomena and Entropon (spherical astronomy based on observations
made in Egypt and Cnidus), In motion. As mechanicians we were ready to pay
a very high price for having a copy of this last text, as it could give us a clear
vision of the first true scientific stage of our discipline and could guide us in
the development of novel models. Eudoxus’ passion for astronomy was not, of
course, only theoretical, but had significant practical implications and, in fact,
he built an astronomical observatory.

Eudoxus’ fame is related to the model of homocentric spheres. This model
describes a universe divided into spheres having a single center of rotation. At
the center Eudoxus put the Earth surrounded by spheres in uniform circular
motion. The outermost sphere contained the fixed stars. On the other spheres
moved the planets.

To better understand the mechanics of the model of Eudoxus, we use the
words of G. V. Schiaparelli [38]:

“Eudoxus thus imagined, almost as Plato had done before him, that
every celestial body was set in motion by a sphere revolving over two
poles, and endowed with uniform rotation; he further supposed that
the body was attached to a point of the equator of this sphere, so as to
describe, during the rotation, a maximum circle, placed in the plane
perpendicular to the axis of rotation of the same. To account for the
variations in the speed of the planets, their retrograde motion, and
their deviation to the right and left in the direction of latitude, this
hypothesis was not sufficient, and it was necessary to suppose that
the planet was moved by several movements analogous to the first,
which overlapped and produced that unique movement, apparently
irregular, which is what is observed. Eudoxus therefore established
that the poles of the sphere carrying the planet were not immobile,
but were carried by a larger sphere, concentric to the first, rotating
itself in turn with uniform motion and with its own speed around
two poles different from the first ones. And since even with this
supposition it was not possible to represent the observations of any
of the seven celestial bodies, Eudoxus attached the poles of the second
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sphere inside a third one, concentric to the first two and larger than
them, to which he also attributed other poles and another speed of its
own. And where three spheres were not enough, he added a fourth
sphere, including in itself the first three, carrying in itself the two
poles of the third, and also rotating with its own speed around its
own poles. And examining the effects of these movements combined,
Eudoxus found that, choosing conveniently the positions of the poles
and the speeds of rotation, the movements of the Sun and Moon could
be represented well, assuming each of them carried by three spheres;
the more variegated movements of the planets he found required four
spheres each. The driving spheres of each celestial body he assumed
to be independent of those that served to move the others. [. . . ]

Thus the total number of moving spheres was 26, plus one for the
fixed stars. What was the cause of these rotating movements, and
how they communicated from one sphere to another, is not found
that Eudoxus had looked for; nor what was the material and size of
the spheres themselves; nor what were their diameters and their in-
tervals. [...] Eudoxus therefore totally omitted to research what did
not matter to his main problem, the geometrical representation of
phenomena; and in this we see another proof of his sober and rig-
orous genius. He did not care at all to connect the driving spheres
with those of the planet immediately above and the planet immedi-
ately below, and assumed that the spheres involved in the movement
of each planet formed an isolated system independent of the rest. In
short, everything leads to believe that the spheres were for him the
elements of a mathematical hypothesis, not physical entities; from
which he was wrongly reproached for having closed the universe in
crystal vaults, and for having multiplied them without necessity.”

Eudoxus was not a mere observer of the sky: certainly it was by observing
the sky that he formulated his conjecture at the basis of the model of the homo-
centric spheres. In fact, he was a great mathematician: this last characterization
leads us to conjecture that he was probably aware that his model was not reality,
but only an attempt to describe it. This conjecture is strongly supported by
the recognition found in Archimedes sources about Eudoxus invention of irra-
tional numbers: only a sophisticated epistemological understanding could have
led Eudoxus to his solution of Pythagoreans apparent paradox. It is significant
that many scientists even today are unable to distinguish their model from the
reality they claim to describe it.

The geocentric model of Eudoxus did not succeed in any case to explain
completely the planets retrograde motions and also failed to give an explanation
of the variation of brightness of the planets during their motion (which instead
is obvious if we consider that the distance of the given planet from the Earth is
variable in time). Remaining within a geocentric model, the system was refined
by Apollonius of Perga (262 BC - 190 BC) who first introduced the concept of
deferents and epicycles (which we will discuss in more detail when we present
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the algorithm of Claudius Ptolemy). Apollonius considered the motion of the
planets as a composition of several uniform circular motions and in this way
he was able to approximate the retrograde motions and to give a convincing
explanation of the variation of apparent brightness. Also in this case, as for
Eudoxus, we can say with some confidence that the model with deferents and
epicycles was perceived by Apollonius as a mere mathematical model and that
he was not confusing his model with physical reality. Unfortunately, the same
cannot be said about Ptolemy.

5.3 Aristarchus: an ancient Copernicus? Or more likely
Copernicus is the modern Aristarchus?

The progress in the development of a model for the description of the motion
of the planets obtained by Eudoxus is the basis of the huge advances made by
Aristarchus of Samos (310 BC - 230 BC). As we mentioned in the previous
section, probably Eudoxus knew that his model did not coincide with reality,
but that is was only a description of it, a certainly imperfect and obviously per-
fectible description: the attempt to describe in some way the retrograde motion
of the planets by adding extra spheres represents the most evident proof that
Eudoxus had a clear idea of the concept of successive (mathematical) approxi-
mations of reality. This idea will be fully developed by the sources of Ptolemy
as it is evident by inspecting his computation method based on the introduc-
tion of deferents and epicycles. If one wants to build a model to describe the
motion of the planets, the first step is to obtain kinematical estimates that are
consistent (if not overlapping) with observational data. This is what Eudoxus
did. Aristarchus goes a step further and introduces the first heliocentric model.
He wonders how well the representation of the cosmos given by Eudoxus closely
describes reality. Certainly today everyone should be able to agree with the fact
that to pass from the geocentric model to the heliocentric one is a simple change
of reference and that, once fixed the correct transformation from a reference to
the other, there is absolutely no difference in using one reference or the other
one. Actually, another possible, if not preferable, choice would be to place the
reference in the center of mass of the solar system and consider the motion of
all celestial bodies, including the Sun, around this center of mass. In fact, for
the scientist of the third century BC the change of reference is an absolutely not
trivial conceptual step. We will see how in the Archimedes’ planetary stolen by
Marcellus and described by Cicero this change of observer was included in the
mechanism.

Let us try to reconstruct the various stages that occur in the research of the
Hellenistic scientist to arrive at the heliocentric model. The first observation,
the most obvious one, concerns the motion of the Sun and Moon, which describe
an arc in the sky during the day and the night. We consider already overcome
any kind of religious conception that can come out from such observations and
we consider already established the knowledge of the sphericity of the Earth
(since Parmenides onwards this was well known to the Greeks!). Based simply
on the observations of the positions of the Sun and Moon, it is then licit, for the
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Hellenistic scientist, to imagine that these two celestial bodies rotate around the
Earth, which instead remains fixed. The big jump in quality of mathematical
modeling is made in the attempt to explain the retrograde motions of the planets
(to observe and record which quite advanced technologies are already required,
because it is impossible to think that with the bare eye one can record with
precision the positions of all planets and constellations). A second fundamental
observation in the path towards heliocentrism concerns the motion of the fixed
stars, which, without apparently changing their inter-distance on the sky, rotate
all together. As we will see, the fixed stars constitute a problem for heliocentrism
(but Aristarchus responds extremely lucidly to the objection made to him, see
below).

So, this is the picture from which the Hellenistic scientist starts:

i. Sun and Moon follow arcs of circumference;

ii. planets show regular and retrograde motions;

iii. fixed stars have an immutable reciprocal inter-distance on the celestial
sphere that rotates instead on a yearly basis cycle.

The phenomena (i) and (iii) are perfectly described by Eudoxus’ model of ho-
mocentric spheres. Retrograde motions require a complexified explanation by
means of various spheres, with contained relative motions, associated to the
same celestial body. To be predictive, Eudoxus’ model becomes very cumber-
some. In addition, the tendency to the search of the most economical logical
reasoning, typical of the Hellenistic scientist, who was trained on Euclid’s Ge-
ometry and therefore is accustomed to reasoning as simple as possible, cannot
explain why a few celestial bodies (planets) behave differently from the other
celestial bodies and go back and forth in the sky. We can imagine Aristarchus’
astonishment when he realizes that fixing the reference system on the Sun and
not on the Earth, the motions of the planets become all nearly-circular (or pos-
sibly elliptical): from a complex and cumbersome description, modified ad hoc
for each celestial body, this Hellenistic scientist is passing to a unified descrip-
tion that treats all the motions of the celestial bodies in the same way. Once
heliocentrism is introduced, it will not be possible anymore to come back to
other models!

It remains to be settled, in the proposed model, the question of the fixed
stars: if the observation is made from the Earth, which according to the helio-
centric model is itself in rotation around the Sun, why should the fixed stars
appear to have a fixed relative distance? Aristarchus, who, like all his contem-
porary scientists, knew deeply Geometry, answered in an ingenious and at the
same time obvious way: the distance between the Earth and the fixed stars is
enormously greater than the diameter of the Earth’s orbit, so that, for what
concerns our measurements of relative distances of very distant stars, it makes
absolutely no difference to fix the observer reference on the Earth or on the Sun.
This will be understood again in modern age with Giordano Bruno and Galileo
Galilei only.
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Obviously, as we will underline in the following discussion about Hipparchus
of Nicea, the relative positions between the so-called fixed stars are not at all
immutable, but vary on a time scale much longer than the life of a man because
of their natural motion. The reason for the very slow variation of the apparent-
from-Earth relative distances is related to the enormous distance between the
Solar System and these stars when compared with the diameter of the Solar
System: exactly the same explanation given by Aristarchus to establish that
heliocentrism and geocentrism are equivalent models for what concerns the de-
scription of the phenomenology concerning the motion of fixed stars. We believe
that this explanation must have been obviously understandable for those who
first came to formulate the heliocentric theory, but we have no sources available
to know Aristarchus’s thought regarding this issue.

Unfortunately the work of Aristarchus on the heliocentric theory has been
lost and we have available only some fragments reported by secondary sources.
The only work which survived is On the dimensions and distances of the Sun and
Moon. In this work Aristarchus gives another proof of the high level reached by
Hellenistic science. With an extremely simple reasoning he succeeds in deducing
dimensions and distances ratios from the Earth to the Moon and to the Sun
based on the powerful results of Euclidean Geometry and his own results which
are based on trigonometric functions.

The whole reasoning of Aristarchus is based on the fact that, when the Moon
is in quadrature, i.e. it is illuminated by half, it forms a right triangle with the
Earth and the Sun. By measuring in this condition the angle between the Earth-
Sun direction and the Earth-Moon direction it is possible to calculate the ratio
between their distances using trigonometric arguments.

To calculate dimensions and distance ratios, Aristarchus is forced to invent a
way to approximate the calculation of the tangent of the angle. The tangent of
an angle is a function that assumes values throughout the whole set of the real
numbers, eventually diverging. In fact, as the angle approaches a right angle,
the tangent function tends to diverge, i.e. small changes in the angle correspond
to huge changes in its tangent. This implies that if the angle in question is
almost a right angle then small errors in the measurement of the angle produce
large errors in the calculation of its tangent and therefore in the estimation
of distance ratios. The estimate of Aristarchus was, in fact, wrong by several
orders of magnitude. However the algorithm invented by Aristarchus for the
calculation of the tangent of an angle is correct and it will be very useful for the
subsequent development of Hellenistic Science (and of Science tout court).

A final note on how many paradoxes may arise while describing the process of
transmission of Science is needed. In many modern texts Aristarchus, who first
introduced the heliocentric model, is referred to as the ancient Copernicus (who
lived almost two thousand years later). As we have repeatedly seen in other
chapters of this work, often in the history of Science those who come after claim
authorship of an idea, even if this idea was developed by others long before. In
the present case, obviously, it was not Copernicus, who probably knew very well
the works of Hellenistic Science, to claim the paternity of heliocentrism. In fact,
Copernicus clearly attributes to Aristarchus the formulation of such important

31



mathematical hypothesis (see [31]). The causes of this absurd misunderstanding
are to be found in the works of modern scholars. Why this reversal of ideas?
Why not calling Copernicus the modern Aristarchus but, instead, doing the
opposite? It may appears as if Aristarchus had in some way wanted to refer to
the ideas of Copernicus. The reasons of this aberrant time-reversal are found,
in our opinion, in that very modern attitude that sees with extreme disregard
the ancient Science (and indeed, many contemporary scholars warn that one
should never speak of science in antiquity!) and that wants to show how well
we can manage ignoring our past. But it should be considered that if removed
from the shoulders of giants the dwarfs will fall into the void.

5.4 A mature Science is sometimes too complex to be
transmitted to posterity: Hipparchus’s explanation of
the precession of the equinoxes

Once the heliocentric model has been acquired, Hellenistic Science continued to
refine its models by focusing on the study of further available phenomenology.
There is, as we have extensively emphasized in the section on Philosophy of
Science and Epistemology, an important requirement that a theory must fulfill:
not only it must be able to reproduce available phenomenology, but also it
has to allow, giving directions to experimental research, for new discoveries
by indicating where and how new measurements have to be made. Precisely
framed in this panorama, Hipparchus of Nicaea (200 BC - 120 BC) is the first
who was able to accurately predict the eclipses of the Sun and the Moon and,
demonstrating profound and pronounced skills as a mathematical physicist, as
we would say today, he could explain the discrepancies found between the star
catalog compiled at the turn of the fourth and third centuries BC by Timocharis
(of Alexandria) and Aristyllus (which were based on previous measurements
of the Babylonian Chaldeans) and his own star catalog: indeed, between the
two catalogs there is a time-lapse of about 150 years and, for this reason, the
apparent positions of the stars on the sky show small variations.

