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Bubble-mediated gas exchange in turbulent flow is critical in bubble column chemical
reactors as well as for ocean-atmosphere gas exchange related to air entrained by breaking
waves. Understanding the transfer rate from a single bubble in turbulence at large
Péclet numbers (defined as the ratio between the rate of advection and diffusion of
gas) regimes is important as it can be used for improving the models on a larger scale.
We characterize the mass transfer of dilute gases from a single bubble in a homogeneous
isotropic turbulent flow in the limit of negligible bubble volume variations. We show
that the mass transfer occurs within a thin diffusive boundary layer at the bubble-liquid
interface, whose thickness decreases with an increase in turbulent Péclet number, Pe. We
propose a suitable time scale 8 for Higbie (1935) penetration theory, 6 = dy/@, based
on dy the bubble diameter and % a characteristic turbulent velocity, here & = V'3 Upms,
where w5 is the large-scale turbulence fluctuations. This leads to a non-dimensional

transfer rate Sh = 2(3)1/4y/Pe/n, from the bubble in the isotropic turbulent flow. The
theoretical prediction is verified by direct numerical simulations of mass transfer of dilute
gas from a bubble in homogeneous and isotropic turbulence, and very good agreement is
observed as long as the thin boundary layer is properly resolved.

1. Introduction

The evolution of bubbles in turbulence has multiple applications in environmental and
industrial contexts, from exchange at the ocean-atmosphere interface (Deike et al. 2016;
Deike & Melville 2018), as bubble-mediated gas exchange accounts for a significant part
of carbon dioxide (CO3) uptake by the ocean (Reichl & Deike 2020), to bubble column
chemical reactors (Risso 2018), while providing an effective pathway to bring oxygen in
lakes (Karn et al. 2015). In an engineering context, bubble-mediated gas exchange is
controlled by the level of agitation in the flow, which is itself influenced by the presence
of bubbles, and in turn affects the bubble velocity statistics controlling the gas transfer
from individual bubbles (Risso 2018; Mathai et al. 2020).

While empirical formulae (e.g. Karn et al. (2015); Colombet et al. (2015)) have been
proposed to describe the gas transfer in bubble swarms, their general applicability and
theoretical foundation remain an active research topic. Bubble-mediated gas transfer
models in the context of ocean-atmosphere interaction often use formulae based on gas
transfer theory (Levich 1962) based on bubble rising in quiescent flow (Woolf & Thorpe
1991; Keeling 1993; Liang et al. 2011; Deike & Melville 2018). The diffusive gas transfer by

1 Email address for correspondence: 1deike@princeton.edu
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a single bubble rising in a quiescent flow has been described theoretically by Boussinesq
(1905) and Levich (1962), within the assumption of negligible variation in bubble volume.
The non-dimensional transfer rate from a single bubble is the Sherwood number Sh =
krdo/ 2, where ky, is the transfer rate, dy the bubble size and 2 the gas diffusivity in
the liquid, and reads, Sh = % Pe where Pe = Udy/ 2, is the bubble Péclet number
and U the bubble rise velocity. Several studies dealing with mass transfer from bubbles
rising in a quiescent liquid have developed numerical techniques to resolve interphase
mass transfer and validated their results against diffusive mass transfer theory (Haroun
et al. 2010; Marschall et al. 2012; Deising et al. 2016; Fleckenstein & Bothe 2015; Deising
et al. 2018). Direct numerical simulations (DNS) of mass transfer of dilute gas from rising
bubble swarms by Roghair (2012) concluded that the transfer rate increases as the gas
hold-up (ratio of gas volume to the total volume) increases.

The gas transfer at the interface between two fluids involving a turbulent flow has
been described as presenting two regimes depending on the turbulent Reynolds number
(Theofanous et al. 1976). At low-Reynolds number, the transfer rate can be written
as kr/ug o< Sc”/?Re™/2, where Sc = /2, is the Schmidt number (ratio of kinematic
viscosity over mass diffusivity), uo a characteristic turbulent velocity and Re a turbulence
Reynolds number. The high-Reynolds number regime can be described through the
action of the smallest eddies at the Kolmogorov scale enhancing the transfer, leading
to kr ~ Scfl/Q(Ve)l/‘l, where € is the turbulence dissipation rate. This can be expressed
in terms of the turbulence Reynolds number and reads kj/ug Sc1/2Re~1/4 (The-
ofanous et al. 1976), further discussed by Magnaudet & Calmet (2006); Katul & Liu
(2017). These two regimes and their crossover have been observed experimentally and
numerically by Herlina & Wissink (2016, 2019), following earlier experimental work by
Fortescue & Pearson (1967) (who used the root mean square of the fluctuating velocity
as characteristic velocity).

The same reasoning can be applied in the context of bubbles in a turbulent flow. Levich
(1962) provides a brief discussion on gas dissolution from a bubble of diameter dy in a
turbulent stream with a characteristic velocity ug. The gas transfer rate can then be
estimated as Sh o« Re*/4Sc!/?, S¢ = v/ is the Schmidt number (ratio of kinematic
viscosity over mass diffusivity) and Re = dyug/v a turbulence Reynolds number, based
on the bubble size dy and a turbulence velocity ug (the velocity scale considered by
Levich (1962) is the maximum velocity of the eddies in the liquid that flows past the
bubble). This regime is equivalent in terms of scalings to the high Reynolds number
regime described by Theofanous et al. (1976); Magnaudet & Calmet (2006) and its
applicability in the context of mass exchange by a bubble swarm is discussed by Colombet
et al. (2015).

