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Azetidinimines as a novel series of non-covalent broad-spectrum inhibitors of β-lactamases with submicromolar activities against carbapenemases KPC-2 (class A), NDM-1 (class B) and OXA-48 (class D)

The occurrence of resistances in Gram negative bacteria is steadily increasing to reach extremely worrying levels and one of the main causes of resistance is the massive spread of very efficient β-lactamases which render most β-lactam antibiotics useless. Herein, we report the development of a series of imino-analogs of β-lactams (namely azetidinimines) as efficient non-covalent inhibitors of β-lactamases. Despite the structural and mechanistic differences between serine-β-lactamases KPC-2 and OXA-48 and metallo-betalactamase NDM-1, all three enzymes can be inhibited at a submicromolar level by compound 7dfm, which can also repotentiate imipenem against a resistant strain of Escherichia coli expressing NDM-1. We show that 7dfm can efficiently inhibit not only the three main clinically-relevant carbapenemases of Ambler classes A (KPC-2), B (NDM-1) and D (OXA-48) with Ki's below 0.3 µM, but also the cephalosporinase CMY-2 (class C, 86% inhibition at 10 µM). Our results pave the way for the development of a new structurally original family of non-covalent broad-spectrum inhibitors of β-lactamases.

INTRODUCTION

The discovery of penicillin was the start of a golden age for antibiotic therapy that is now threatened by exponentially increasing antibiotic resistance phenomena. [START_REF] O'neill | Tackling drug-resistant infections globally: final report and recommendations[END_REF] Because βlactams (Figure 1a) have been, and still are, the most prescribed antibiotics worldwide, resistance against them is particularly alarming. In Gram negative bacteria (GNB), the main mechanism of β-lactam resistance is due to the production of β-lactamases, enzymes capable of hydrolyzing β-lactams. Even carbapenems, the most powerful β-lactams, are not spared by metallo-β-lactamases (MBLs) such as NDM-1, IMP-1 or VIM-1 (class B) and/or by some clinically worrisome serine β-lactamases (SBLs) such as KPC-2 or OXA-48 (classes A and D, respectively). [START_REF] Nordmann | Superbugs in the coming new decade; multidrug resistance and prospects for treatment of Staphylococcus aureus, Enterococcus spp. and Pseudomonas aeruginosa in 2010[END_REF][START_REF] Nordmann | Global spread of carbapenemase-producing enterobacteriaceae[END_REF] The discovery of novel antibiotics acting on novel targets is difficult to foresee and strategies to overcome β-lactam resistance [START_REF] Worthington | Overcoming resistance to β-lactam antibiotics[END_REF][START_REF] Chellat | Targeting Antibiotic Resistance[END_REF] especially via β-lactamase inhibition [START_REF] González-Bello | Colchón, β-Lactamase Inhibitors To Restore the Efficacy of Antibiotics against Superbugs[END_REF][START_REF] Tooke | β-Lactamases and β-Lactamase Inhibitors in the 21st Century[END_REF][START_REF] Vázquez-Ucha | New Carbapenemase Inhibitors: Clearing the Way for the β-Lactams[END_REF] may preserve our current therapeutic arsenal. This strategy was implemented more than 30 years ago with the development of β-lactamase inhibitors (BLIs) including clavulanic acid and sulbactam (Figure 1b), but was not actively pursued until recently. Since 2012 several new broad-spectrum inhibitors of class A and class C β-lactamases have emerged. Of significant interest, avibactam [START_REF] Ehmann | Avibactam is a covalent, reversible, non-β-lactam β-lactamase inhibitor[END_REF][START_REF] Wang | The road to avibactam: the first clinically useful non-β-lactam working somewhat like a β-lactam[END_REF] and vaborbactam [START_REF] Hecker | Discovery of a cyclic boronic acid β-lactamase inhibitor (RPX7009) with utility vs class A Serine carbapenemases[END_REF] (Figure 1b) were approved by the FDA for clinical use whilst many of their congeners, in particular diazabicyclooctanes, [START_REF] Hirsch | In vitro activity of MK-7655, a novel β-lactamase inhibitor, in combination with imipenem against carbapenem-resistant Gram-egativne bacteria[END_REF][START_REF] Morinaka | a new diazabicyclooctane: mode of action as a serine β-lactamase inhibitor, antibiotic and β-lactam 'enhancer[END_REF][START_REF] Livermore | In vitro activity of cefepime/zidebactam (WCK 5222) against Gram-negative bacteria[END_REF][START_REF] Durand-Réville | ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii[END_REF][START_REF] Edoo | Synthesis of Avibactam Derivatives and Activity on β-Lactamases and Peptidoglycan Biosynthesis Enzymes of Mycobacteria[END_REF][START_REF] Peilleron | Synthetic approaches towards avibactam and other diazabicyclooctane βlactamase inhibitors[END_REF][START_REF] Davies | Discovery of ANT3310, a Novel Broad-Spectrum Serine β-Lactamase Inhibitor of the Diazabicyclooctane Class, Which Strongly Potentiates Meropenem Activity