Aristarchus, following the hypothesis first suggested by Heraclides Ponticus
(c. 390 - c. 310 BC), whose works are however lost, had attributed to the
Earth, in addition to the motion of revolution around the Sun, also a motion
of rotation around its own axis. He had, moreover, established that, to take
into account the alternation of the seasons, it was sufficient that the axis of the
Earth’s rotation was inclined with respect to the plane of the orbit around the
Sun (also known as the ecliptic plane). While Aristarchus probably had no idea
that the direction of this axis was not constant in time, Hipparchus of Nicaea
conjectured the presence of one between the two motions nowadays attributed
to the Earth’s axis. Hipparchus, in fact, introduced the Earth’s axis precession
motion, which consists in the rotation of the Earth’s axis around the normal to
the ecliptic plane: today we also introduce the nutation motion, which consists
in a further periodic oscillation of the Earth’s axis during the precession motion.

The reasons why Aristarchus assumed the inclination of the Earth’s axis
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should be nowadays part of general culture, albeit they are not at all trivial, as it
is needed to explain the alternation of seasons. On the other hand understanding
how Hipparchus was able to deduce the motion of precession is an extremely
challenging question, which deserves some explanations here.

As we said before, Hipparchus compares two stellar catalogs, that of Tim-
ocharis and Aristyllus (based on data already collected by the Babylonian
Chaldeans) and his own. The two catalogs have differences in the measured
position of some stars (for example Spica). It is possible that Hipparchus for-
mulated his hypothesis of Earth’s axis precession from the discrepancies between
these measurements. We believe that such a precise hypothesis cannot be the
result of this comparison alone, without the aid of a complex modeling proce-
dure and postulation. In fact, once it has been established by Aristarchus that
the Earth rotates around its axis and that this axis is inclined with respect to
the ecliptic plane, the Hellenistic scientist probably tried to formulate a model
of the motion of the planet Earth around its axis, by conceptually separating
this motion from that of the rest of the universe. If this simplifying hypothesis
is well-grounded, then the model-seeking scientist will as a first step attempt to
represent the Earth’s axis motion as a superposition of simpler motions. In this
aspect, Hipparchus works in continuity with the Hellenistic tradition that rep-
resents celestial motions using sub-sequent epicycles. By conceptually isolating
the Earth in its motion, it is likely that Hipparchus could have established a
parallelism with the motion of a spinning top. It is well attested the use of spin-
ning tops in Hellenistic époque and possibly earlier. Callimachus from Cyrene
(about 310/305 - 240 BC) reports the use of spinning tops as toys in his first
Epigram [Call. Epigr. 1, 9-10]:

Those, some children, played with rapid spinning tops twirling them
in the wide crossroads.

It is also attested, as proven by the role of Archytas (about 435/410 - 360/350
BC) as inventor of pedagogical toys for children, that Hellenistic scientists aimed
to exemplify physical phenomena by means of toys, a tradition which was also
continued by Heron of Alexandria (about 10 AD - about 70 AD). It can be
assumed, therefore, that Hipparchus, knowing that analogous mathematical de-
scriptions can be used to describe different physical phenomena (today, following
Feynman [39], we would say that the same equations may model different phe-
nomena), was bound to attempt the description of the physical system “Earth
rotating around an inclined axis” using the knowledge acquired in the already
known areas of the Science of his time, i.e. “spinning top rotating around its
axis”. It is widely known that the Greeks knew the spinning top even before
Callimachus: in the VII book of the Iliad Homer (late eighth or early seventh
century BC) describes the motion of a stone thrown by Ajax Telamonius against
Hector as the motion of a spinning top

An even bigger stone [...]
Telamonius grasped and his strong

right hand twirled it like a stone thrown from a slingshot.
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If Homer could describe a stone thrown by Ajax as a spinning top, why
Hipparchus could not think of modeling the Earth rotating around its axis
as a spinning top? Which is exactly what Maxwell will do in his treatise on
spinning tops [40]. If one observes a spinning top rotating then he will see: (i)
the rotation of the spinning top around its axis, (ii) the direction of the axis
changing in time (precession); (iii) the variation of the inclination of the axis
due to a certain oscillation (nutation).

The question we have to ask ourselves now is: is it easier to deduce the
precession motion by observing the discordance of the measures or to conjecture
it by observing the motion of a spinning top thrown by children playing in the
street?

It is attested that Hipparchus did conjecture the nutation motion of the
Earth’s axis. We claim that the genius of Hipparchus consists in imagining
the similitude between the spinning top and the Earth and, consequently, in
interpreting the discrepancies between the measures reported in the two catalogs
not as an indication that the oldest measures could be wrong but as a proof
that the Earth could actually be described as a spinning top. It is clear that an
essential prerequisite for the advancement of knowledge is that one generation
of scientist can rely on the results obtained and transmitted to them by the
previous generation. It is therefore to be blamed the modernistic attitude of
considering everything coming from the past as unavoidably primitive.

The hypothesis of Hipparchus, contained in his lost work On the displace-
ment of the solstitial and equinoctial signs, is applied to the analysis of the
longitude of the apparent position of the star Spica during a lunar eclipse. The
method adopted by Hipparchus to measure the longitude is known because it
was reported by Claudius Ptolemy (c. 100 - c. 170 AD) in his Almagest. After
the measurement, Hipparchus compared it with the longitude of Spica reported
in the catalog of Timocharis and Aristyllus and he noted that this longitude
had varied by 2◦ in about 150 years. From this observation, he made the hy-
pothesis that the fixed stars have shifted with time and estimated a precession
of 48” per year. It is remarkable that the precession measured by Hipparchus
with the instruments of his epoch is so close to the value measured with today’s
instruments and expressed as 50.26” per year. It is singular that Hipparchus’s
estimate is also considerably better than that obtained by Claudius Ptolemy
(36” per year) about three centuries later.

The measurements made by Hipparchus to validate his hypothesis of preces-
sion of the equinoctial points obviously require the use of instruments, both the-
oretical and practical, which are extremely accurate. This is how trigonometry
and the astrolabe were born. As far as trigonometry is concerned, Aristarchus
had already introduced some basic concepts, very much linked to the formulation
in terms of Euclidean geometry. In Hipparchus, in fact, we find trigonometry
in its modern formulation, except for the use of a different symbology. In fact,
the symbology used in modern times, as it is well known, was introduced only
by Euler (1707 - 1783 AD).
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5.5 Other achievements of Hellenistic Science in the study
of the motion of the planets: Seleucus’ explanation of
ocean tides and the Antikythera calculator

So far we have described the genesis and development of the heliocentric model,
but except for the indirect evidence we have mentioned, neither Aristarchus nor
Hipparchus had given a demonstration of it. According to Plutarch (46 AD
- after 119 AD), Seleucus of Seleucia (floruit 150 BC) gave a formal proof of
the heliocentric theory. We believe that Plutarch with the word demonstration
meant the deduction from more fundamental postulates. If our interpretation
is correct this could imply that Seleucus had invented a form of dynamics. We
will see that Middle Ages echoes of dynamical theories seem to support our
conjecture. Another indirect support for it can be found in the explanation,
also attributed to Seleucus, of the complex phenomenology involved in ocean
tides.

In fact, from a reconstruction based on secondary sources (because even
of Seleucus nothing has come down to us) it can be said that the greatest
contribution of Seleucus to Hellenistic Science consists in the in-depth study of
the tides. Now, while it can be simply understood that the tides are related to
the combined interaction of Sun, Moon and Earth, the specific phenomenology,
especially in its quantitative aspects, requires a very detailed analysis. Indeed, if
one wants to reproduce with some accuracy the experimental observations, the
extremely simplified vision where the tidal phenomenon is described by static
interactions with celestial bodies is not sufficient. Today we use an extremely
complex model based on a dynamic approach, introduced by Laplace (1749-
1827), which takes into account also the inertial effect of the ocean motion
relative to the Earth. In that formulation, the well-known Coriolis force needs
also to be introduced.

An interesting aspect resulting from the few secondary sources of Seleucus’
thought is that he related tides not only to the position of the Moon and the
Sun, but also to the motions of the Earth. The main sources from which we get
information about Seleucus are Strabo (64/63 BC - 24 AD) and Aetius (1st or
2nd century AD), and the latter reports, in an extremely confused way, this idea,
which in some ways recalls the dynamic model of Laplace. In this regard, Galileo
Galilei (1564-1642) had already tried to give a dynamic interpretation of the
phenomenon, but producing not very clear results. We believe that both Galilei
and Laplace were at least inspired by the words of Seleucus (probably not by the
confusing version of Aetius, but by another clearer source that has not reached
us). Some authors, with philological evidence, have tried to interpret the text
reported by Aetius and to relate it to the information referred by Plutarch about
the presumed demonstration of the heliocentric theory presented by Seleucus,
but we will not delve here into this subject.

The scientific progress of the Hellenistic age was not only theoretical but also
had strong practical implications. One of the most paradigmatic proofs of the
technological development induced by the theoretical advancement of Hellenistic
astronomy is represented by the calculator of Antikythera (150-100 BC). This
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famous astronomical calculator, which even for the complexity of the gears that
compose it gives fundamental information on the high level reached by Greek
metallurgy, was able to predict an enormous number of celestial phenomena,
as well as provide a series of calendars. By turning the crank on the side, it
was not only possible to calculate the exact position of each planet and the
phases of the moon, but also the eclipses of the Sun and Moon. Since, of course,
information about the positions of the planets was given relative to the latitude
of a chosen point on the surface of the Earth, some have speculated that, using
a sort of inverse method, the calculator could be used on sea voyages to estimate
latitude based on a comparison of the positions of the planets in the sky and
those determined using the astronomical calculator.

The astronomical calculator of Antikythera shows the position of the planets
in a reference centered on the Earth. In this case the choice of the geocentric
model is justified by the fact that the scientific instrument has a specific pur-
pose and, if it is true the hypothesis that the calculator provided the latitude
by comparison with the sky, then it is logical that the represented system be
geocentric. Obviously, in order to describe the complexity of the apparent mo-
tions of the celestial bodies in the geocentric system it was necessary to have
an extremely precise and reliable computational algorithm. The algorithm used
and realized by means of numerous gears was that due to Apollonius of Perga,
who decomposed the motion of the planets in circular motions on deferents and
epicycles. For each planet the Antikythera calculator has a series of gears for
the deferent and for the various epicycles.

The discovery of the astronomical calculator of Antikythera has shown us
an aspect of the geocentric system that is rarely emphasized. To the question of
why the ancients had begun to study the sky and the motion of celestial bodies,
the right answer is not, as it is often trivially suggested, the wonder that the
uncultured ancient man felt in observing the starry sky. This is a romantic view
that we should learn to circumstantiate. The fundamental reason why it was
necessary to study the sky lies in the fact that until before the invention of the
compass this was the only reliable way to get orientation. So it is also clear why,
although it was already clear with Aristarchus that the heliocentric system was
more effective in describing phenomena than the heliocentric one, the geocentric
description of planet motions has never been abandoned and, indeed, has been
gradually refined: it is absolutely necessary to obtain precise estimates of the
positions of the planets in the reference centered on the Earth and thus be able
to orient. In short, we could say that the Hellenistic scientists knew very well
that at the center of the planetary system there was the Sun, but they needed
to put the Earth at the center of the solar system for using the theory to obtain
practical results.

Using modern language, the study of heliocentric theory represents pure
research, while the study of apparent positions of celestial bodies in a geocentric
reference frame represents applied research. Archimedes (287 BC - 212 BC)
did succeed in making theory and practice dialogue fruitfully and it is not a
coincidence if in the famous planetarium belonging to Archimedes, as Cicero
reports, one could, depending on the needs, fix the Sun or the Earth and observe
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directly the motions of the planets from the heliocentric view-point or from the
geocentric one.

5.6 The death of Archimedes as a metaphor of the begin-
ning of the end: the slow decline leading to Dark Ages
did begin with the end of Hellenistic Science

Archimedes was one of the greatest scientists and mathematicians of human
history. In several parts of this work we have spoken of his outstanding scientific
discoveries and especially of his way of approaching the scientific research, which,
while remaining strongly connected to physical reality, had the merit of being
lucidly formulated in precise and rigorous mathematical terms. As for the topic
we discuss in this section, we limit our attention to two aspects, one of technical
and the other of historical nature, which are related to the death of the great
scientist, after the end of the Roman siege of Syracuse in 212 BC led by consul
Marcellus. The technical aspect is reported by Cicero (and we have mentioned
it previously): Marcellus brought in the booty of war taken in Syracuse the
famous planetarium of Archimedes. Cicero speaks of this planetarium several
times, in the De Re publica and in the Tusculanae Disputationes. In the latter
work he reports:

“Nam cum Archimedes lunae solis quinque errantium motus in sphaeram
inligavit, effecit idem quod ille, qui in Timaeo mundum aedificavit,
Platonis deus, ut tarditate et celeritate dissimillimos motus una regeret
conversio. Quod si in hoc mundo fieri sine deo non potest, ne in
sphaera quidem eosdem motus Archimedes sine divino ingenio po-
tuisset imitari.” [Cicero, Tusculanae Disputationes I, 63]

“In fact, when Archimedes bound in a sphere the motions of the
Moon, the Sun, and the five errant planets, he obtained the same
result as [the Demiurge] who in Timaeus constructed the universe,
i.e. the Plato’s god, so that a single revolution governed motions
very different from each other in slowness and speed. If it is not
possible for this to happen in this world without the intervention of
a god, certainly not even in his sphere Archimedes would have been
able to imitate the same movements without a divine intelligence.”