Numerical methods for interfacial mass transfer started with (Sato et al. 2000; David-
son & Rudman 2002) where the dilute gas concentration is continuous across the interface.
Bothe et al. (2004) introduced a method to simulate the discontinuous concentration due
to solubility. A three-dimensional front tracking model with mass transfer was presented
by Darmana et al. (2006). A one-fluid formulation for the algebraic volume of fluid method
was presented independently by Haroun et al. (2010) and Marschall et al. (2012). Bothe
& Fleckenstein (2013) introduced a two-field approach using a geometrical volume of fluid
method for multicomponent conjugate mass transfer. Sub-grid scale models to simulate
high-Schmidt-number, bubble-mediated mass exchange have been developed by Bothe
& Fleckenstein (2013); Weiner & Bothe (2017); Claassen et al. (2020). Recent advances
in numerical methods by Tanguy et al. (2014); Fleckenstein & Bothe (2015); Maes &
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Soulaine (2020); Scapin et al. (2020) allow to simulate problems of mass transfer with
local volume changes.

In the present work, we adapt the classic penetration theory (Higbie 1935) to describe
the mass transfer from a bubble in a turbulent flow, by considering a turbulent time
scale and predict the transfer rate of low-solubility gases, presented in §2. We next
present a framework in §3 which combines recent advances in numerical algorithms for
interfacial mass transfer, together with progress in turbulent multiphase flow modeling to
characterize the diffusive mass transfer of dilute gas from a bubble in turbulence. Dilute
gas diffusion from a bubble is similar to conjugate mass transfer from a spherical droplet
(Rachih et al. 2020). However, in the present study, the fluid inside the spherical cavity
is considerably less dense than the surrounding fluid and hence is called a bubble. We use
the Basilisk flow solver (Popinet & collaborators 2013-2020) which uses adaptive mesh
refinement, a momentum-conserving scheme for velocity and a geometric volume-of-fluid
method to capture the interface. We implement a module for the concentration advection
and diffusion using one-fluid formulation without phase change (Haroun et al. 2010; Bothe
& Fleckenstein 2013; Taqgieddin 2018; Yang et al. 2020). The mass transfer module is
validated by comparing the numerical results of diffusion from a static bubble with a
solution using inverse Laplace transform, as well as for the classic diffusion from a rising
bubble in a quiescent liquid. Finally, in §4, we perform DNS of bubble-mediated mass
transfer in a homogeneous isotropic turbulent (HIT) flow, solving the three-dimensional,
incompressible, two-phase Navier-Stokes equations coupled with an advection-diffusion
equation for the gas concentration. We consider bubbles that can deform but at Weber
number below the break-up threshold. The theoretical model is confirmed by the DNS
results for a wide range of turbulent Péclet numbers.

The present configuration of mass exchange of a dilute component from a bubble
to the surrounding turbulent water is especially relevant for bubble mediated CO4 gas
transfer at the ocean-atmosphere interface, as COs is present in a small concentration
in the atmosphere so that its exchange with the surrounding water does not change the
overall bubble volume, while gases such as Ny and O which contribute for most of the
volume of the bubbles have a much lower solubility and exchange over longer times (see
detailed discussions in Woolf & Thorpe (1991); Keeling (1993); Liang et al. (2011); Deike
& Melville (2018)).

2. Theory of bubble mass transfer in turbulence

We consider the mass transfer of dilute gas from a bubble of diameter dg, the diffusivity
of gas inside and outside the bubble is given by 2, and %, respectively. The ratio of
momentum to mass diffusivity defines the Schmidt number Sc = v;/%;. The mass transfer
predicted by the two-film theory (Whitman 1923) assumes a steady-state diffusion
through the film, while in turbulent flows the fluctuations in the velocity field keep the
diffusion transient (Treybal 1980). Higbie (1935) penetration theory states that when
eddies of liquid in a turbulent flow are exposed to bubbles for a timescale 0, then the
mass transfer rate is given by,

_2 |2
IRVZaNA
In a turbulent flow, the eddies of various sizes will interact with the bubble and advect

the gas present in the surrounding thin boundary layers. These interactions will be
characterized by a turbulent velocity u. Several choices could be considered, in particular

kr (2.1)
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the large scale fluctuation velocity, the velocity fluctuations at the bubble scale or the
small scale fluctuations. We consider here that the large scale fluctuations of the flow
will drive the transfer process, and can be characterized by the magnitude of velocity
fluctuations |i|= /3 urms. We propose that the time scale of exposure to eddies is given
by 0 = do/(V/3 turms). The transfer rate, Eq. 2.1, is then,

2(3)1/4 Dy Urms
ves do
For a bubble-mediated mass transfer in turbulent flow, we define the non-dimensional
transfer rate, or Sherwood number, Sh = k1.dy/Z;, and the turbulent Péclet number,
Pe = tymsdo/ 2. Finally, Eq. 2.2, can be written,

kr = (2.2)

1/4
sh— 2" /5 (2.3)
VT
This equation is analogous to that for the transfer rate for a bubble rising in a quiescent
fluid, where the Péclet number would be defined based on the bubble rise velocity (Levich
1962) and mass transfer for bubble swarms where the mean rise velocity of the bubbles
in the swarm is considered (Colombet et al. 2015).