against Carbapenem-Resistant Enterobacterales and Acinetobacter baumannii[END_REF][START_REF] Durand-Réville | Discovery of an Orally Available Diazabicyclooctane Inhibitor (ETX0282) of Class A, C, and D Serine β-Lactamases[END_REF][START_REF] Bouchet | Diazabicyclooctane Functionalization for Inhibition of β-Lactamases from Enterobacteria[END_REF] and various boron derivatives (see below), including benzosiloxaboroles, [START_REF] Durka | Antimicrobial and KPC/AmpC inhibitory activity of functionalized benzosiloxaboroles[END_REF] are currently undergoing preclinical or clinical development. These compounds are mainly able to efficiently inhibit SBLs, including carbapenemases, of class A, C and sometimes D, but generally do not inhibit MBLs (class B). In parallel, continuous efforts for the development of efficient MBL inhibitors [START_REF] Linciano | Ten years with New Delhi metallo-βlactamase-1 (NDM-1): from structural insights to inhibitor design[END_REF][START_REF] Chen | Structure-based design of covalent inhibitors targeting metallo-β-lactamases[END_REF] have recently led to the identification of promising molecules that can bind to zinc atoms of the active site of MBLs, such as thiadiazole [START_REF] Falconer | Zinc Chelation by a Small-Molecule Adjuvant Potentiates Meropenem Activity in Vivo against NDM-1-Producing Klebsiella pneumoniae[END_REF] or thiols [START_REF] Tehrani | Thiol-containing metallo-β-lactamase inhibitors resensitize resistant Gram-negative bacteria to meropenem[END_REF][START_REF] Liu | S)-3-Mercapto-2-methylpropanamido)acetic acid derivatives as metallo-β-lactamase inhibitors: Synthesis, kinetic and crystallographic studies[END_REF] -including the clinically available antihypertensive agent L-captopril [START_REF] Klingler | Approved drugs containing thiols as inhibitors of metallo-β-lactamases: strategy to combat multidrug-resistant bacteria[END_REF] -, aspergillomarasmine A [START_REF] King | Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance[END_REF] and other iminodiacetic acids, [START_REF] Chen | Iminodiacetic Acid as a Novel Metal-Binding Pharmacophore for New Delhi Metallo-β-lactamase Inhibitor Development[END_REF][START_REF] Tehrani | Small Molecule Carboxylates Inhibit Metallo-β-lactamases and Resensitize Carbapenem-Resistant Bacteria to Meropenem[END_REF] rhodanines [START_REF] Xiang | Rhodanine as a potent scaffold for the development of broad-spectrum metallo-β-lactamase inhibitors[END_REF] and their thienolate derivatives [START_REF] Brem | Rhodanine hydrolysis leads to potent thioenolate mediated metallo-β-lactamase inhibition[END_REF] or heteroaryl compounds [START_REF] Mcgeary | Structure-activity relationship study and optimisation of 2-aminopyrrole-1-benzyl-4,5-diphenyl-1H-pyrrole-3carbonitrile as a broad spectrum metallo-β-lactamase inhibitor[END_REF][START_REF] Gavara | 4-Amino-1,2,4-triazole-3-thione-derived Schiff bases as metallo-β-lactamase inhibitors[END_REF] such as ANT2681 [START_REF] Davies | ANT2681: SAR Studies Leading to the Identification of a Metallo-β-lactamase Inhibitor with Potential for Clinical Use in Combination with Meropenem for the Treatment of Infections Caused by NDM-Producing Enterobacteriaceae[END_REF] or ANT431 [START_REF] Leiris | SAR studies leading to the identification of a novel series of metallo-β-lactamase inhibitors for the treatment of carbapenem-resistant enterobacteriaceae infections that display efficacy in an animal infection model[END_REF] (Figure 1c). Yet there is still no MBL inhibitor available for clinical use. Because of the emergence of bacterial isolates producing two or even three different carbapenemases of different classes, the development of inhibitors capable of simultaneously inhibiting SBLs and MBLs becomes a relevant, yet challenging, strategy. Apart from some polyphenolic derivatives [START_REF] Yu | Virtual target screening reveals rosmarinic acid and salvianolic acid A inhibiting metallo-and serine-β-lactamases[END_REF] and tetrazoles [START_REF] Torelli | Active-Site Druggability of Carbapenemases and Broad-Spectrum Inhibitor Discovery[END_REF] with moderate activities, only heteroaryl phosphonates [START_REF] Pemberton | Heteroaryl Phosphonates as Noncovalent Inhibitors of Both Serine-and Metallocarbapenemases[END_REF] and boronic acid derivatives [START_REF] Brem | Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates[END_REF][START_REF] Cahill | Cyclic boronates inhibit all classes of βlactamases[END_REF][START_REF] Krajnc | Bicyclic boronate VNRX-5133 inhibits metallo-and serine-β-lactamases[END_REF][START_REF] Parkova | Broad Spectrum β-Lactamase Inhibition by a Thioether Substituted Bicyclic Boronate[END_REF][START_REF] Wang | Structure-based development of (1-(3′mercaptopropanamido)methyl)boronic acid derived broad-spectrum, dual-action inhibitors of metallo-and serine-β-lactamases[END_REF] have been reported to efficiently inhibit both SBLs and MBLs (Figure 1d).