Archimedes’ planetarium probably represents the highest point of Hellenis-
tic Science, and today we can only have a vague idea of it by looking at the
astronomical calculator of Antikythera, which was in all probability a portable
version of the planetarium.

The siege of Syracuse is also sadly known because it was during this siege
that Archimedes lost his life. Plutarch, in his Life of Marcellus, reports three
different versions of the death of Archimedes: all versions agree in the fact that
he died by the hand of a Roman soldier, although the Syracuse scientist is said
to have been extremely appreciated by Marcellus, who seemed to be grieved by
his death and gave him an honorable burial.
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The death of Archimedes marks a symbolic point of no return for Hellenistic
Science: after this event the phase of decline begins. As we will see, the decline
is not immediately recognizable as such, but is usually preceded by a phase of
mannerist fashion in which there are no more original ideas, but only repetitions
and progressive refinements of pre-existing ideas. We believe that the siege of
Syracuse and the consequent decline of Hellenistic Science started an inexorable
process that, centuries later, will lead to the Dark Ages.

In the artistic domain, the Renaissance was followed by Mannerism, which
in its most negative sense is depicted as the artistic current in which the artist
no longer seeks inspiration in nature, but limits himself to attempting to imi-
tate the works of the three great Renaissance artists, Leonardo, Michelangelo
and Raphael (thus losing the instinct of originality that had characterized the
Renaissance artist). Similarly, Roman art limited itself to copy and reproduce
Hellenistic masterpieces. In the same way, and we could say cyclically, in every
stage of history of Science one recognizes a phase of maximum development fol-
lowed by a mannerist phase, which preludes to an imminent decline eventually
followed by another growth stage: we believe to be followers of Giambattista
Vico’s doctrine. The great scientific advances of the Hellenistic period, which
in the restricted field of Astronomy the available sources attribute mainly to
Eudoxus, Aristarchus and Hipparchus, are followed by a phase of stagnation in
which attention is focused on computational aspects and loses, therefore, that
originality which had characterized the scientific revolution of the IV-III century
BC.

In this mannerist framework stands Claudius Ptolemy (100 AD - 170 AD),
whose greatest contribution to ancient Science consists in the refinement of the
algorithm, originally due to Apollonius of Perga, that allowed to calculate pre-
cisely the positions of the planets of the Solar System. Ptolemy worked in
Alexandria when probably the Library still existed and therefore had at his
disposal the largest database in the world to which one could have access in
that time. It is peculiar that, while Ptolemy was concentrated purely on the
problem of calculating apparent motions of stars in a geocentric reference, his
successors attributed to him the choice of the geocentric model of Eudoxus.
We do not believe that Ptolemy had consciously refused the heliocentric model
of Aristarchus: like many modern engineers he was only interested in practi-
cal calculations, and spent all his time in describing calculation algorithms. In
any case, it is necessary to point out that, as we mentioned when discussing
the Antikythera calculator, the calculation by deferents and epicycle had been
introduced by Apollonius of Perga centuries before Ptolemy. From this consid-
eration Ptolemy appears to be a compiler of already known results rather than
the inventor of something new.

Ptolemy’s algorithm turns out however to be a computational tool more pre-
cise than the algorithm developed by Apollonius of Perga and capable of giving
estimates of the positions of the planets with sufficient precision for the astron-
omy of his time. We stress that his time is quite different from the centuries in
which Eudoxus, Aristarchus and Hipparchus operated and in fact, for example,
the estimate given by Hipparchus of precession is significantly more accurate
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than that made by Ptolemy three centuries later. The algorithm is based on
a system of successive approximations made of compositions of uniform circu-
lar motions on circles of different sizes and with the centers located at ad hoc
chosen points. An epicycle is a circumference whose center is placed on the
circumference of a larger circle called deferent. In the model of Apollonius of
Perga, therefore, the planetary orbits are represented as a composite motion
of the revolution of the planet along the epicycle and of the epicycle along the
deferent. By increasing the number of epicycles, one can obtain more and more
accurate estimates of the orbits of the planets: one can conjecture that Apollo-
nius of Perga was aware of the fact that increasing the number of epicycles one
could reduce the error in the estimates of the kinematics of planets. We doubt
that Ptolemy had this awareness. This multiplication of epicycles has been
widely criticized in the past by the followers of Copernicus (1473-1543), against
the opinion of some Jesuit erudites: the fact that more precise estimates could
be obtained by increasing the number of epicycles was seen as an unnecessary
complication of the model. In fact, the controversy between Copernicans and
some Jesuits was based on a fundamental misunderstanding: while Copernicans
considered the number of circumferences involved in the mathematical descrip-
tion of Solar System as a part of a postulation scheme, and therefore wanted to
reduce it using Occam razor, their Jesuit opponents stressed the mathematical
aspect of the question, remarking that periodic motions can be approximated
better and better by increasing the number of epicycles.

As reported by Gallavotti [41], since Schiaparelli’s analysis [38] the approx-
imation technique via epicycles for the periodic motion of planets can be rec-
ognized as an initial form of Fourier analysis. As it is well known, Fourier
(1768-1830) joined Napoleon’s Egyptian campaign in 1798. The development
of his analysis, conversely, dates from 1822. We have, in the present work, re-
peatedly conjectured, sometimes even demonstrated, that in the history of the
transmission of scientific thought the often unmentioned source of works that
are perceived as revolutionary and forerunners for modern Science is to be found
in works of the Hellenistic age, which are nowadays (perhaps not by accident)
lost.

It is clear that Fourier could have simply been inspired by what was already
known about this technique. It is purely speculative to believe that he could have
found other sources while campaigning in the place where the largest Library
in the ancient world had risen. It is also clear that Apollonius’ model and
Ptolemy’s algorithm were known, at the expense of Aristarchus’ heliocentrism,
throughout the Middle Ages and were considered basic until Kepler (1571-1630).

5.7 The materialization of Eudoxus’ model
It is remarkable that during Dark Ages a choice among available models for
the Universe was made. Soon one model was confused with reality. In fact,
it was the simplest, and less predictive, model to be confused with reality for
at least six centuries (the time interval between the fall of the Western Roman
Empire, i.e. 476 AD, and the small Renaissance of Frederick II Hohenstaufen,
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who lived between 1194 and 1250). The complexity of all models formulated
after Eudoxus was totally out of the understanding possibilities of nearly every
intellectual of that Ages. Therefore, what could not be understood because
of its sophistication and complexity was rejected as false, a useless and empty
complex philosophy, soon associated with useless mathematics. Instead, naive
and primitive models were promoted to crystal clear truths, that one could not
dispute without risking to be considered heretical.

Moreover, the concept of mathematical description of phenomena and the
role of mathematical entities used to predict them were completely lost and
therefore, while describing Eudoxus’ model, it was felt necessary to materialize
the hinged rotating spheres assuming (as also it has been recalled explicitly
by Schiaparelli) that the Universe was closed by crystal vaults mechanically
interconnected one to the other.

One can get a clear idea of how much the thinking has regressed with respect
to the Hellenistic period by considering that Bede the Venerable (672-735),
one of the greatest scholars of the period immediately following the collapse of
the Western Roman Empire, is remembered for having invented a method of
counting up to a million with the fingers of the hands. So great is the devastation
following the end of Hellenistic Science that mankind had to learn again how to
count!

The lowest point in the scientific understanding during the Dark Ages occurs
with the materialization of Eudoxus’ model of homocentric spheres. Paradox-
ically, in opposition to the state of intellectual disruption produced by this
materialization, from an artistic point of view the distorted view of Eudoxus’
model generates a series of masterpieces in figurative art that perhaps had, at
least, the merit of inspiring the efforts of Renaissance scholars to restart the
systematic study of the problems addressed by Hellenistic scientists.

The materialization of the model of the homocentric spheres leads to two
misunderstandings, the former of a purely scientific nature and the latter of
a socio-cultural nature. The first misunderstanding concerns the vision of the
universe that the man of the Middle Ages has: the Sun and the planets not
only rotate around the Earth, but also they are stuck on metal rings (or crystal
vaults) hinged to each other and rotating around the center of the Earth. This
abnormal misunderstanding is generated by the literal interpretation that the
majority of the medieval intellectuals were able to give of the drawings repre-
senting the homocentric spheres or of their practical realization in the ancient
Greek armillary spheres (and in fact the armillary spheres begin to be spread
again in Europe in the Late Middle Ages).

The second misunderstanding, as we said above, is of socio-cultural character
and concerns the perception that the modern History of Science has of Eudoxus
and his model. As we have repeatedly emphasized, relying also on the opinion of
Schiaparelli, Eudoxus was fully aware that his model was not the physical reality
and that, for example, the homocentric spheres represented only the elements
of a mathematical model of reality and absolutely not the reality itself. Instead,
partly because of medieval misunderstandings about it, the common perception
of much of the modern scientific world is that Eudoxus, and Hellenistic scholars
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in general, had a very naive idea of reality and of its mathematical modeling.
With due differences, it is as if in a thousand years from now our descendants
will report that we were convinced that electrons are yellow balls with an arrow
stuck along one of their diameters just because in some physics textbooks similar
images are proposed to give an approximate idea of the spin. Of course, there
are in present times some physicists who have such a belief: however, nobody
attributes it to Wolfgang Pauli (1900-1958)! Similarly, we should respectfully
appreciate Eudoxus’ vision of Science.

We can attribute to two factors of fundamental importance the fact that after
a thousand years of darkness the flowering of the Renaissance revived scientific
interest. The first and inescapable factor consists in the fact that during all
the Middle Ages the only scientific discipline that continued to be taught and
transmitted from maestro to pupil was Euclidean Geometry. The presence of
Euclidean Geometry in the cultural background of the first humanists certainly
allowed them to appreciate the importance of the content of the ancient Greek
texts of the Hellenistic school and to be able to read them. Obviously, not all
humanists had the same skills and the same preparation and, for example, as
discussed in detail in other chapters of this work, Tartaglia is not able to fully
understand the reasoning of Archimedes and therefore modifies Archimedes’
figures considering them wrong.

The second very important factor is given by the Byzantine cultural school,
which, differently from the Western one, had remained active until the fall of
the Byzantine Empire, which occurred in 1453 with the fall of Constantinople.
One of the most important intellectuals of the 9th century Byzantium is Leo
the Mathematician or the Geometer (790-869). This erudite had all the skills
which will be found in the future humanist and, indeed, we due to him and
to his farsightedness, probably, the first spark of Humanism and Renaissance
in Europe. Leo the Mathematician commissioned the copy of many Hellenistic
scientific manuscripts and, among the others, of the works of Archimedes. At
least three manuscript containing the works of Archimedes were produced under
his responsibility, today known as codices A, B and C. When Byzantium was
sieged and conquered by the Crusaders in 1204, Leo’s library was dismembered
and a part of the manuscripts stored in it was brought to Europe. The presence
of all these Hellenistic works in Europe gave rise to a strong revival of interest
in science, and for the first time in a thousand years scientific progress started
again. The Renaissance had begun.

6 The postulations of Mechanics, forces and their
materializations

From now on we will focus on another materialization of mathematical concepts
which is still occurring in many scientific milieux. While armillary spheres are
not believed to be real anymore, there are too many contemporary scholars who
managed to persuade themselves about the reality of forces. These scholars talk
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about forces as if they were objects one can observe in real world: forces seem
to have, in somebody’s words, the same ontological reality as walls, boats, wind,
pulleys.

6.1 The recovery of ancient Hellenistic Mechanics: Mid-
dle Ages mechanicians

It has to be remarked that many historians talk about the “Renaissance of XII
century” as a period in which in Western Europe the Latin translation of Greek
and Arabic works, especially in Natural Science, Philosophy and Mathematics,
greatly changed the cultural standing of Latin-speaking culture. In this period,
and after it, we meet many erudites and scholars who tried to recover the lost
Hellenistic knowledge.

While we have some ancient sources about the Mechanics of material points,
we can only conjecture the existence of an Hellenistic Mechanics of deformable
bodies. The most meaningful hint indicating its existence can be found in
the works of Galileo Galilei [42]. Exactly as he tries to reconstruct Seleucus’
theory of tides, and as he tries to reconstruct the theory of planetary system
by Hipparchus, Galilei also tries to understand the theory of deformable beams:
though, we must say, without great success [42]. In fact, Galilei did not manage
to understand how bending stiffness of a beam depends on the geometry of
the beam cross-section: his deduction starts from a wrong conjecture about
the deformation field inside the section. By the way, the fact that there is an
evidence that Leonardo da Vinci (1452-1519) tried to understand the theory of
beam is another hint about the existence of an Hellenistic source in the subject,
as Leonardo is known to be a great estimator of Greek Science.

The difficult point that Galileo did not manage to fully understand con-
cerns the deduction of a theory of a 1-dimensional continuum (the simplest
being Euler-Bernoulli beam theory) from a more detailed 3-dimensional contin-
uum theory. In fact, the process of micro-macro identification has been fully
developed only when the variational postulations of Mechanics have been re-
covered [43–47]. Galileo did not conjecture the right linear dependence of the
contact force intensity on the distance from neutral axis in beam theory: clearly,
it is extremely useful, if one wants to develop generalized beam theories, to un-
derstand how the progenitor theory has been formulated [14,48–58].