3. Numerical Framework
3.1. The Basilisk solver

We solve the three-dimensional, incompressible, two-phase Navier-Stokes equations
using the open-source solver Basilisk (Popinet 2009, 2015; van Hooft et al. 2018),

ou+ V- (uu) = % [-Vp+ V- (W(Vu+ VuT))] + %fzésn, (3.1)
V-u=0, (3.2)
oT

§+u-VT—O. (3.3)

where u, p, v, p, p, kK, n and T are the velocity, pressure, surface tension coefficient,
viscosity, density, curvature, interface normal and volume fraction fields respectively.
The solver has been extensively validated for complex interfacial flows (Popinet 2015;
Farsoiya et al. 2017; Gumulya et al. 2020; Ruth et al. 2019; Mostert & Deike 2020; Berny
et al. 2020). It uses the projection method to compute the velocity and pressure and the
geometric volume of fluid (VoF) method for the evolution of the interface between two
immiscible fluids (Tryggvason et al. 2011). The Piecewise Linear Interface Calculation
(PLIC) geometric interface and flux reconstruction ensures a sharp representation of
the interface (Scardovelli & Zaleski 1999; Mari¢ et al. 2020) and is combined with an
accurate Height-Function curvature calculation and a well-balanced, continuum surface
tension model (Brackbill et al. 1992; Popinet 2018).

3.2. One fluid formulation for mass transfer of dilute gas
The continuous formulation for mass transfer which we use in this study has been
independently developed by Haroun et al. (2010) and Marschall et al. (2012). We have
implemented the concentration diffusion of dilute gas (Haroun et al. 2010) using the
harmonic mean diffusion coefficient as verified by Deising et al. (2016). Note that the
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present study investigates the mass transfer of dilute gas present in the bubble where
the effect of loss of volume and phase change are ignored. Numerical methods for phase
change require changes in the volume of fluid advection equation and continuity equation
(Tanguy et al. 2014; Fleckenstein & Bothe 2015; Maes & Soulaine 2020; Scapin et al.
2020). The time evolution of the jth gas concentration, ¢;/4 ;, for the liquid phase I or
the gas phase g is given by (Standart 1964; Haroun et al. 2010)

(’)cl i

# + V . (ucl/g,j> = —V . (Jl/g,j)- (34)
The continuity of normal fluxes across the interface 3 (Standart 1964; Bothe & Flecken-
stein 2013),

[(¢j(u—us) +Jj) -ns] =0, (3.5)

where uy; is the interface velocity. As we assume that the transfer of a dilute component
does not cause volume change, (3.5) reduces to,

Jl,j -y :JQJ' -y, (36)

The standard assumption of continuous chemical potentials which is good for most
applications at interface ¥ results in Henry’s law, (we refer interested readers to Bothe &
Fleckenstein (2013) for the discussion on local chemical equilibrium and the generalized
Henry’s law),

Cl,j = Cq,j %, (37)

where the dimensionless ratio of the liquid phase concentration to the gas phase concen-
tration of the component transferred ¢, is called Henry’s law solubility constant (Sander
2015) (solubility hereafter). The problem investigated is isothermal and there is no bubble
breakup or large deformation of the interface which can change the pressure inside the
bubble significantly. Hence, solubility which at least depends on temperature and pressure
(Bothe & Fleckenstein 2013), is assumed to be constant. Introducing variables for the
one-fluid formulation which is valid for both phases [ and g and for gas j, we get,

¢ =Ta+(0=Teg, Jj=Th+(1-T)J, (3.8)
and the flux is given by
Ji = —(TZ;Ve + (1 — T)Z;,Ve¢,). (3.9)

The diffusivity for the interfacial cells is calculated using the harmonic mean of the
two diffusivities of the gas inside and outside the bubble (Haroun et al. 2010),

DigZji

9; = , 3.10
J gjl(l -7T)+ @ng ( )
to get a single equation for both phases,
9c; Ny Ve, — g (—Gla=1)
ot +V-(ug) =V (@ch] PD; (aﬂ'—k -7 VT |. (3.11)

The coefficient of ¢; in the second term containing the right hand side of Eq. (3.11) can
be written as fj,

9¢;

ot =V- (@]ch + 5j0j) . (3.12)
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Using a time-implicit Euler discretisation,

Al _en

F =V A(BVGT 4 BT (3.13)

and rearranging the implicit terms, gives

n+1 n+1 C?Jrl C}L
V- (%ch +5jcj ) — AL = _E,
Eq. (3.14) is a set of linear equations which is solved efficiently using the multigrid method
(Popinet 2015).

The solubility boundary condition (3.7) presents a discontinuity for the concentration
field across the interface similar to the volume fraction field 7. As discussed by Bothe &
Fleckenstein (2013), a non-consistent advection leads to artificial diffusion for concentra-
tion. For a consistent advection two tracer fields ¢, and ¢; associated with the volume
of fluid 7 are defined ,

(3.14)

dr=aT, ¢g=c4(1-T) (3.15)
Using Eq. (3.7) and Eq. (3.8), we get,
Ao T Cn+1(1 ~-7)
J J i
- = 3.16
oL o T+(1-T) ZE o T+(1-T) (3.16)
The advection equation for ¢, reads,
¢
ai/l +V - (ugy) =0 (3.17)

and is solved using the volume-of-fluid associated fields (Lépez-Herrera et al. 2015) which
guarantees strictly non-diffusive transport close to the interface. The concentration tracer
is updated after advection using

¢j = g5+ buj- (3.18)
3.3. Validation

We validate the numerical methods and their implementation for static and rising
bubble cases.