Rigid cyclic analogues of vaborbactam such as VNRX-5133 (currently in phase 3 clinical trials)

were the first molecules shown to inhibit all classes of β-lactamases (Figure 1d). [START_REF] Brem | Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates[END_REF][START_REF] Cahill | Cyclic boronates inhibit all classes of βlactamases[END_REF][START_REF] Krajnc | Bicyclic boronate VNRX-5133 inhibits metallo-and serine-β-lactamases[END_REF][START_REF] Parkova | Broad Spectrum β-Lactamase Inhibition by a Thioether Substituted Bicyclic Boronate[END_REF] VNRX-5133 exhibits submicromolar inhibitory activity against several clinically important MBLs (NDM-1, VIM-1 or VIM-2) and SBLs (TEM-116, CMY-2 or OXA-10). Very recently, thiol/boronic acid hybrids (such as MS18) were developed and demonstrated interesting dual inhibition properties against SBLs and MBLs. [START_REF] Wang | Structure-based development of (1-(3′mercaptopropanamido)methyl)boronic acid derived broad-spectrum, dual-action inhibitors of metallo-and serine-β-lactamases[END_REF] MS18 and its congeners also possess a rather broad scope but show limited effects against NDM-1 (class B) and OXA-48.

In this context, we sought to develop novel inhibitors that could block the activities of both SBLs and MBLs with comparable efficiency, specifically targeting the three clinically-relevant carbapenemases: KPC-2 (class A), NDM-1 (class B) and OXA-48 (class D).