The existence of more ancient (and sometimes partially lost) sources may
contribute to explain the reasons why in Mechanical sciences one observes very
often, especially when considering Middle Age texts, some oddities in the di-
achrony of Mechanics development. One observes more advanced texts which
are precedent to less advanced ones and to definitely primitive others. The
existence of linguistic and social barriers does not seem enough to explain the
mentioned observed evidence: we believe that some scholars could access to
sources that were very faithful to the original Hellenistic thought while others
had access to worse sources or, even, could not understand really the content of
such sources.
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The strangeness in the diachrony of the development of Mechanics leads
us to conjecture the following hypothesis: the distribution and accessibility of
the ancient Hellenistic Science texts, often available in a single copy, modu-
late the speed and readiness of the rebirth of scientific thought. With the fall
of the Western Roman Empire, the few remaining elements of unity in scien-
tific thought collapsed, and the enormous progresses made in the 4th and 3rd
centuries BC were relegated to the monasteries that owned the only medieval
libraries. And in the monastery libraries these texts were sometimes lost and
the genealogy of scholars, with a Maestro explaining to the pupils the content of
the ancient texts, was broken. The practically null scientific preparation of me-
dieval westerner scholars decreed the loss of many Greek scientific works. One
who does not understand what she/he reads prefers to believe that what she/he
is reading is, at least, useless and, therefore, unworthy of being transmitted
to posterity. Thus, unlike works of literature, philosophy, historiography and
other non-scientific disciplines, not only scientific texts were not copied, but of-
ten the very expensive parchment on which they were written was reused. This
is precisely what unfortunately happened to codex C of Archimedes’ works: the
parchment was scraped off to make space for prayers against the flu.

It is not surprising that one of the greatest intellectuals of this period was
Bede the Venerable (672-735)! The only significant aspect in the scientific sphere
of this period is that the habit of studying Geometry remained almost intact
and that Euclid’s Elements remained one of the essential texts even during the
Middle Ages: in fact, geometry was taught to all scholars. It seems that one
of the few copies of the Elements of Euclid was preserved to posterity by the
family Hohenstaufen and, in particular, by Frederick the Second. We can make
the following conjecture: it was only thanks to the education in abstract thought
provided by Geometry that a return to Science was possible in the Renaissance.
Or, at least, this return required less time than it would have been necessary if
Euclidean Geometry had not been taught during the Middle Ages.

Perhaps the clearest sign of the scientific regression of the Middle Ages is the
theory of the nine medieval heavens, which is directly induced by the complete
misunderstanding of the theory of the motion of the planets. At the beginning
of the previous section we showed the sad fate of a proto-scientific theory, the
one that was supposed to be at the basis of Nebra’s disc: with the demise of
the society that produced the theory and the birth of a non-scientific society,
the scientific content of an abstract theory is completely lost and subsequently
distorted into a religious belief.

After the small Renaissance of Frederick II Hohenstaufen there was a slow
rediscovery of the distinction between model and real object: the basis of this
slow process was the return to the study of Logic, which provided a structure for
the subsequent return to scientific thought. An important role in this rediscovery
process was played by William of of Occam (1285-1347), whose Summa logicae
(c. 1323) constitutes a kind of meta-theory necessary to formulate theories.
In fact, an important first step towards the rediscovery of scientific thought is
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represented by the so-called Occam’s razor6:

Pluralitas non est ponenda sine necessitate7

It was only after 1100 AD that Latin translations of textbooks on Logic devel-
oped in Arab cultural circles started to arrive in Christian Europe. In Arab
Science, in fact, we find the eminent scholar Avicenna (980-1037) that tried to
propose a proto-inductivist system of Logic which is alternative to the Aris-
totelian one. Avicenna’s Logic also influenced Western thought and we can
say that, in a certain sense, Avicenna can be considered one of the founders of
scientific inductivism, which will be discussed shortly below.

If we want to get an idea of how much the collapse of the Western Roman
Empire influenced the collapse of scientific thought, we can consider the appar-
ent anachronism observed in the cultural milieux of the capital of the Eastern
Roman Empire, Byzantium (i.e. Costantinople), where the cultural ferment that
had characterized Hellenistic circles survived for a few centuries. Byzantine in-
tellectuals, whose works would only be rediscovered later in Western Europe,
provided the first westerner humanists with a key for decoding Greek scien-
tific thought, and , in particular, Greek Mechanics. John Philoponus (490-570),
for example, proposed the concept of impetus, which seems strongly related
to the concept of inertia, about a thousand years before Galileo and Newton.
Moreover, Byzantium also represents a sort of reduced Alexandria, collecting
the knowledge of the time and organizing it for later dissemination. Among
the various examples of this Byzantine ferment, we cannot forget the already
mentioned Leo the Mathematician, promoter of the renaissance of mathemati-
cal studies and of the rediscovery of Archimedes’ scientific personality. Here, we
will limit ourselves to recall that it is to him that we owe the rescue and trans-
mission of many of Archimedes’ texts, which only reached our hands thanks
to the copies he commissioned. Several wars and an unfortunate Crusade that
diverted Christians from the liberation of the Holy Sepulchre to the sack of Con-
stantinople, which occurred in 1204, later, disseminated throughout Europe the
famous Archimedean codices A, B and C. Albeit he was living several centuries
before, Leo the Mathematician can be considered a true Renaissance man.

In fact, the role of the scientific ferment of Byzantium is crucial in the devel-
opment of the Italian Renaissance, albeit it would still need almost five hundred
years for westerner intellectuals to stop discussing about the sex of angels and
to devote themselves to problems of a less elevated nature, perhaps, but cer-
tainly more useful to the progress of humanity. On the path to the Renaissance,
we can at least mention some scholars who characterized the slow rediscovery
of mature scientific thought. Thomas Bradwardine (Doctor Profundus, floruit
1330) distinguished kinematics from dynamics, introduced the concept of in-
stantaneous velocity and discussed the law of falling bodies. Nicolas d’Oresme
(c. 1320/1325 - 1382), institutor of the Dauphin of France, studied the Universe

6Some modern scholars misunderstood Occam razor spirit and believed that it was forbid-
ding theories in which too many parameters appear: in this way they exclude, a priori, any pos-
sibility to model complex mechanical systems, as those studied, for instance, in [25,27,59–61].

7Plurality has not to be posed without necessity.
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with mathematical methods: in particular he formulated a Galilean invariance
principle and established the foundations of Analytical Geometry. Many oth-
ers would deserve to be cited: however, we simply want to stress here that we
know for sure that at least in one époque the main work of scholars consisted
in reading ancient books whose content was perceived as very profound albeit
resulting very obscure.

In fact, we believe to recognize in modern times the slow rediscovery of
ancient theories. Albeit this rediscovery occurs in restricted disciplinary sub-
groups of scholars, the features of the sociological process seem to be the same.
Of course, the fact that other contemporary groups had not lost the knowledge
which is being recovered for sure helps in the rediscovery endeavor. We believe
that in theoretical Continuum Mechanics the rediscovery of Lagrange-Piola pos-
tulation for generalized continua in the group of scholars following Truesdell
orthodoxy has been held by the existence of Landau textbook in Theoretical
Physics8.

6.2 Fundamental concepts and frequent misconceptions in
the field of Mechanics of materials

In the previous sections we dealt with the Mechanics of material points and its
applications to the description of the planetary motion, from now on we will
focus on the Mechanics of deformable bodies. However, we will base our analysis
on available sources, which are much more modern. It will be clear that the same
sociological phenomena involved in the transmission of knowledge observed in
the transmission of the Mechanics of material points through the centuries occur
also in the transmission of the Mechanics of deformable bodies. Our description
of historical development of the Mechanics of deformable bodies starts with the
works of Gabrio Piola (1794-1850) [2,3] and continues until contemporary times:
all sources are fully available.

Mechanics of deformable bodies studies how the equilibrium shapes of bodies
change because of their interactions with the external world. A given body is
assumed to be constituted, in every of its material points, by a specific material.
The current shape of a body is kinematically modeled, since the fundamental
work by Lagrange (1736-1813) [11], by means of a placement function. Each
material is mathematically modeled, in its range of elastic deformation, by the
corresponding deformation energy density, depending objectively on the gradi-
ent of placement. Further constitutive functions and kinematical descriptors
need to be introduced for modeling damage, plastic phenomena, etc.

In this context, it seems absolutely meaningless the expression natural ma-
terial. One may argue, in fact, that human activity did modify everything in
the world (think, as an example, about forests: almost all of them have their
present shape as the result of a human design). From an Engineering point
of view, we can only talk about materials that have a simple microstructure

8Richard Toupin admitted (personal communication) that, since his studies on Landau’s
lecture notes, he always believed that Mechanics had to be founded on variational principles,
notwithstanding what advocated by Truesdellians.
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(i.e. the more often used, up to now, in Engineering) and materials that have a
complex microstructure. We do not share the primitivistic belief that natural
is equivalent to simple, also because the definition of simplicity depends on the
particular historical period.

Every material which exists is natural. Of course, we may ask ourselves
if it is possible to find an existing material whose behavior can be described
by certain constitutive functions. It is, therefore, meaningful to establish some
physical admissibility criteria for logically conceivable constitutive functions. For
instance, by introducing constitutive functions for a material which allows some
deformative cycles that produce energy, one can get a mechanical system which
contradicts the Principle of conservation of energy. Clearly, such constitutive
functions would not be physically admissible. In [62], it is clearly stated that,
unlikely what believed by Truesdellian school, there are no elastic materials
which are not also hyperelastic. Truesdell wants to try that there are relation-
ships between stress and strain, in first gradient materials, which do not derive
from a principle of minimum of energy in a stable equilibrium configuration. He
wants to prove that a postulation based on the laws of balance of forces and
moments of forces is more general than a postulation based on the Principle of
Virtual Work. This effort, as we will discuss later, is vain as Gabrio Piola has
proven [2, 3, 59] that in every generalized theory of continua balance of forces
and moments of forces are necessary conditions for the validity of the Princi-
ple of Virtual Work, while there are generalized continua (for instance, second
gradient continua [20–23, 63–75]) for which the balance of forces and moments
of forces are not sufficient conditions to ensure the validity of the Principle of
Virtual Work. This principle seems to be the most fundamental one in Mechan-
ics. Therefore, the important question “what is a natural material?” can have
a simple answer: it is a material which may exist.

Therefore, the theory of metamaterials, if one wants to avoid ontological
paradoxes, cannot be defined as the theory of those materials which are not
natural, because otherwise we were dealing with non-existing materials. An-
other possibility is to define metamaterials as those materials whose mechanical
behavior is “exotic”. Now the obvious question arises: what is an exotic me-
chanical behavior? The answer could be: an exotic mechanical behavior is a
behavior which has not been yet observed. Of course, what is exotic in a certain
historical moment may become standard in another one. For instance, Lamé
(1795-1870), Navier (1785-1836), Cauchy (1789-1857), Poisson (1781-1840), all
considered a material with negative Poisson’s ratio as very exotic, and some
scholars of their époque did even believe that such a material was unphysical
(see [42, 76, 77]) and could not exist. Instead, auxetic metamaterials do exist
and play a relevant role in modern Engineering.

Also in the group of scholars in Mechanics, albeit this theory is the eldest
one in mathematical physics, some epistemological misconceptions are rather
common. The main among these misconceptions are:

i. confusing a mathematical model for a material with the physical material
itself (the same ontological misconception occurred to Eudoxus’ model);
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ii. believing that particular assumptions accepted for describing particular
phenomena are universally valid in every physical situation (the same
extreme platonistic or inductivistic misconception occurred in the school
of Truesdell, where it is believed that every existing material must be
modeled by first gradient continua, whose properties have been induced
with experiments);

iii. refusing the Principle of Occam Razor by constructing theories with a
series of ad hoc assumptions guided by experience (naive inductivism);

iv. believing that, simply manipulating a lot of data without any postulated
model, one can predict, maybe using large computers, the behavior of
physical systems (a modernistic form of naive inductivism, by means of
which many want to find new metamaterials by simply divining in a ran-
dom way metamaterial microstructures).

Concerning the confusion of a mathematical model postulated for a material
with the physical material itself (ontological misconception), we must say that
this is an old misconception that is very often met in history of Science. The
example about the models of planetary systems can be considered a prototypal
social phenomenon of this kind, because entire groups of scholars fall in this
mistake. Usually, we have heard in debates among experts of Continuum Me-
chanics the following wrong statement: Second gradient materials do not exist
because used materials in Engineering do not show their properties and standard
theoretical framework does not forecast them. In this statement, one can find
many layers of misunderstanding based on the following misconceptions:

(a) confusing first gradient continuum model (a mathematical model) with
existing materials in nature (a physical object);

(b) believing that the standard theoretical framework, which has been paradig-
matic in a school of Mechanics, includes every conceivable phenomena (this
misunderstanding is induced by naive inductivism);

(c) confusing the standard first gradient continuum model with all used ma-
terials in Engineering (that includes both presently used and all usable in
future physical objects);

(d) believing that, without having a theory describing it, one cannot use a ma-
terial even when such a material is in her/his hands , with the paradoxical
consequence that the material would not exist.