3.3.1. Diffusion from a static bubble

We propose a new test case of diffusion from a constant-size, static, spherical bubble.
Test cases are available for concentration profiles in the case of a planar interface in Bird
et al. (2002); Haroun et al. (2010). We provide the solution for the transient concentration
both inside and outside the spherical bubble in the form of integrals which are then
evaluated numerically.

Consider a static axisymmetric bubble of radius Ry = dy/2, the diffusivities of the gas
are Dy and D; for the gas and liquid phase respectively. The one-dimensional transient
concentration diffusion for a spherical geometry for both inside and outside the bubble

is given by
Ocg 1 0 [ 5,0¢c ¢y 1 0 ( ,0q
29 _qg — ~ -9 =g — = — . 3.19
ot 7y r2 0r (7“ or )’ ot 7 2or\| or (3.19)
Applying the Laplace transform to the above equations, we get, ¢(s) = L[e(t)],
d*¢, 2dé, s 1 d*¢, 2d¢ s 1
—2 4+ —— - — ¢+ —=¢cp=0, —+-————0C+—=cp=0 3.20
dr?2 7 dr @gcg + 9 T dr? + rdr 9 at 2 o )
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Figure 1: Diffusion from a static bubble, comparing the numerical results with (3.23) and
(3.24). (a) Concentration inside the bubble at r/dy = 0.25. (b) Concentration outside
the bubble at r/dy = 0.75. (c) Radial profile at time t%;/d3 = 1.2. (d) Maximum relative
error at different resolutions max|ci1 —c¢,|/c11, where ¢11 and ¢, are numerical solutions at
resolution 2'! and lower respectively, and for different solubilities «, displaying first order

convergence. The scripts sufficient to reproduce these results are provided in Farsoiya
et al. (2020a).

given boundary conditions, ré; — 0 as v — 0, & — 0 as r — oo, [20¢/0r] = 0 and

¢1/ég = a at r = Ry, the concentrations (Laplace transformed) inside the bubble ¢, and
outside ¢; are given by

fo(sir) = (1

S

C(i)rsmhp\g(s)ro, a(s,r) = £¢q0 exp[-\i(s)r] (3.21)

s¢(s)r
where,
5 Eexp[-NRo] 2 .
A =2————— + —sinh(A\,R
=g G0 = SR (3, )
f(s) - 2.@9()\9]%0 COSh(/\gRQ) — Sinh()\gRo))

, Cq0 =cq(0,7), c¢0=0.
9, exp[—)\lRo](l + )\ZR()) 90 g( ) 10
(3.22)

Eq. 3.21, can be inverted using Cauchy residue theorem (using keyhole contour as
discussed in Farsoiya et al. (2020)),

cq(t,r) = —2;%0 /000 %Im {smhé)(\g_(m):r)r)} exp[—=zt] dz, (3.23)

_ S0 mlm 5(_I)ex —N\i(=2)r] p exp[—at] dx
cl(t,r)_w/o o {4(—x) b=\ )]} ploat] dz,  (3.24)

where Im(+) is the imaginary part of a complex number. We validate the results of the
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Basilisk solver against (3.23) and (3.24) (using the numerical integration functions based
on double exponential quadrature in Wolfram Research, Inc. (2020)) in Fig. 1.

A static bubble of diameter do/L = 0.2, diffusivity ratio Z,/%; = 10 and solubility
a = 1073 to 107! is considered for this test. Figure 1(a) and 1(b) show the transient
concentrations inside the bubble at r/dy = 0.25 and outside the bubble at r/dy = 0.75
respectively. The accuracy of the numerical solution is very good above 25 cells per
diameter. The stringent solubility condition o = 1073 is achieved at the interface
r/dp = 0.5 even at a low resolution of six cells per diameter (figure 1(c)). To quantify the
convergence, we compute the norm, max|c;; — ¢,|/c11 at different resolutions where ¢,
and ¢, are numerical solutions at uniform resolutions 2!! x 2!! and lower respectively.
Figure 1(d) shows first-order of convergence with respect to the grid size Az. The effect
of solubility on the error has not been discussed in earlier studies. We show in Figure
1(d) that decreasing the solubility at the interface increases the error in the solution for
a given resolution, but that the error remain small at high resolution.

Mo Bo Re Sh

Ar Clift Roghair Deising PW: PW: Levich Roghair Deising PW: Axi PW: 3D

=~ (100 — et al. (2012) et al. Axi 3D (1962) (2012) et al.

8000) (2005) (2016) (2016)
A 1074 1.0 |5 5.53 6.4 5.6 5.6 |25 3.2 3.6 3.07-3.19 3.17-3.25
B 5.107% 3.125|10  11.31 10.5 109 10.9 |[3.7 4.4 4.2 3.99-4.09 4.07-4.09
C 9.2.107% 40 |33 32.35 32.5 328 329 |64 6.3 6.4 4.63-5.42 5.25-6
Dy 5-1077 3.125' 103 102.78 97.7 102.4 102.9 | 11.5 12.03 11.5 10.52-10.98 11.15-11.33
Dy 5-1077 3.125|103 102.78 97.7 102.4 102.9 |36.5 - - 33.12-37.10 35.07-36.38
Ds 5-1077 3.125| 103 102.78 97.7 102.4 102.9 |114.7 - - 108.10 - 116.91-

122.13 121.18

Table 1: Reynolds and Sherwood numbers (for ¢ U/dy > 2) for axisymmetric and 3D
rising bubbles obtained from our numerical study, indicated as present work (PW Axi,
and PW 3D), compared with existing theoretical (Clift et al. 2005; Levich 1962) and
numerical results (Roghair 2012; Deising et al. 2016).