We addressed this challenge by exploring uncharted chemical space around the β-lactam nucleus. Synthetically, the β-lactam ring can be obtained by the Staudinger [START_REF] Staudinger | Zur Kenntniss der Ketene. Diphenylketen[END_REF] [2+2] cycloaddition between a ketene and an imine (Scheme 1a). [START_REF] Pitts | Chemical synthesis of β-lactams: asymmetric catalysis and other recent advances[END_REF] We recently reported that carefully substituted ynamides [START_REF] Dekorver | Ynamides: A modern functional group for the new millennium[END_REF][START_REF] Evano | Ynamides: Versatile tools in organic synthesis[END_REF] can be used as precursors for the in situ generation of ketenimines [START_REF] Lu | The thriving chemistry of ketenimines[END_REF][START_REF] Dodd | Ketenimines Generated from Ynamides: Versatile Building Blocks for Nitrogen-Containing Scaffolds[END_REF] under mild conditions, which can be intercepted by various heterocyclic nucleophiles [START_REF] Hentz | Transition-metal-free tunable chemoselective N-functionalization of indoles with ynamides[END_REF] or can undergo a microwave-assisted [2+2] cycloaddition with imines. [START_REF] Romero | Base-Mediated Generation of Ketenimines from Ynamides: Direct Access to Azetidinimines by an Imino-Staudinger Synthesis[END_REF] By replacing the ketene (C=C=O) with the in situ generated iminoketene (C=C=NR), the reaction directly led to an azetidinimine (Scheme 1b). Such imino-β-lactams have only been rarely studied with respect to their synthesis [START_REF] Van Camp | Synthesis of N-(tosyl)azetidin-2-imines[END_REF][START_REF] Whiting | Copper-Catalyzed Reaction Cascade: Direct Conversion of Alkynes into N-Sulfonylazetidin-2-imines[END_REF] and never with respect to their biological and particularly, antibiotic activities. Taking into account their structural similarities with β-lactams, we thus decided to evaluate their inhibitory activity against carbapenemases. 

RESULTS AND DISCUSSION

Synthesis.

Taking into consideration the scope of our previously developed methodology and the fact that only aryl groups can be easily incorporated on the imine (Ar 1 ) and on positions 1 (Ar 3 ) and 4 (Ar 2 ) of the four-membered-ring, [START_REF] Romero | Base-Mediated Generation of Ketenimines from Ynamides: Direct Access to Azetidinimines by an Imino-Staudinger Synthesis[END_REF] we devised a convergent synthetic plan to access as many structural variations as possible on the azetidinimine scaffold. Scheme 2. General synthetic plan to prepare tri-arylated azetidinimines 7xyz.

The Ar 1 group originated from aniline 1x, which was protected by a Boc group to give 2x (Scheme 2). Coupling of 2x with brominated triisopropylsilylacetylene provided ynamide 3x after TBAF-promoted desilylation. Condensation of benzaldehyde 4y with aniline 5z afforded imines 6yz. The key [2+2] cycloaddition was performed with microwave heating and gave azetidinimines 7xyz with concomitant loss of the Boc protecting group. The para-phenols 7aam, 7abm and 7dfm were obtained from para-alkoxy derivatives 7aaa, 7aba,and 7dfc, respectively, by ether cleavage using BBr 3 (for OMe) or AlCl 3 (for OBn). Overall, more than forty compounds were prepared using this route.

Initial results.