6.3 Mathematics designs the world: metamaterials, a change
of paradigm

The mathematical modeling of physical phenomena has shaped the world, notwith-
standing what practical people may believe. In fact, in Engineering Sciences the
following phenomenon occurs: a theory is formulated, it applies to a specific
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set of physical objects and physical situations, therefore in Engineering practice
only these objects and situations are considered for Engineering artifacts. The
fact that one does not have a model describing the behavior a physical system, or
some physical situations where a physical system can occur, or can be observed,
implies that physical systems and situations which are not described, have to be
carefully avoided in Engineering applications. For instance, if one has the capac-
ity of calculating the deformed shape of a body only when linearized equations
apply, then she/he limits the functioning regime of the artifacts which are built
according to the above-mentioned theory to small loads, small deformations and
small displacements.

Many engineers declare as a consequence that non-linear phenomena are not
of interest in Engineering, with a typical process of removal of the complexity.
In Engineering, non-linear phenomena are important; however, when they could
not be fully studied with available mathematical tools, then they are avoided.

Therefore, the limits of our mathematical capacities limit consequently our
predictive capacity and then our design capacity. For instance, sky-scrapers
could not be built until Structural Mechanics became sophisticated enough to
be able to design them. What can be mathematically conceived by means of
a model can be transformed into an Engineering artifact, while every data-
driven series of subsequent trials never produced any functioning Engineering
solution. Data-driven research has produced, maybe, some interesting technical
software solutions: however, when not guided by a clear modeling vision, it
could not predict novel phenomena and seems to be a modern version of naive
inductivism. On the other hand, in general, Engineering Sciences choose among
available and conceivable systems those which can be mathematically modeled
and limit its designing efforts to those for which mathematical predictions are
possible, given the available computing tools. In few situations, on the contrary,
Engineering Sciences attack a very difficult problem: that happens, for instance,
when, given a mathematical model, the goal is to find a physical system which
can be carefully described by that model.

On the basis of what we have discussed so far, it should be clear that a good
theory is useless without suitable computational tools. This concept, which
may perhaps seem trivial, assumes considerable importance if contextualized
in the historical perspective that we have presented in the previous sections.
The epistemological appreciation of the quality of a theory cannot prescind
from the availability of suitable computational tools that allow for its use in
getting predictions. A very detailed theory that cannot produce quantitative
predictions is useless. If one theoretically tries to take into account too many
phenomena, without considering the technical and computing difficulties which
are found when applying such a detailed theory, then he/she does not supply
the Engineering practice with a useful tool: being potentially capable to predict
everything leads to the incapacity to predict anything. The classical example is
given by the efforts of Navier [42] to develop a theory for predicting the defor-
mation of a beam by starting from a molecular model: such a detailed model
could not produce any prediction, due to calculation difficulties. Therefore,
Navier was obliged to homogenize his discrete equations, for obtaining a com-
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putable model: his averaging hypotheses led him to believe that Poisson’s ratio
for isotropic materials could only assume the value 0.3, which is clearly against
evidence.

Not only simplicity in the involved computing process must be required
to a modeling effort, but also conceptual simplicity in the model formulation,
that implies dramatic simplifications in the prediction process. Consider, as an
example for this last statement, the relationship between the predictive capacity
of Eudoxus’ model of homocentric spheres and that of Aristarchus’ heliocentric
model: as we have seen, Eudoxus was unable to explain correctly, even by greatly
increasing the number of spheres associated with a given planet, its retrograde
motion, while it could be explained, instead, extremely clearly by Aristarchus.

Quantitative predictive capacity is inescapable in mathematical modeling
and in its applications to Engineering Sciences [47, 55, 56, 78–83]: in fact, there
is no scientific designing without accurate quantitative prediction. Furthermore,
from a technological point of view, it is certainly easier to build a mechanism for
getting predictions by using a model where all planets travel more regular orbits
around the Sun, than a model in which the planets move seemingly randomly
in the sky, traveling very irregular orbits, although the latter model, being
geocentric, seems more faithful to observational reality.

In general, a model producing some theoretically correct or physically intu-
itive equations that cannot be efficiently solved is technologically (and scientif-
ically!) of little significance.

A similar example is provided by what happens much later, when the Coper-
nican system replaced the Ptolemaic system. Behind the process of substitut-
ing one model for another there is a technical consideration: predictions are
obtained via computations and model development is constrained by available
computational tools. The Copernican system did not give much more accu-
rate predictions than Ptolemaic system. In fact, by adding a suitable number
of epicycles, as rigorously proven by Gallavotti [41], one can approximate the
apparent motion of planets as seen from the Earth as accurately as possible.
Moreover, the kinematics of both systems are based similarly on the principle of
the composition of circular motions. But the Copernican system is enormously
simpler conceptually and allows for less laborious calculations, as Cicero did ob-
serve when describing Archimedes’ planetarium mechanism. Technological ca-
pacities, in a sense, introduce a hierarchical ordering in the set of models: those
models, for which simpler computing methods are available, become preferable.

We believe that both Eudoxus and Aristarchus did have falsificationist points
of view when they formulated their models and that the debate inside Hellenistic
Science about their competing models did involve only the models predictivity
capacity. It was only after the decline of Hellenistic Science that models started
to be confused with reality and that true models were opposed to false models:
the loss of epistemological consciousness led scientists towards a vain search for
ultimate truth. Therefore, after many centuries in which scholars were looking
for ultimate truth and believed that such truth could be attained, the contrapo-
sition between geocentric and heliocentric models developed the characteristics
of a religion war. Instead of debating about the predictive capacity of one model
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as compared with the other, the scholarly debate was involved in scientifically
irrelevant questions concerning the role of religion, ethics and vision of life in
Science. On the contrary, we believe that the true debate between scholars
was not about the ultimate truth of geocentrism or heliocentrism but about the
real aim of scientific research: is Science looking for ultimate truth (assuming
that such a truth can be established once forever) or is Science formulating one
after the other a series of conjectures to be tested with experimental evidence
and possibly changed when such evidence requires it? Paradoxically, Cardinal
Bellarmino (1542-1621), whose intention was to reaffirm that only theology had
the capacity to reach ultimate truths, following the orthodoxy of St. Thomas
Aquinas (1225-1274) and St. Augustine of Hippo (354-430), tried to get from
Galileo a simple falsificationist statement about heliocentrism, while Galileo re-
mained in an inductivist position, albeit formally changing his position in order
to avoid to be condemned to be burned at the stake.

In a sense, a contemporary version of the debate involving geocentrism and
heliocentrism is represented by the debate between the supporters of Cauchy
postulation and d’Alembert postulation for the foundations of Mechanics. The
Truesdellian supporters of Cauchy postulation believe that it is an ultimate and
experimentally proven truth, which cannot but be improved by adding some
epicycles, i.e. small corrections. Their attitude blocked the growth of gener-
alized models in Continuum Mechanics. Another important circumstance to
be taken into account, both when describing the paradigmatic change between
geocentric and heliocentric models or between Cauchy continua and General-
ized continua, is the development and improvement of computing tools that
occurred during the change. While in Hellenistic times the only computing
tools were based on a geometric understanding of the concept of real numbers,
so producing mechanical computing devices like the Antikythera mechanism or
the Archimedean planetarium, after the Renaissance of Science, first Coperni-
cus rediscovered ancient heliocentrism. Subsequently Kepler could exploit the
method of calculations based on Napier (1550-1617) tables of logarithms and
finally Newton, by using Cartesian geometry, could get a prediction of the plan-
etary motions without computing mechanisms. Therefore, it seems that, while
being initially blocked in a inductivist epistemological view point, modern Sci-
ence could improve its understanding of the planetary phenomenology, when
compared with Hellenistic Science, only because the development of modern
computation tools, based on algebra.

Coming back to Continuum Mechanics, we limit ourselves, here, to describe
some fundamental points in the process that led to the introduction of Gener-
alized Continuum Mechanics [16,17,84–92].

As we will see, Gabrio Piola introduced in 1848 the generalized continuum
model based on the use of deformation energies depending on the n−th gradi-
ents of displacement, being aware of the conjectural nature of such mathematical
models [33]. However, Cauchy and his followers did try to formulate the ulti-
mate continuum model, based on induced true properties of matter, at macro-
scopic level. It is paradigmatic, in this context, the unconditional acceptance by
Cauchy and his followers of the so-called Cauchy postulate, stating that contact

50



forces, inside continua, can be only forces per unit area which, moreover, depend
only on the normal to Cauchy cuts. Albeit Piola was well aware of the limits of
this conjecture, whose applicability is limited only to a particular class of ma-
terials, and albeit Piola himself wrote clearly that Cauchy postulate had to be
regarded as a constitutive equation, in a large group of scholars Cauchy postu-
late has been accepted as a religious ultimate truth that cannot be doubted. It is
remarkable that Gurtin, who had started from an orthodox Cauchy-Truesdellian
viewpoint, in his subsequent papers [93, 94] changed his fundamental postula-
tion approach and, albeit ignoring Lagrange, attributes, with a typical mod-
ernist attitude, to an explicit Lagrangian follower (i.e. Toupin) the choice of
what seems to be the most appropriate postulation of Mechanics. Piola’s works
were reappreciated only at the end of the 20th century, while his models had
been rediscovered already 50 years before and had became the object of in-depth
study in view of their potential technological application [20–24, 63, 64]. What
has changed in the century and half that separates Piola’s pioneering work from
his (slow) rediscovery? Why did the Continuum Mechanics of the Cauchy school
ignore (and in part still tries to ignore) Piola’s results for over a century?

In Cauchy’s version of Continuum Mechanics a number of ad hoc limitations
are inserted, including the fact that the deformation energy of a continuum
medium can only depend objectively on the first gradient of the displacement
field. A priori, nothing would limit a dependence on higher order gradients, but
the simplest choice, consistent with the phenomenology disclosed by Cauchy
continuum model, is to limit oneself to the first gradient of the displacement.
Piola, as we have said, introduces, for a purely logical need, the higher dis-
placement gradients in the calculation of the deformation energy, and argues
to characterize those microstructures for which homogenized models must be of
this more general kind. Unfortunately, the differential geometric tools available
to Piola did not allow him to characterize internal contact forces in the case
of second and higher gradient continua: instead, he did manage to do so in
the case of first gradient continua. It is not a coincidence that exactly when
Piola succeeded in finding a representation for contact forces in first gradient
continua, Cauchy (who probably met Piola in Italy during his exile following
French July Revolution of 1830) developed his postulation scheme based on
balance of forces and balance of moment of forces. It is only after more than
a century that Paul Germain showed, in his fundamental work [33], which is
the structure of contact forces in second gradient continua, by remarking that
so-called Cauchy postulate is not valid for these continua and that edge con-
tact forces may arise (see also [71, 72, 95]). Moreover, in [43, 96–98] it is proven
that models where the second gradient of displacement acquires a non-negligible
role, at macroscopic level, are obtained by homogenization starting from a mi-
crostructure, or architecture, at a lower scale in a continuum medium where
high contrasts of stiffnesses are present. We believe that Piola had guessed this
result: see [2, 3]. Therefore, in order to become able to evaluate and reveal
experimentally the effects of the presence of the second gradient of the displace-
ment field, it is necessary to have a technology which is capable of producing
a microstructured material [43,44,99–103] and, above all, a material whose mi-
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crostructure shows the suitable highly contrasted stiffness fields, so that, at the
macroscopic level, the terms used by Piola and Germain in the deformation
energy do appear (examples in which the required technology has successfully
produced such microstructured materials can be found in [46,104–106]). This is
a very clear example of how the limited technological capacity of an epoch can
indeed block also its scientific development. As long as the lack of technological
capacity does not reach a level where the results introduced in the new theories
can be tested, the new theories will remain blocked, ignored and, definitely,
unusable. The absurdity of contemporary situation lies in the fact that despite
the technological ability to produce materials whose behavior is described by
Piola’s theory (and cannot be described in the framework of Cauchy models),
there are still scholars who are obstinate in denying its usefulness.

The mathematical challenge that researchers in the field of Continuum Me-
chanics face today, therefore, is to design metamaterials that can be described
within the framework of a generalized theory [86,87,90,107–109]. These materi-
als, as we shall see, are conceived in order to possess mechanical properties that
are significantly more performing than those of the commonly called natural
materials.

Therefore, the fundamental problem in modern theory of metamaterials con-
sists in the problem of synthesis of microstructures producing a specific de-
sired macro-behavior [45, 69, 96, 110–112]. In fact, the modern challenge in
the theory of metamaterials consists in finding that microstructure, or that
micro-architecture, which, at the macroscopic level, produces a specifically re-
quired mechanical behavior. In this context, the most difficult problem to face
from a mathematical point of view is to connect micro-structures and macro-
behaviors. So, given a macroscopic theory (appropriate action functionals and
consequent stationary conditions) one wants to find an algorithm to calculate
the microstructure that, once homogenized, at the macroscopic level is described
by the chosen macroscopic model [28, 113–118]. In this context it is important
to remark that a major change in the research tools has been induced by the
use of powerful computers to find suitable motions for minimizing postulated
action functionals: in fact, especially in non-linear regimes, it is simply incon-
ceivable to find closed form solutions and therefore only by means of suitably
conceived algorithms it is possible to design and to predict the behavior of novel
metamaterials [80,119–124].

The basic ideas in the field of the synthesis of metamaterials may be borrowed
from the ancient theory of synthesis of analog circuits. In this theory, it was
possible to prove that every passive linear n-port element is algorithmically
synthesized using inductors, capacitors, resistors and transformers [125–127].
In fact, it has been proven that, given the desired passive impedance, one can
build a graph and can find for each branch of the graph a suitable circuital
element such that the resulting discrete circuit has the chosen impedance.