3.3.2. Diffusion from a rising bubble

For the validation of the advection-diffusion scheme, we consider a bubble in a quiescent
fluid rising due to buoyancy. We set up the test cases with the parameters considered in
earlier studies (Darmana et al. 2006; Roghair 2012; Deising et al. 2016; Jia et al. 2019),
which encompass significant variations in bubble conditions, through variations of the
Bond and Archimedes (or Morton) numbers. The rise velocity of a bubble in a quiescent
liquid is indeed determined by the bubble-liquid physical parameters, summarized by the
Archimedes number Ar = gd3p;(p; — pg)/u* or Morton number Mo = gui/(pv?) and
Bond number Bo = p;gd3y (Moore 1965; Maxworthy et al. 1996; Clift et al. 2005; Cano-
Lozano et al. 2016). The terminal rise velocity U can be computed theoretically (Moore
1965; Clift et al. 2005), and expressed as a non-dimensional bubble Reynolds number
Re = pUdy/ ;. We consider four bubble configurations leading to Re from 5 to 100, for
Bond numbers ranging from 1 to 40, and Archimedes numbers ranging from 100 to 8000.
The mass transfer for these bubble conditions is then computed, considering the ratio
of momentum to mass diffusivity given by the Schmidt number Sc = v;/%; = 1 and the
gas solubility & = 1/30, as in Deising et al. (2016). The fourth configuration is further
tested for high Schmidt numbers of 10 and 100 in Dy and D3 respectively. Our results
are shown in figure 2 and validated against previous work as shown in Table 1. Note that
to achieve the correct mass transfer, the correct rise velocity must be obtained, since
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Figure 2: Mass transfer of dilute gas from a bubble rising in a quiescent flow. (a)-(d)
Concentration ¢ and bubble interface (three dimensional) at ¢ U/dg =~ 4 for the four
cases considered (increasing bubble Re number). (¢) Evolution with time of transfer rates
for axisymmetric and three-dimensional simulations and from Levich (1962) using the
computed terminal velocity, (f) Steady state transfer rate (for ¢t U/dy > 2) as a function
of Péclet number compared against Levich (1962). Very good agreement between the
theoretical and numerical mass transfer is observed except for case C where the terminal
shape is far from spherical. The scripts sufficient to reproduce these results are provided
in Farsoiya et al. (2020Db).
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the mass transfer will directly depend on the bubble velocity. Figure 2 (a to d) shows
examples of the shape of the bubble and the surrounding adaptive grid once the terminal
velocity is reached. The average gas concentrations inside and outside the bubble are
computed as

_ 1 _ 1
Cg,j = vg /Vg Cj d‘/, Clj = vl /Vl Cj dVv (325)

where V; and V; are the volumes of bubble and liquid respectively. The mass transfer
rate ky, is calculated as,

En—i—l _ En

kL = e (3.26)
AgAt(a ) t? — g2

where A, is the instantaneous surface area of the bubble. The non-dimensionalized
transfer rates are computed for both the axisymmetric and three-dimensional simulations
with adaptive mesh refinement and a maximum refinement corresponding to a resolution
on the bubble of dy/Az = 100. Levich (1962) derived the mass transfer rates from a rising
bubble with constant size and surface concentration, which reads, Sh = %\/PTe where
Pe = Re Sc, is the bubble Péclet number. Upon reaching terminal velocity the transfer
rates are steady after ¢ U/dy > 2 as shown in figure 2(e) and are accurately predicted
by Levich (1962) as shown in figure 2(e) and 2(f). The values of the non-dimensional
transfer rate, scaled by the diffusion velocity scale, or Sherwood number Sh = kdy/%Z;
are also provided in Table 1. Overall, the agreement between theoretical and numerical
transfer rates is very good. The deviation from the spherical shape in case C, visible in
Figure 2(c), causes a difference with the predicted transfer rate which assumes a spherical
bubble shape.

4. Mass transfer in homogeneous and isotropic turbulence

We now present DNS of diffusion of dilute gas from a bubble inside a surrounding
homogeneous and isotropic turbulent flow (HIT). We follow recent work on bubble
deformation in turbulence (Perrard et al. 2021; Riviere et al. 2021) and first prepare
the turbulent flow by solving the momentum equation with a forcing term, and then
insert a bubble at the center of the HIT flow, once a statistically stationary state has
been reached. A similar approach has been used to study the interaction of droplets
with isotropic turbulence (Dodd & Ferrante 2016; Elghobashi 2019a). As the bubble is
inserted, the volume of fluid advection Eq. (3.3) and mass advection-diffusion Eq. (3.11)
is solved coupled with the momentum equations Eq. (3.1). We then calculate the mass
transfer rate from the bubble and compare it with the theory presented in §2.

Case Resolution (2%) do/XN We p, ji, Sc Re)
1 L10 =20 L11 = 2! 1.72 1.3 850 25 (1, 2, 10, 20, 50, 100) 38
2 L10 =29, L11 =21 2.30 1.3 850 25 (1, 2, 10, 20, 50, 100) 55

3 L10=2!1" L11 =2 L12 =2 282 1.3 850 25 (1, 2, 10, 20, 50, 100) 77

Table 2: Simulation parameters (with adaptive mesh refinement) of the turbulence
simulation of mass transfer. Three Reynolds numbers are used, with two effective
resolutions, and a range of Schmidt numbers. The Weber number, density and viscosity
ratio are kept constant.
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Figure 3: Properties of the homogeneous and isotropic turbulent flow. (a) Turbulent
kinetic energy as a function of time. After a short transient, a statistically stationary
state is reached. The bubble is inserted once the statistically stationary state is reached.
(b) Second-order structure function, Dy, and Dy in the longitudinal and transverse
directions respectively, compensated by the homogeneous and isotropic turbulence scaling
(re)=2/3 and Dy = 3/4Dyn. Turbulence theory 4/3Dp 1 (r)(re)?/? is superimposed in
red dashed line. 7 is the Kolmogorov length scale. The bubble has a size comparable to
the Taylor turbulence scale, within the inertial range.