The first compound evaluated was 7aaa, bearing a p-anisyl group on the endocyclic nitrogen. This aryl group was initially chosen for synthetic reasons as it should electronically favor the reaction and could also be easily derivatized. In the presence of 10 µM of 7aaa, the hydrolysis of imipenem by NDM-1 was inhibited by 90% with a K i between 1.0 and 2.4 µM (Table 1). This very encouraging initial result prompted us to try and gain more insights about this inhibitory activity by performing in silico molecular modeling studies (Figure 2). It appeared that the azetidinimine does not seem to behave like a β-lactam during metallo beta-lactamase catalyzed hydrolysis, in which case the carbonyl group is chelated by the zinc ions during the hydrolysis process. [START_REF] Linciano | Ten years with New Delhi metallo-βlactamase-1 (NDM-1): from structural insights to inhibitor design[END_REF] Here, the methoxy group of 7aaa, rather than the imino moiety, would be coordinated by both zinc ions in the active site and the fourmembered ring would act as a scaffold to position the two phenyl rings in hydrophobic regions of the enzyme active site. The Ar 1 phenyl substituent is surrounded by Ser251, Asp212, Ala 215 and Ser217 for both enantiomers, whereas the Ar 2 phenyl substituent is positioned near Asn220 in the R enantiomer and in the proximity of Val73, Ile 35, Met67 and Phe70 in the S enantiomer (Figure 2). The two enantiomers of 7aaa were separated by chiral chromatography and each tested separately. Both enantiomers showed similar inhibition of NDM-1 (95% inhibition of NDM-1 at 10 µM, with an IC 50 estimated below 5 µM) that correlates with the racemic mixture activity.

SAR for enzyme inhibitory activities.

A systematic structure-activity relationship study was then undertaken by varying the aromatic groups around the azetidinimine nucleus and targeting three carbapenemases: NDM-1, OXA-48 and KPC-2. Preliminary assessment of the compound activities was carried out by first measuring their inhibitory potential at 10 µM. When the inhibition was lower than 50 % at this threshold concentration, the K i was not determined. In addition to its NDM-1 inhibitory activity, 7aaa was also found to be moderately active against KPC-2 but did not have any activity against OXA-48 (Table 1). Variations of the Ar 3 ring showed that minimal modifications such as replacing the methoxy of 7aaa by an ethoxy (7aab) or a benzyloxy (7aac) led to an improvement of the activity against all three enzymes, 7aac in particular displaying a sub-micromolar activity against NDM-1 (K i = 0.2 µM). An activity profile similar to 7aab and 7aac was observed when the methoxy group was in the meta position (7aad).

However, the presence of two methoxy groups (7aaf), or a benzo[d] [START_REF] O'neill | Tackling drug-resistant infections globally: final report and recommendations[END_REF][START_REF] Nordmann | Global spread of carbapenemase-producing enterobacteriaceae[END_REF]dioxole moiety (7aag), led to a slight decrease of efficiency against NDM-1 and a loss of activity for OXA-48 and KPC-2. This was partially restored by incorporation of a 2,3-dihydrobenzo[b] [START_REF] O'neill | Tackling drug-resistant infections globally: final report and recommendations[END_REF][START_REF] Worthington | Overcoming resistance to β-lactam antibiotics[END_REF]dioxane, as 7aah was found to be quite similar to 7aad in terms of inhibition profile. While the 3,4,5-trimethoxy derivative 7aai proved ineffective (which could also be due to its low solubility), aniline-derived compound 7aaj was found to inhibit all three enzymes with K i 's of 4.62, 0.8 and 2.41 µM, for NDM-1, OXA-48 and KPC-2 respectively. The incorporation of an iodine atom (7aak) on the para position led to solubility issues preventing data from being obtained for OXA-48 and KPC-2 although the anti NDM-1 activity could nevertheless be evaluated to be in the 4.0-5.0 µM range. The thiomethyl derivative 7aal was also poorly soluble in water, but a high inhibition of NDM-1 could still be estimated (K i < 0.5 µM), which is presumed to come from the strong affinity of the sulfur for the active site Zn ions. Finally, the free phenol 7aam was moderately active against KPC-2 and OXA-48 but again exhibited high inhibitory properties against NDM-1 ( K i = 0.36 µM). To conclude in this series of Ar 3 variations, the carbapenemase inhibitors that appeared the most promising (strong anti NDM-1 activity and moderate activity vs. OXA-48 and KPC-2) were p-oxyphenyl compounds and especially those bearing a benzyloxy (7aac) and a free hydroxy (7aam) group. a K i values were calculated only for inhibitions >50% at 10µM. b because of some solubility issues (presence of precipitate during the assay) the K i values were not averaged so a range is given instead. c the compound was contaminated by residues of heptane.