The classical theory by Kron and McNeal [125,128] allows us, given quadratic
Lagrangian and Rayleigh’s potentials, to algorithmically determine the graph
structure of the searched electric circuit and its elements synthesizing the given
linear n-port element. This latter is mathematically characterized by its La-
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grangian and Rayleigh’s potentials. Therefore, at least in the theory of circuits,
by starting from a finite number of basic microstructures and reproducing them
at different length-scales, it is possible to devise a most general microstruc-
ture. The big challenge, now, consists in conjecturing that this method can be
also applied to the synthesis of non-linear mechanical (and multiphysics) sys-
tems [126]. Some papers [129–132] can be referred to for well understanding the
fundamental role of the synthesis process in metamaterial theory.

It has to be remarked that the theory of analog circuits has been partially lost
and generally forgotten. The reason is that in the early ’60s digital computing
methods became dominant and analog computers were considered obsolete. As
a consequence, it is becoming more and more difficult to find the sources in the
theory of synthesis of analog circuits and a sudden change of paradigm occurred
also in the textbooks of Mechanics and, in particular, of Structural Mechanics.
In fact, many textbooks in Structural Mechanics in the ’50s were full of schemes
of analog circuits, considered very important for practical applications. One
could have believed, by consulting such textbooks, that a structural engineer
could not become a skilled professional without knowing the theory of circuits.
It is ironic that after few decades the great majority of civil engineers do ignore
even the existence of inductors and capacitors, not to mention transformers.
This sociological phenomenon, that occurred in an époque when books are not
easily lost and when a large number of scholars are active, proves three important
theses:

i. loss of knowledge is a sociological process, which is always active in every
group of scholars and in every society;

ii. in Science every knowledge may be useful in every other research field;

iii. there is no such thing as obsolete knowledge!

6.4 The Principle of Virtual Work and its correct appli-
cation produces (generalized) Continuum Mechanics

Let us now proceed to examine in greater detail the distortion of sources and
modification of basic principles that occurred in Continuum Mechanics. Unlike
the conjectural study we have made of the development of planetary models
in Hellenistic Science, in the case of Continuum Mechanics all modern (since
d’Alembert Traité de dynamique, 1743 [133]) sources are available and there-
fore the reconstruction that we present here is not conjectural. However, in the
evaluation of modern sources, we still have to consider a problem that may be
considered logically absurd, and that yet, unfortunately, is having, also now,
a considerable weight in the development of Continuum Mechanics: some fun-
damental sources in this field are not written in English (e.g. they are written
instead in French and Italian) and, as a consequence, some scholars believe to
be allowed to ignore them. This point can be fully developed when one details
the study of Gabrio Piola’s contribution to Continuum Mechanics.
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Continuum Mechanics has been based by d’Alembert on the Principle of
Virtual Work only. This principle allows for the calculation of the equations
of equilibrium of a continuum and it is easily connected to the Principle of the
Minimum Potential Energy for a stable equilibrium. As we will see, starting from
Cauchy, Navier and Poisson, a very strong current of thought has been developed
which has, in fact, replaced this fundamental principle with the independent
postulation of the balance of forces and of the moments of forces, introducing
some auxiliary concepts such as forces and attributing to them a fundamental
role in Mechanics and in the phenomenology that it aims to describe. One
must, however, agree on the fact that, especially when the physical system
under examination is very complex, the Principle of Virtual Work is not only
easier to apply, but it is also applicable when the balances of forces and moments
of forces are not sufficient to characterize equilibrium.

We want to stress, in this context, that it is not by chance that mechanical
systems, of interest in Engineering Sciences, were first studied through the ap-
plication of this principle, introduced by Archytas of Tarentum in his Mechanica
Problemata. While we do not know how Archytas had formulated the Principle
of Virtual Work, it is evident that in his opus he uses it to study problems of
applicative relevance such as the functioning of machines and levers (which are
sometimes still studied in middle schools based on this principle, even before
the concept of force itself is introduced).

An interesting problem related to the Mechanica Problemata is given by the
following question: should it be considered as an exercise book whose reading
had to be combined with a more theoretical work? Could the theoretical work
have been lost? To give a definite answer to this question is not possible:
however, we can make some conjectures, by considering the analogy with other
pre-Hellenistic authors. It is, in fact, now widely accepted that, for instance,
the production of Plato (c. 428/427-348/347) was of a twofold nature: one part
of the works, those dedicated to his pupils, was of an extremely technical nature
and specific for experts, with a level of complexity equal to the surviving works
of Aristotle; a second part of Plato’s works was of a rather popular nature.
The latter were written in the form of dialogues and were thus more accessible
to the general public. For what concerns Plato, the most technically difficult
works were lost and only the popularizing ones were transmitted to us, while the
opposite happened to Aristotle (384-322 BC). We remark here that one finds
an enormous body of critical works commenting philosophical, historical and
literary ancient production, while such an analysis is not dedicated to ancient
scientific texts, so that the reasons for this kind of selection of transmitted
scientific works were not deeply investigated. In any case, it is a reasonable
conjecture to assume that Archytas may have written a simplified and applied
version (i.e. the Mechanica Problemata) of a more complex work, in which, for
instance, the Principle of Virtual Work was formulated in a more explicit way.
If this conjecture is true (remember that there are still many texts of Hellenistic
Science that are preserved in libraries and remain forgotten because today it is
rare to find a scholar who knows mathematics, Greek, Armenian, etc.), it would
imply that the presumably lost text of Archytas was extremely more abstract
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than the Mechanica Problemata and, therefore, that constituted a masterpiece
in the field of Mechanics. Its importance could consist in the clarification of the
mental process that led the first scholars in Mechanics to find its conceptual
bases.

However, we cannot exclude the other possibility to be considered about
Archytas’ text: that it was an autonomous and self-contained work. This would
support a different hypothesis of historical and epistemological relevance: per-
haps, in the early phases of Mechanics, theory and exercises were mixed up in a
single treatise. Perhaps the approach to complex problems was deliberately sim-
plified by the proposal of a series of applied examples. This approach is the one
preferred by some modern textbooks in Physics [134], based on the idea that a
student will understand general concepts by inducing them on the basis of many
examples. This approach is, instead, considered not efficient by those who study
Mechanics from a deductive postulation point of view [20–22,24,63–66,68]. The
reader will understand that knowing how the Principle of Virtual Work was first
formulated could be very important to settle this controversy. In any case, the
text of the Mechanica Problemata that has come down to us is already rather
abstract. In some places it seems to refer to concepts already known to the
reader, just as one often reads in a modern text of solved exercises! For this rea-
son we believe that the possibility of a second work that dealt with a complete
and rigorous treatment of the theory behind the practical examples cannot be
excluded.

We now want to discuss, in an obviously simplified and concise way, some
aspects of fundamental importance in the formulation of the Principle of Virtual
Work. A first aspect to underline lies in the fact that, as we also mentioned
before, it is well-known and universally accepted, at least since the works of
Archimedes, that to a stable equilibrium configuration corresponds a minimum
of the total energy (Total Potential Energy Minimum Principle). It can be also
demonstrated, using some mathematical reasonings, that the Total Potential
Energy Minimum Principle implies a stationary condition (the first variation of
Total Potential Energy is zero in its minima) that, on its turn, can be regarded
as a particular form of the Principle of Virtual Work. Therefore, the validity
of this form of the Principle of Virtual Work can be deduced as a consequence
of the Total Potential Energy Minimum Principle. The Total Energy Minimum
Principle can be formulated as follows:

Total Potential Energy Minimum Principle: The stable equi-
librium configurations are the only ones for which the total potential
energy has a local minimum.

A necessary condition for stable equilibrium can be formulated if the total po-
tential energy is differentiable with respect to the variation of configuration.

Necessary condition for equilibrium: Starting from a stable
equilibrium configuration, the first variation of the total energy cor-
responding to each virtual displacement is zero.
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A virtual displacement is simply a small variation (more precisely, an infinites-
imal one) of the body’s configuration (but respectful of internal constraints
and of kinematic boundary conditions) to be added to the tentative minimum
energy configuration in the verification process aiming that such tentative min-
imum energy configuration is effectively of equilibrium. This formulation re-
quires the deduction of a number of non-trivial mathematical results, which
make the treatment of Mechanics by means of variational principles complex,
whose esoteric content is reserved to scholars having a deep knowledge of com-
plex mathematical theories. It is very presumable that this is the fundamental
reason why some scholars decide to ignore completely this approach to Me-
chanics and turn, instead, to the simpler, but somehow incomplete (and surely
unfit for the discovery of novel models) formulation based on the postulation
of balance of forces and moments of forces. To give an idea of the mathemat-
ical difficulties implied by the postulation of Mechanics based on variational
principles [45, 61, 120, 135–137], one must think that there is a whole branch
of mathematics, the Calculus of Variations, which was developed to supply the
needed conceptual tools to Mechanicians. It is suggestive to think that Calculus
of Variations has deep roots in Hellenistic Science, as witnessed by the fact that
isoperimetric problems are traditionally called also Dido’s problems. As it is re-
ported by [138], our conjecture is not too much daring. In fact, in the Synagoge
by Pappus of Alexandria (c. 290 - c. 350 AD), as well as in the commentary
by Theon of Alexandria (c. 335 - c. 405 AD) on Ptolemy, which both were
transmitted to us, Zenodorus (c. 200 - c 140 BC) treated isoperimetric plane
problems in a treatise which was lost. It is remarkable that Dido’s problem was
formulated and solved by Zenodorus, albeit we do not now the methods that he
had used.

We can make a list of the main mathematical difficulties to be faced when
deciding to resort to a formulation of Mechanics based on the Total Potential
Energy Minimum Principle; indeed to this aim it is necessary:

i. to introduce the concept of infinitesimal variation of a configuration (oth-
erwise called small displacement);

ii. to introduce the concept of work done by an interaction on a virtual dis-
placement and the concept of virtual displacement itself;

iii. to define the first variation of a functional in terms of Taylor series de-
velopments (which, despite the simplicity and elegance of this powerful
mathematical tool, appears to be indigestible to many scholars).

As mentioned above, the Total Potential Energy Minimum Principle implies
the more general Principle of the Virtual Work, which can be also formulated in a
simpler way from a mathematical point of view. Probably, in order to be able to
understand in detail the efficacy of the variational approach to Mechanics, and,
at the same time, in order not to be discouraged by the mentioned difficulties, it
can be useful to refer directly to the formulation of the Principle of the Virtual
Work given by d’Alembert, who was the first, in the modern age, to found
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Mechanics on it. In fact, in his treatise of 1743, d’Alembert formulated the
Principle of Virtual Work in a more modern language with respect to that found
in Archytas’ Mechanica Problemata. d’Alembert’s formulation generalized the
previous formulation of stationary condition implied by Total Potential Energy
Minimum Principle, and, because of its greater generality, it allows for a better
focus on the key points of the variational approach:

Principle of Virtual Work (d’Alembert, 1743): A system is in
equilibrium in a given configuration when the total work done by all
interactions involving the system is zero for each virtual displacement
from that configuration.

From a correct application of the Principle of Virtual Work, one can ob-
tain the equations of equilibrium of a mechanical system, also known as its
Euler-Lagrange equations. It is to Lagrange that we owe the application of
this principle to a wider class of mechanical systems. In the last version of his
Mécanique Analytique, Lagrange formulated the Principle of Virtual Work for
a continuum system and applied it to the study of the motion of fluids. In his
nomenclature, Lagrange called power what will later be called force, and mo-
mentum what we know today as power. He claimed to prefer this nomenclature
as it had been previously chosen by Galileo Galilei: we agree with his motiva-
tions, and we regret that unfortunately his suggestion has not been accepted
in mechanical literature. Some, rather naively, from this different nomencla-
ture used for the mathematical objects used by Lagrange, deduce that Lagrange
did not understand the problem he wass formulating. Once again, we observe
this modernist attitude that wants to judge the past by current conventions.
Quoting Shakespeare9:

“What’s in a name? That which we call a rose
By any other name would smell as sweet”.

To show how the ideas of d’Alembert were elaborated and improved by
Lagrange, it is very useful, finally, to introduce the formulation given by La-
grange10:

Principle of Virtual Velocities (Lagrange): If a system con-
stituted by bodies or points, each of which is pushed by any power,
is in equilibrium and if a small movement is given to this system,
by virtue of which each point will cover an infinitesimally small dis-
tance that will express its virtual velocity, then the sum of the powers
multiplied by the distance covered by the points where it is applied
along the line of application of this same power will be equal to zero,
if we consider as positive the small distances covered in the same
direction of the power and as negative the distances covered in the
opposite direction.

9W. Shakespeare, Romeo and Juliet, Act II, Scene I.
10The translation has been performed by the authors of this Chapter from the Lagrange’s

original text.

57



Although a modern formulation of this principle usually includes the use of
concepts from functional analysis, tensor algebra and mathematical analysis,
one has to agree on these points:

i. Lagrange’s formulation seems so general that it includes all the versions
that have been formulated so far;

ii. this formulation uses the minimum possible mathematical concepts (i.e.
only concepts from Euclidean geometry) that are sufficient to rigorously
express the principle in its full generality.

We can, therefore, conclude that it has been correct to call, in the past, mathe-
matical physicists with the attribute of Geometricians, as it was the geometrical
language that allowed for the first formulation of mechanical theories.