4.1. Precursor simulation for isotropic turbulence

The turbulent flow is generated by adding a linear volumetric forcing term f = Au(x, t)
in Eq. 3.1. This approach has been introduced by Rosales & Meneveau (2005) and yields
similar turbulence properties as using a forcing in spectral space and leads to a well-
characterized homogeneous and isotropic turbulent flow. Such an approach has been
applied to study bubble rising in turbulence by Loisy et al. (2017), and more recently we
used this approach within the Basilisk solver to study bubble deformation in turbulence
(Perrard et al. 2021; Riviere et al. 2021). We consider a 3D periodic box of size L, for a
precursor simulation to achieve isotropic turbulence. We use adaptive mesh refinement
on the velocity field, and the maximum level of refinement can be used to compare
the resolution with that of a fixed grid. The turbulent flow is generated for increasing
resolutions with the maximum level of refinement going from 6 to 8, corresponding to an
equivalent of 643 to 2563 grid points. The resolution will be increased once we insert the
bubble. The turbulence state is characterized by the kinetic energy density K, turbulence
dissipation rate ¢ and Taylor microscale Reynolds number Rey, which are given by (Pope
2001)

1 1 1 ou; Ouy; 2K 15y
K== Zplu(x,8)*dV, :7/ L2 ) dV, Rey=— 4.1
V/V2pl|“ OV, e=3 | v (axj aa:j) o Rex=ooy— (D)

and are computed over time to characterize the turbulent flow. The root mean square of
the velocity is tyms = 1/2K/3p;, and the eddy turn over time at the scale of the bubble
of diameter dy is given by t. = dg/3€_1/3 (Pope 2001; Perrard et al. 2021).

Figure 3(a) shows the evolution of the turbulent kinetic energy with time for increasing
Reynolds numbers. It shows that at ¢/t. =~ 25 the flow has reached a statistically
stationary state. We show that the state is grid-independent when using an adaptive
mesh refinement of L7= 27 and L8= 2% for the three cases. The turbulence Reynolds
number and the turbulence dissipation rate have similar time evolutions. The range
of turbulent Taylor Reynolds numbers is Rey =~ 38 to 77 which is a typical value for
current two-phase simulations of turbulent flow (Loisy et al. 2017; Elghobashi 2019b).
We characterize the turbulent stationary state using the second-order structure functions
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in the longitudinal Dy (r) and the transverse direction Dyy(r), given by Dpr(r) =
3 2 ((ui(r,t) — wi(r + diy,1))%), and Dyn(r) = § 30, ((ui(r,t) — wi(r + di;,1))%),
where #; is the unit vector along the i*! direction. Figure 3(b) shows that the scaled
structure functions plateau at C' = 2 (Pope 2001) in the inertial range. The relation
Dy, = 3/4Dyy is verified and the inertial range is relatively limited due to the relatively
coarse resolution and limited turbulence Reynolds number. The bubble is inserted once
the turbulent stationary state is reached, and is of a size within the inertial range, the
turbulence at this scale being reasonable, as described in (Perrard et al. 2021; Riviere
et al. 2021).

4.2. Bubble insertion

The bubble is inserted at the center of the box after reaching isotropic turbulence, i.e.
for tg > 25¢. (See Fig. 3(a)). The bubble is of diameter dg, viscosity u, and density py
surrounded by a liquid of viscosity y; and density p;. The solubility of dilute gas is a; =
0.3 which is transferred across the interface. The Weber number, We = pju2, . do/v = 1.3
is below the critical number for bubble breakup (Perrard et al. 2021; Riviere et al. 2021),
so that all results are for bubbles that can deform but do not break. Theoretical discussion
and experimental data in Theofanous et al. (1976) provide the approximation that the
transfer rate is a weak function of surface tension within 3 orders of magnitude (0.001 <
We < 1) and depends mainly on the bulk turbulence properties. Diffusion rates for six
different gases are calculated corresponding to Schmidt numbers ranging from 1 to 100.
The bubble size with respect to the Taylor micro-scale length (A = \/15vu2, /€) is in the
range 1.72—2.82, and the box size is L = 7.5dy. The turbulence properties and simulation
parameters are given in Table 2. Th higher resolutions are used to properly resolve the
diffusion of mass and the bubble deformation dynamics, with effective resolution using
an adaptive mesh refinement of L10= 20, L11= 2! and L12 = 2'2. As will be discussed
in detail later, higher Schmidt numbers lead to thinner diffusive boundary layers which
require smaller grid sizes. The resolution of smallest momentum and mass length scales
are discussed in appendix A.