The life-long work by Piola consisted in completing the work that Lagrange
had left to be completed after his death. Piola, also formulating a micro-macro
identification procedure, in 1848 published a fundamental work [33] where:

i. he deduced a macroscopic model describing the overall behavior of a sys-
tem of a large number of interacting particles, obtaining also macroscopic
constitutive equations in terms of microscopic geometric and mechanical
properties;

ii. he introduced nth-gradient continua, determining the conditions for which
they must be used in order to describe correctly the behavior of micro-
scopically complex mechanical systems;

iii. he determined the structure of contact forces for first gradient continua,
as studied by Cauchy, and discussed in his own work of 1822.

It has to be remarked that until 2012 [95] the determination of the correct form
for contact interactions in nth-gradient continua was not obtained. Piola did
not have at his disposal the mathematical tools from differential geometry, that
were developed also, together with Gauss and Riemann, by the Italian school of
Piola’s scientific lineage, i.e. Francesco Brioschi (1824-1897), Eugenio Beltrami
(1835-1900), Gregorio Ricci Curbastro (1853-1925) and Tullio Levi-Civita (1873-
1941). However, Piola could prove, for a generic nth-gradient continuum, the
following theorem, starting from the Principle of Virtual Velocities:

Balance of forces and moment of forces (Piola): if a de-
formable nth-gradient continuum body is in an equilibrium configu-
ration, then the resultant and resultant moment of applied external
forces vanish.

Piola, following d’Alembert and Lagrange, defines resultant forces and resultant
moment of forces as the vectors needed to represent the work of a system of
forces in a rigid virtual motion. Therefore, these concepts are mathematical
abstract constructions that can be used to calculate equilibrium configurations.
Resultant forces and resultant moment of forces are mathematically defined in
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order to allow for the characterization of equilibrium configurations and do not
correspond to any directly measurable physical quantity. Remark that, while
for first gradient continua Cauchy has proven that this necessary condition is
also sufficient, in general, for a subclass of second gradient continua [23] and
for all nth-gradient continua with n ≥ 3 balance of forces and moment of forces
select a set of configurations greater than the set of equilibrium configurations.
In fact, in higher order continua contact interactions are not limited to forces
and couples.

One can assume that the equilibrium necessary conditions, given by resul-
tant forces balance and resultant moment of forces balance, represent all Euler-
Lagrange conditions of the Total Potential Energy functional for first-gradient
continua only, and as such, in this case, directly provide the governing equations
in strong form; it is clear, however, that in a numerical approximation setting it
is always convenient to reformulate such conditions in weak form, and for this
purpose the use of a variational principle is preferable because it lends itself
directly to providing the governing equations in an easily discretizable form.

6.5 Confusing a necessary condition with the fundamental
Principle: the materialization of forces, i.e. auxiliary
mathematical concepts

As we have seen in the previous section, forces, and, in particular, contact forces,
are a mathematical artifice introduced in order to deduce some consequences of
the fundamental postulate of Mechanics, the Principle of Virtual Work, and, as
such, they are of no use outside this context. Contact forces are, then, a math-
ematical invention, developed in the centuries to find some logical consequences
of the above-mentioned Principle. The genesis of the concept of force and all
the misunderstandings to which it was subject deserve an in-depth analysis,
which is beyond the scope of this work (but see [139]). It is remarkable, how-
ever, that Archimedes did introduce in his On the floating bodies the concept
of pressure and that the first textbooks in modern Mechanics (those, already
cited, by d’Alembert and Lagrange) did apply the Principle of Virtual Work to
deduce the equations of equilibrium and motion of perfect fluids.

The main idea that leads to the definition of resultant forces and resultant
moment of forces can be traced back, in modern Continuum Mechanics liter-
ature, at least to Gabrio Piola. It is unfortunate that the complete works by
Euler had not been published in an English translation until the second half of
the twentieth century. The enormous corpus of the works by Euler, all written
in Latin, may include some applications of the Principle of Virtual Work, or
of the Total Potential Energy Minimum Principle, leading to the definition of
resultant forces and resultant moments of forces, as the tradition in Mechani-
cal literature attributes to Euler the introduction of these necessary conditions
for equilibrium. We could not find any textbook clarifying this point and the
original works by Euler are not easily accessible: however, see [42], Euler did
deduce the equations of Elastica by using the Total Potential Energy Minimum

59



Principle. It is remarkable that Truesdell wrote more than 400 pages in the
series of Springer volumes gathering Euler Opus, without translating a single
word of Euler’s text.11

In order to characterize equilibrium configurations by using the Principle
of Virtual Work, one can consider for every involved body those rigid virtual
displacements that are allowed by applied constraints. In absence of applied
constraints, therefore when we have a free body, the work done by externally
applied loads on rigid displacements can be represented as linear functionals
on the pair of vectors composed by translation and rotation velocities. By
Riesz (1880-1956) representation theorem, these linear functionals are uniquely
determined by two vectors when using inner product for calculating the rep-
resented functionals images. The vector whose inner product with translation
virtual velocity gives the virtual work done is called resultant force of the applied
loads, while the corresponding vector giving the virtual work in correspondence
with virtual angular velocity is called resultant moment of forces of the applied
loads. It is therefore clear that the concept of force is generated while developing
a mathematical theory to be used for deducing logical consequences from the
basic principles of Mechanics. Albeit it is of great importance, it does not corre-
spond to any directly measurable physical quantity and is a pure superstructure
of use in mathematical reasonings: exactly as it happened for Eudoxus’ spheres
or Apollonius’ epicycles. When a free body is in equilibrium, then the total
work done on rigid displacements from equilibrium configurations must vanish,
and, as a consequence, the resultant force and resultant moment of forces must
vanish. It has to be remarked that also when the body is deformable such
necessary conditions must be verified, whatever may be said by some scholars
of Truesdellian orthodoxy. Moreover, by introducing Lagrange multipliers, one
can add to active forces also reactive forces, in presence of constraints. Includ-
ing reacting forces in the set of applied external loads, one gets the validity of
fundamental balance equations for Mechanics (i.e. resultant forces equal to zero
and resultant moment of forces equal to zero) also in the case of deformable
constrained bodies.

When trying to calculate equilibrium configurations using analytical meth-
ods, fundamental balance equations are the most useful tool to be used in cal-
culations. However, when using numerical computational tools one must resort
either to the Total Potential Energy Minimum Principle or to the Principle of
Virtual Work.

The most recent materialization of abstract mathematical concept can be
observed when, within the framework of Truesdell’s presentation of Continuum
Mechanics, one finds statements attributing to the concept of forces a physical
reality and when one reads that the laws of balance of forces and moments of
forces are based on physical evidence. It is as if one could measure a functional
defined in a Sobolev space and could get information about it based on physical
intuitions.

11Leonhardi Euleri Opera Omnia: Opera mechanica et astronomica. The rational mechanics
of flexible or elastic bodies, 1638-1788 : introduction to Leonhardi Euleri opera omnia, vol. X
et XI seriei secundae / C. Truesdell, Volume 10. Springer, Zurich, 1960.
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Just as Eudoxus’ model made sense and clearly served a certain purpose even
though it had no pretension of being a pictorial description of physical reality,
so the concept of force has a very precise reason for existing in the context of the
theory where it was formulated: d’Alembert, Lagrange, Piola used this purely
mathematical object to formulate a theorem by means of which the equilibrium
equations of a mechanical system could be derived. The aim of this formulation
was in fact to obtain a way of characterizing equilibrium, similarly as Eudoxus’
aim was to find a way to describe the motions of the planets, including retrograde
motions. When, however, the scientific epistemological consciousness decays,
then there are those extemporary scholars who fail to understand the difference
between models and reality, and, in the total resulting confusion, it happens that
objects of secondary importance, such as the homocentric spheres for Eudoxus
or the forces for Continuum Mechanics, become preponderant.

The confusion becomes total when Cauchy tries to deduce the equilibrium
conditions in Continuum Mechanics by postulating the existence of the stress
vector, in order to calculate resultant forces and moments of forces on sub-bodies
of deformable bodies. Cauchy devised the ideal Cauchy’s cut and corresponding
contact interactions: he supposed to remove a part of a body and to replace this
part with an equivalent system of forces, which are able to maintain the body in
equilibrium. In fact, there may be a number of mathematical abstract concepts,
in a model, which have the sole purpose of bringing together the various observ-
able pieces of a theory, but having no relevance from an observational point of
view. But the quantities at the basis of the model must be measurable: in the
case of Mechanics, these measurable quantities are the kinematical ones. One
remarks here that it is impossible to imagine an experiment able to measure
the Cauchy’s stress vector. Cauchy started from some ad hoc assumptions, like
so-called Cauchy postulate, which is not a postulate, with the same logical status
as the Principle of Virtual Work, but, on the contrary, a constitutive assump-
tion [71,72,95,137,140–144]. Then he continued by postulating balance of forces
and of moments of forces, proving the existence of a stress tensor by means of
which he wrote a particular form of the Principle of Virtual Work that, for him,
became a theorem. Therefore, in Truesdellian orthodoxy one finds oxymora like:
the theorem of the Principle of Virtual Work. For continua whose deformation
energy depends only on the first gradient of displacement, one could believe that
d’Alembertian postulation of Cauchy postulation are two equivalent points of
view. However, if one lists the higher number of basic assumptions needed to
develop Cauchy postulations, when compared with those used in d’Alembertian
one, then he will conclude, by using Occam razor, that the latter is much prefer-
able. As expected, the Principle of Virtual Work postulation allows for easier
generalization of the proposed models [71,72,95,140], while keeping the Cauchy
postulation renders nearly impossible any generalization if not adding a long
series of ad hoc further assumptions [145–150]. It is clear that, if one has postu-
lated a Principle of Virtual Work and finds a series of Euler-Lagrange conditions
that are logical consequence of the postulated principle, she/he will manage to
repostulate the same mechanical model based on a list of balance laws, one
for each independent equation obtained from the original Principle of Virtual
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Work. It has to be investigated if Cauchy was aware in 1823 of the results by
Piola (made public in 1822) about the nature of contact forces in first gradient
continua.

At this point, some questions arise spontaneously: what is a force and how
to measure it? An extremely common answer, but accepted by many with a
total lack of critical spirit, is to say that a force is what is measured using a
dynamometer. However, even the most naive scholar knows that a dynamometer
measures displacements and that the value of the measured force provided by
such an instrument is obtained by applying theoretical concepts, i.e. Hooke’s
law. And this, after all, simply shows that force, albeit being a very important
concept, is really a merely theoretical artifice, without any direct observational
meaning. No direct experimental evidence concerns forces.

In conclusion, we can say that Cauchy, Navier and Poisson decided to pos-
tulate (instead of the mathematically too difficult Principle of Virtual Work)
the balance of force and moments of forces, at the cost of losing the possibility
of generalizing their model: contrarily to what done by Piola, they thus only
considered continua whose deformation energy depends on the first gradient of
displacement. To make their postulate convincing, they then materialized the
concept of force by trying to convince themselves that this mathematical con-
cept (vector used to express a variation of energy) is intuitive and physically
understandable. We believe that it is absurd that this materialization process12
occurred in the modern age and we absolutely agree with d’Alembert (1743):

I have completely banned the forces associated with the body in mo-
tion, dark and metaphysical beings, capable of doing nothing more
than spreading darkness over a science that is clear in itself.

7 Conclusive remarks
In this chapter we have started a discussion about some aspects of the sociologi-
cal phenomena involved in transmission and re-elaboration of scientific theories.
The study of the modalities of transmission of an original theory and the involved
transformation induced in the transmission process is crucial. In this context,
the most problematic feature is represented by the determination of the first or
original sources of scientific theories. We are not interested in a personalistic
research of the first genius who formulated a certain theory: the formulation
of scientific models is, indeed, a choral endeavor where single contributions are
like small bricks in a large building. Certainly, there are lucky bricklayers who
manage to contribute by building a keystone: Einstein (1879-1955) did formu-
late, supposedly with the help of his wife Mileva Marić (1875-1948), the basic
ideas of General Relativity. However, he himself admitted that without Levi-
Civita and Ricci absolute calculus he would never had the possibility to even

12Perhaps the similar materialization process occurred to Eudoxus’ model is more under-
standable, considering the enormous regression of scientific knowledge that led to the Middle
Ages.
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write his celebrated equations. Instead, we are interested in the study of the
logical process that leads to the formulation of novel and predictive theories as
we believe that this study may teach us how to invent newer such theories.

A very frustrating, and often even denied, phenomenon that is systematically
observed in the History of Science regards the distortion of scientific models from
their original form due to the decline that periodically afflicts human societies.
In fact, many historians imagine the History of Science as the accumulation of
knowledge with a permanent increase of scientific understanding and technolog-
ical capacity, albeit admitting that the rate of this increase has been varying
in different periods. Instead, it is our belief that, unfortunately and danger-
ously, human technological capacity and scientific understanding of reality may
experience regression.

We have argued about our thesis by presenting two clarifying examples of
how, during two of these decline periods, ideas, on which the human scientific
progress had been founded, were misunderstood and how even simple logical
concepts could be hard to understand for scholars during the decline ages. The
more common epistemological regression phenomenon which can be observed
in this context consists in the complete inability to recognize the difference
between a model and the object that is described by this model. This loss of
clarity of thought brings, in the end, to a complete detachment of the so-called
intellectuals with the world reality and technology: this detachment produces
the widespread belief that theoreticians are absolutely unable to respond to
demands from practical needs. Such a belief seems to ignore, just to name few
Greek scientists, that Archimedes or Archytas of Tarentum did prove, with their
lives, that theoretical knowledge and technology are indissolubly linked.