4.3. Mass transfer from the bubble to the surrounding turbulent flow

As the bubble moves with the flow, vortices of outer liquid come in contact with the
interface, as seen in Figures 4(a)-4(b). Molecular diffusion of gas around the bubble
interacts with the eddies of the flow and unsteady boundary layers are formed. The
corresponding concentration field for Sc = 1 and Sc = 10 are shown in figures 4(c)-4(d)
and 4(e)-4(f). It can be observed that the concentration fields have followed the flow field
due to advection. The gas with high diffusivity (Sc = 1) has thicker boundary layers
(Figures 4(c) and (d)) compared to the low diffusivity gas (Sc = 10, Figures 4(e) and (f))
subjected to the exact same flow. Figure 5 shows a 3D rendering of the same times of
the simulations, displaying the 3D concentration field around the bubble, as the bubble
moves in the flow, with the lower Sc = 1 in figures 5(a)-5(b), and higher Sc = 10 in figures
5(c)-5(d). Again, higher Schmidt numbers lead to thinner boundary layers around the
bubble for the same flow field.

We next compute the total transfer rates ky of gases corresponding to increasing
Schmidt numbers, and show their evolution with time in Fig. 6 for increasing numerical
resolution, dy/Ax = 136 points per bubble diameter (a,b) and dy/Az = 273 (points per
bubble diameter (c,d) and increasing turbulence Reynolds number Rey = 38 (a,c) and
Rey = 77 (b,d). The time is shifted to the bubble insertion time t; and normalized with
the eddy turn over time t.. After a short transient, the transfer rates reach a steady
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Figure 4: Mass diffusion from the bubble in turbulence at two different times, (t—tg)/t. =
1.5 (top row) and 2 (bottom row), showing a 2D planar cut of the magnitude of the
vorticity field (a)-(b) and concentration field for Rey = 77, Sc = 1 (Pe(®) = 205) (c)-(d)
and Rey = 77, Sc = 10 (Pe® = 2050) (e)-(f). The wake in the vorticity field presents
similarities with the structure of the concentration field. Higher Schmidt numbers lead
to a thinner boundary layer around the bubble and a thinner wake structure.

state for (¢t — to)/t. > 0.25. The transfer rates in steady state are compared to the
predicted rates given by Eq. (2.3), which are shown as dashed lines. At lower resolution
and Reynolds number (panel a, do/Ax = 136 and Re, = 38), all cases exhibit good
agreement between computed and predicted transfer rates, and results are unchanged
when the resolution is increased (see panel ¢, dy/Az = 273 and Rey = 38). The decrease
in rates over time for lower-Schmidt-number cases in figure 6(a) and 6(b) is due to a
considerable decrease in concentration of the transferred dilute gas. When increasing
the Reynolds number, higher resolution is required for the highest Schmidt numbers,
as visible in b and c. To summarize, the DNS results are in close agreement with the
predicted rates for 50 < Pe < 104, with Pe = wumsdo /2, the turbulent Péclet number.
For higher turbulent Péclet numbers(1.02 x 104, 2.05 x 10%), we observe an overpre-
diction of transfer rates. These results for the cases of Pe > 10 (yellow and black curves
in figure 6(b) and 6(d)) can be understood by considering the resolution of boundary
layers. The thickness of the hydrodynamic boundary layer, 6, around a spherical bubble
is of order O(Re™Y/?) (Moore 1963). The concentration boundary layer thickness d; o
8, Sc~1/? (Levich 1962; Bothe & Fleckenstein 2013), scales with the bubble diameter dy,
and is given by, 0 /doy ~ Pe™ /2. The numerical framework used in the present work uses
adaptive mesh refinement with respect to the norm of the second-derivative of velocity
and concentration (van Hooft et al. 2018), with an error threshold of 0.2 times the average
of fields over the entire domain. The average of concentration fields are very small as
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Figure 5: 3D rendering of the concentration field for (¢t — ¢)/t. = 1.5 (top row) and 2
(bottom row). (a)-(b) Concentration field for Rey = 77, Sc = 1 (Pe®) = 205) and (c)-(d)
Concentration field for Rey = 77, Sc = 10 (Pe'¥ = 2050). Thinner boundary layers are
observed at higher Schmidt numbers.

most of the domain has trace amounts gas concentration. This leads to a resolution of
the boundary layers ranging from 40 grid points (Pe ~ 50, J,/dy =~ 0.13, 0 /do =~ 0.13)
to 3 grid points (lgé ~ 2 x 104, §,/dy ~ 0.07, 61/dp ~ 0.007). When the resolution is
increased, we are able to resolve thinner boundary layers, hence higher Péclet numbers
(1.02 x 10%, 2.05 x 10%), as shown in figure 6(b) and 6(d) where the rates for Pe > 10*
are converging to the predicted value as the resolution increases (L11 in solid lines and
L12 in dotted lines).

Finally, Figure 7 shows the Sherwood numbers obtained from the bubble mass transfer
in homogeneous and isotropic turbulence simulations for a wide range of turbulent Péclet
numbers (50 < Pe < 2 x 10%) for three different resolutions (simulations conditions
are summarized in table 2). Very good agreement is observed between Eq. (2.3), up to

Pe ~ 10%. As such, Figure 7 validates Eq. (2.3), which predicts the transfer rates from
the bubble in homogeneous and isotropic turbulent flow. We note that for Pe ~ 2 x 104,
an effective resolution L12 brings the simulated transfer rate closer to our theoretical
prediction, thanks to increased resolution in the turbulent-diffusive boundary layer next
to the bubble interface. We recall that Figure 7 shows the scaling for the transfer rate ky,
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Figure 6: Non-dimensional mass transfer rates Sh as a function of time, as the bubble is
exposed to the turbulent flow. (a,b) Lower resolution do/Az = 136 (level 10), for Rey =
38 (a) and Rey = 77 (b). (c,d) Higher resolution (solid line for level 11 dy/Axz = 273,
dotted line for level 12 dy/Ax = 546), for Rey = 38 (c) and Rey = 77 (d). Dashed
lines represent the theoretical prediction, Eq. 2.3 for the different Schmidt numbers.
At steady state, very good agreement between simulations and theory is achieved for
Pe = Umsdo/ 21 = Sc(urmsdo/2;) < 10*, which corresponds to a diffusive boundary layer
0y, resolved with more than ~ 4 grid points.

as the non-dimensional Sh number, which reads Sh o« Re®?Sc%5 = v l?’é, and considering

the definition of the Sh number, this corresponds to k7, oc S¢™%° “”311705”’.