As a first example we have reported the case of the materialization of the
Eudoxus’ planetary motion model. As we have frequently remarked along the
chapter, this model was not the best fruit of the Hellenistic Science, but it had
strong possibilities to be pictorially represented. When the scientific knowledge
of Roman society became insufficient to fully understand Aristarchus’ model
together with the techniques introduced by Apollonius, the Eudoxus’ model,
simpler from the point of view of mathematical detail, was chosen and used as a
faithful representation of reality. Unfortunately, we see many modern engineers
to make similar choices, with consequences that are wrongly used to discredit
Scientific Engineering.

We want to stress that, in that so dark (from a knowledge point of view)
historical period starting with the Roman domination on the Hellenistic colonies
in Sicily, at least the study of Euclidean geometry was preserved, probably
simply following a well-rooted educational tradition. As Euclidean geometry
was necessary to understand and manage the few scientific elements that were
left in place after the collapse of Hellenistic societies, it can be conjectured that
the persistence of Euclidean geometry teaching has been probably the main
reason why the early humanists were still able to interpret, or at least perceive
in its importance, a very complex scientific corpus such as Archimedes’.

Eudoxus’ model, which may seem naive today (albeit some flat Earth groups
still believe that it is too complicated), at the time when it was introduced
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probably represented a conceptual revolution comparable to the formulation of
the theory of caloric. Instead, the scientific advances introduced by Aristarchus’
model, sticking to the same metaphor, could be considered as the advances
induced by the invention of Fourier’s theory of heat. With the regression of
scientific awareness, due to its possibility to be pictorially represented, Eudoxus’
model ended up being taken as a part of reality.

The second example we have focused on is the materialization of the abstract
mathematical concept of force. In this case, as we have repeatedly remarked,
the substitution process observed is more sophisticated and serious and, from
certain points of view, more difficult to explain than the similar one occurred
to Eudoxus’ model. The materialization of force did manage to persuade many
scholars that a purely mathematical object had, instead, a physical reality: this
mental process seems more misleading than the materialization of rails along
which planets are running. In fact, at least planet have a physical reality.

We wish to emphasize that we do not intend here to pursue a modernist
attitude according to which what happened to Eudoxus’s model would be less
serious just because it happened about two thousand years ago. The reader will
certainly be in no doubt that we are convinced that the scientific advancement of
the Hellenistic age was equal, if not in some aspects superior, to that occurred in
the 18th century. The less dangerous decline of Hellenistic Science is, probably,
due to the fact that this decline occurred in correspondence to a socio-cultural-
political reversal of enormous momentum, such as the decline of Hellenistic
states and the establishment and fall of the Roman Empire. Of course, as we
have repeatedly suggested, one can associate the decline of society to its scientific
decline (recall the discussion about Roman aqueducts), albeit there is a time
delay between the loss of scientific knowledge and the subsequent technological
collapse.

The case of the materialization of the concept of force, on the other hand, is
much more alarming. In fact, this confusion has occurred in a time period when
scientific culture continues to develop and still manages to induce remarkable
technological developments. The fact that this avant-garde science continues
to develop on sometimes an extremely confused conceptual basis leads us to
reflect on the possible aberrations it could produce (and it is not certain that
the aberration process is not already at an advanced stage). This pessimistic
view can be counterbalanced by another consideration: in present times, most
likely, we have a number of active living scientists which is greater than the
cumulated number of scientists who ever lived on our Earth. In fact, one can
consider that the quality of this group of scientists is not as homogeneous as
it was during, for instance, the flourishing of Hellenistic Science or Illuminism.
Therefore, it could be that we are observing simultaneously the rise of some
scientific societies in some disciplines and countries together with the decline
of other scientific societies and disciplines. Therefore, the net advancement of
scientific knowledge is the result of a dynamic process where declining effects
are counterbalanced by development effects. In conclusion, one can say that,
until the number of scientific groups that are capable to base technological
advancement on solid scientific grounds is great enough, we may hope that
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Dark Ages kind of decline can still be prevented.
One might say: actually, why bother with the fact that an epistemologi-

cal misconception leads to the materialization of the concept of force? In the
end, the concept of force is something that is used within the model anyway!
No one today (apart from possibly the flat Earth groups, if they were able to
understand it) could ever believe that Eudoxus’ model is reality, that is, that
the planets are stuck on spheres hinged to rotate rigidly relative to each other.
Instead, it is commonplace, even among scientists, to believe that forces are
something observable, despite so much evidence to the contrary. Let us con-
sider a derived quantity, such as velocity: one does not need profound scientific
knowledge to agree that it is not possible to measure velocity directly. Velocity
can be estimated only by measuring space and time intervals, and only then
one can derive an estimate of velocity from its kinematic definition. Similarly,
in order to give a meaning to the concept of force, it is necessary to introduce a
mathematical model: as clearly stated by d’Alembert, forces are mathematical
concepts derived from basic postulates. In fact, the previously cited excerption
by d’Alembert, concerning the obscurity of the concept of force, is completed
by the following words13:

“[...] I must warn [the reader] that, in order to avoid circumlocutions,
I often used the obscure term “force”, and some other terms that
are commonly employed when treating the Motion of Bodies; but I
have never demanded to attach to this term other ideas than the
ones resulting by the Principles that I have established, both in this
Preface and in the first Part of this Treatise” [d’Alembert, Traité
de dynamique, 1743]

Forces are introduced in Mechanics as those vectors by means of which we can
calculate virtual work using their inner product with virtual velocities: a very
abstract definition indeed! Piola’s theorem establishes a necessary condition for
equilibrium, i.e the condition imposing that the resultant force and resultant
moment of forces are both vanishing in an equilibrium configuration: a very
abstract property indeed!

The so-called direct measures of forces are not direct at all. One measures
other quantities and via the used theory the searched value of the force which
she/he feels the need to talk about are determined. In a dynamometer one
measures the deformation of, for example, a spring, then by further theoretical
hypotheses (for example, one assumes that the measured deformation is purely
elastic) and, finally, through the model (in the chosen example, Hooke’s law)
the value of the force can be calculated. If one presents the argument in this
way, it is finally evident that force is a mere abstract object belonging to the
used mathematical model.

Looking closely at the ontological misconception concerning the armillary
13The translation from French of this excerpt is by the authors of this Chapter. This is also

true, in general, unless otherwise specified, for all other translations from Italian, French and
Latin presented in this Chapter.
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spheres and the concept of force, the question naturally arises: why does the
confusion between reality and model happen so often and remain so widespread?

As it will become clear from reading the following chapters, scientific progress
has often been held hostage by power groups who, for political and power related
reasons (or for mere ignorance), have blocked the development of certain ideas in
favor of others. The fact that Newton’s equations are common knowledge in the
scientific world, while Euler-Lagrange’s equations are still seen as an unnecessary
mathematical complication, gives us a really clear indication of how and why
scientific progress in Continuum Mechanics has taken the unfortunate path that
we have described.

The present chapter intentionally serves as a (long) introduction to this Vol-
ume, whose ultimate aim is to analyze the influence of modalities of sources
transmission on the development of scientific theories. As it will become clearer
to the reader once she/he will be engaged in the various themes we have cho-
sen to develop in this Volume, the role of sources transmission phenomena in
the development of Science is central. This fact is certainly obvious in its pos-
itive aspects: Einstein could not have written the equations of Special Rel-
ativity without Poincaré (1854-1912) or those of General Relativity without
Levi-Civita’s and Ricci’s contributions to differential geometry. However, the
sources transmission modalities play an important role also in contexts involving
less noble scientifically and much less humanly edifying actions. This circum-
stance emerges very clearly, for instance, from Heiberg’s text of the Prolegomena
of his critical edition of the Archimedean opus, and it has strongly prompted
us to offer an English translation of its more relevant passages, which other-
wise remained readable only in Latin. Heiberg demonstrates with philological
methods how the process of transmission of a work is by no means simple and,
indeed, is conditioned by a myriad of successive modifications and alterations.
An aspect that Heiberg underlines in the text of the Prolegomena, and that
we are sure will strike the reader, consists in the philological deduction, that
Heiberg only suggests but that Marshall Clagett [151] (and other modern schol-
ars [30, 152]) clearly demonstrates, of the fact that in his presumed translation
into Latin of Archimedes’ work Niccolò Tartaglia (1499/1500-1557) heavily used
an earlier translation, due to William of Moerbeke (1215/35-1286 AD), with-
out ever mentioning him. This is very striking because it is not unique in the
History of Science: periodically, someone appropriates the results of others,
probably relying on the scarcity of available sources and on linguistic barriers.
For example, the only copy of Moerbeke’s translation, which even seems to be
autograph, has been longly lost and was only found in 1885 by the German clas-
sicist Valentin Rose (1829-1916) bound to other texts. Sometimes, some sources
are only available in a certain language different from the current lingua franca
and this circumstance, unfortunately, constitutes a insurmountable barrier for
a large part of the scientific community: indeed, it is as if somebody were ex-
ploiting purposely linguistic barriers for hiding the true origins of sources. We
have mentioned in this chapter, and will discuss in detail in a later chapter,
the sad fate of Gabrio Piola’s works, forgotten for about a century and a half,
just because they were written in Italian. Forgotten or willingly ignored? The
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reader is invited to consider that the libraries of the most important universities
in the world contained copies of Piola’s works, and that even theories such as
Peridynamics, which Piola introduced in the 19th century, were rediscovered in
the 21th century.

We believe that the studies and analyses we presented in this work can
be useful for those who want to seriously approach the study of Science, not
stopping at the external appearance and the universally accepted version of its
development. We hope that in the future it will no longer be possible for some
people to deliberately steal the work of others (sometimes even without under-
standing it, and therefore distorting it), hiding or destroying the name of the
true authors. Today we know, although the official version still struggles to rec-
ognize them, of the invaluable contributions of Archytas, William of Moerbecke,
Piola and many others. We are certain that the memory of many other scholars
has been completely destroyed. It is to them that we want to dedicate our work.

Appendix: A Literary support to our theses
Albeit we tried to argue carefully about our point of view for the necessary
revisitation of the History of Mechanics, we are aware that many criticisms
may be attracted by the content of this chapter. In fact, in order to avoid
to be considered inappropriate, many scholars preferred to insinuate some of
our previous statements by using the artifice of hiding them in literary works,
sometimes in the field of Science Fiction. Our attention has been particularly
attracted by the masterpiece of Alfred Bester: The stars, my destination. We
quote here some of the most relevant excerptions, in the sense we have specified,
of this work.

BETWEEN MARS AND JUPITER is spread the broad belt of the aster-
oids. Of the thousands, known and unknown, most unique to the Freak
Century was the Sargasso Asteroid, a tiny planet manufactured of natural
rock and wreckage salvaged by its inhabitants in the course of two hundred
years.

They were savages, the only savages of the twenty-fourth century; descen-
dants of a research team of scientists that had been lost and marooned in
the asteroid belt two centuries before when their ship had failed. By the
time their descendants were rediscovered they had built up a world and
a culture of their own, and preferred to remain in space, salvaging and
spoiling, and practicing a barbaric travesty of the scientific method they
remembered from their forebears. They called themselves The Scientific
People. The world promptly forgot them.

S.S. “Nomad” looped through space, neither on a course for Jupiter nor
the far stars, but drifting across the asteroid belt in the slow spiral of a
dying animalcule. It passed within a mile of the Sargasso Asteroid, and it
was immediately captured by The Scientific People to be incorporated into
their little planet. They found Foyle.
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He awoke once while he was being carried in triumph on a litter through
the natural and artificial passages within the scavenger asteroid. [...]

A crowd around the litter was howling triumphantly. “Quant Suff!” they
shouted. A woman’s chorus began an excited bleating: Ammonium bromide
gr .11/2 Potassium bromide gr .3 Sodium bromide gr .2 Citric acid quant.
suff. “Quant Suff!” The Scientific People roared. “Quant Suff!” Foyle
fainted. [...]

The distant sun blazed through; the air was hot and moist. Foyle gazed
around dimly. A devil face peered at him. Cheeks, chin, nose, and eyelids
were hideously tattooed like an ancient Maori mask. Across the brow was
tattooed JOSEPH. The “0” in JOSEPH had a tiny arrow thrust up from
the right shoulder, turning it into the symbol of Mars, used by scientists
to designate male sex.

“We are the Scientific Race,” Joseph said. “I am Joseph; these are my
people.” He gestured. Foyle gazed at the grinning crowd surrounding his
litter. All faces were tattooed into devil masks; all brows had names bla-
zoned across them. [...]

“You are the first to arrive alive in fifty years. You are a puissant man.
Very. Arrival of the fittest is the doctrine of Holy Darwin. Most scien-
tific.”

“Quant Suff!” the crowd bellowed.

Joseph seized Foyle’s elbow in the manner of a physician taking a pulse.
His devil mouth counted solemnly up to ninety-eight.

“Your pulse. Ninety-eight-point-six,” Joseph said, producing a thermome-
ter and shaking it reverently. “Most scientific.”

“Quant Suff!” came the chorus. Joseph proffered an Erlenmeyer flask. It
was labeled: Lung, Cat, c. s., hematoxylin & eosin. “Vitamin?” Joseph
inquired. When Foyle did not respond, Joseph removed a large pill from the
flask, placed it in the bowl of a pipe, and lit it. He puffed once and then
gestured. Three girls appeared before Foyle. Their faces were hideously
tattooed. Across each brow was a name: JOAN and MOIRA and POLLX.
The “0” of each name had a tiny cross at the base.

“Choose.” Joseph said. “The Scientific People practice Natural Selection.
Be scientific in your choice. Be genetic.”

[Alfred Bester, “The stars my destination”]
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