We note that Dodd et al. (2021) presents simulations of a droplet evaporating in
turbulence and their evaporation rates at early times before significant volume change
has occurred are in agreement with our model, as shown in figure 7.

The computed Sherwood numbers show convergence to the predicted value as the grid
resolution increases. For the thinner boundary layers, corresponding to Rey = 77 and
high Schmidt number at dg/Ax = 273 resolution, the total number of cells in the domain
reached 27.5 million and used 2.16 x 10* CPU hours for 0.5 eddy turnover time when
the transfer rates approach a steady state. A corresponding constant-resolution direct
numerical simulation would have required (2!)3 ~ 8.6 billion cells, which illustrates the
gain in efficiency brought by adaptive mesh refinement. It highlights the potential of
adaptive mesh refinement methods for complex two-phase flows at high Peclet number,
complementary to sub-grid scale modeling approaches.

We note that in §2, we have proposed the large-scale velocity fluctuations as the
controlling velocity scale. As already mentioned, another choice could have been the
velocity fluctuations at the scale of the bubble. Such a choice would not have changed
the results obtained in figure 7, as these velocities are similar at the Reynolds number at
the Taylor-scale we consider.

Finally let us comment that at high Reynolds numbers, in the case of a flat interface,
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Figure 7: The transfer rates (for (t—t¢)/t. > 0.2) with respect to Péclet number. Symbols

are for different Rey and resolution. For Pe < 104, the numerical results are grid converged
(first order) between L10 and L11, and agree very well with the theoretical prediction,

Eq. (2.3) Sh = 2(3)1/4\/%/77. For higher Péclet numbers (1.02 x 10%, 2.05 x 10%), higher
resolutions may converge to the prediction as visible when using L12 simulations. The
transfer rates from Dodd et al. (2021) corresponds to the transfer rates from simulations
of an evaporating drop at early times and agree with our data and model.

the scaling of the gas transfer is shifted from Re'/? to Re®/* due to the role of small
eddies in enhancing the gas exchange (Theofanous et al. 1976; Herlina & Wissink 2016).
Whether such a regime could be observed in the case of bubble mass exchange at high
Peclet or Reynolds number remains to be investigated.

5. Concluding remarks

We propose a simple theoretical formula for mass transfer rate of dilute gas from
bubbles for a dilute component within a turbulent flow, extending the classic formulation
from Higbie (1935) to a homogeneous and isotropic turbulent flow, by considering that
the renewal time-scale is controlled by the turbulence fluctuations at large scale and the

bubble size:
1/4
sn = 20 /e
LS

We developed and presented a versatile numerical framework to perform direct numerical
simulations of multiphase flows, and tested the theoretical prediction against numerical
simulations. The agreement between theory and numerical results is very good, as long as
the diffusive boundary layer thickness is correctly resolved. The numerical framework can
now be used for more complex physical configurations such as bubbles under a breaking
wave and bubble swarms.

The proposed theoretical scaling for dilute mass transfer is remarkable as it could be
leveraged for multi-scale systems, such as bubbles entrained by breaking waves in the
upper ocean, or bubbles evolving in turbulent swarms, and avoid solving for the very
high Schmidt number necessary in practical problems (for example the Schmidt number
of CO4 at 20 degrees is ~660). Finally, our formulation could also be used to improve
recent bubble-mediated mass transfer models which have, up to now, used the bubble
transfer rate in a quiescent flow (Liang et al. 2011; Deike & Melville 2018).
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As part of this work, a video has been published in the gallery of fluid motion (Farsoiya
et al. 2020c).
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Appendix A

The accepted resolution criteria for DNS in the literature (Overholt & Pope 1996;
Pope 2001; Schumacher et al. 2005; Dodd et al. 2021) is typically kyaxn > 1.5 and
kmaxnB > 1.5, where kyax, 7 and np are the maximum resolved wavenumber ky,x =
wN/L, the Kolmogorov and Batchelor scale respectively. The Kolmogorov length scale
n= /€)'/* defines the length scale at which viscous dissipation becomes dominant
while the Batchelor scale is defined as 75 = 1/+/Sc. Figure 8 shows these characteristic
length scales as functions of the turbulent Peclet number for all our simulations. In all of
the cases the Kolmogorov length scale is well resolved, with k,,4,m > 8, in agreement with
the fact that convergence is already achieved in lower resolutions as shown in figure 3a.
For the highest Péclet number, the Batchelor length scale is resolved up to knaxnp ~ 3.2
(refinement dy/Axz = 546). The boundary layer thickness ¢, > 2.5n and §;, > 2.57p.
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Figure 8: Numerical resolution of Kolmogorov (1) and Batchelor (ng) length scales as
functions of Peclet number, normalized by the maximum resolved wavenumber k.. =
7N/L.
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