Color code: 

K i <0.5 µM K i <1.0 µM K i <10 µM IC 50 >10 µM
1.0-2.4 b 20% inhibition at 10 µM 1.4-3.6 b 1.0-2.4 b 1.3-2.3 b 2.2-5.0 b N.E N.E. N.E.
N.E.: no effect (at 10 µM); N. D.: not determined;

a K i values were calculated only for inhibitions >50% at 10µM. b because of some solubility issues (presence of precipitate during the assay) the K i values were not averaged so a range is given instead. c the compound was contaminated by residues of heptane.

Keeping a para-methoxyphenyl group as Ar 3 , variations of Ar 2 were then examined for activity and compared to 7aaa (Table 2). The p-chloro analogue (7aba) maintained a similar activity against NDM-1 although the anti-OXA-48 or anti-KPC-2 effects were largely lost. Both p-methoxy and p-fluoro analogues 7aca and 7ada were mostly inefficient on all three enzymes while the p-iodo, 3,5-dichloro and 2-naphthyl derivatives (7aea, 7aga and 7aha respectively) presented an interesting profile, being almost equipotent against NDM-1 and Color code: K i <0.5 µM K i <1.0 µM K i <10 µM IC 50 >10 µM KPC-2 but somewhat less effective against OXA-48. In contrast, pyridinyl compound 7aia was inactive on all three enzymes. From these results, two Ar 2 groups were selected: para-chloro and 2-naphthyl (as in 7aba and 7aha). At this stage, we wished to evaluate the influence of Ar 1 in both series (4-chloro in Table 3 and2-naphthyl in Table 4). It is worth noting that 4-chloro derivatives generally exhibit a greater ease of synthesis due to the superior reactivity of imine 6bz (or 6fz) in the [2+2] cycloaddition. Compared to 7aba, the introduction of a substituent at the para position of Ar 1 -whether a chloro (7bba), a bromo (7cba), an iodo (7dba), a trifluoromethyl (7eba) and to a lesser extent a methoxy group (7fba) -was highly beneficial for the anti-NDM-1 activity, with all compounds possessing K i values in the 0.24-0.33 µM range (Table 3). a K i values were calculated only for inhibitions >50% at 10µM. b because of some solubility issues (presence of precipitate during the assay) the K i values were not averaged so a range is given instead.

Color code: K i <0.5 µM K i <1.0 µM K i <10 µM IC 50 >10 µM

The K i 's for KPC-2 were also improved with values between 1.55 and 2.36 µM, except for 7fba. Additionally, the K i 's against OXA-48 dropped under the 1.0 µM threshold for two compounds (7cba and 7dba). A similar trend could be observed with an additional chloro at the 2 position of Ar 2 (2,4-dichloro series): the para-iodo (7dfa) and para-trifluoromethyl (7efa) derivatives were found to be the most potent pan-inhibitors of carbapenemases NDM-1, OXA-48 and KPC-2 in this series. Similarly, excellent anti-NDM-1 activities were observed in the Ar 2 = naphthyl series (Table 4), with four compounds (7dha, 7bhb, 7dhb and 7fhb) having K i 's below 0.3 µM. Activities against KPC-2 and OXA-48 were also significantly improved, with K i 's always being under or close to 5.0 µM, except in the case of parachlorinated derivatives 7bha and 7bhb for OXA-48 inhibition. Despite their high activity, the increased lipophilicity brought by the naphthyl group (for 7dhb logP theor = 6.94) caused products in this series to be very poorly soluble and to easily form aggregates in the assay media. Further studies of this series were thus discontinued.

Having witnessed the highly favorable effect of the para-iodo substitution on Ar 1 and keeping in mind the importance of the para-alkoxy moiety on Ar 3 , further study of the influence of Ar 2 was carried out with 7dba as reference (Table 5). All compounds in this series bearing a para-methoxy moiety on Ar 3 (first 6 entries) offered a rather broadspectrum of activity, most inhibiting all carbapenemases, with K i 's below 10 µM and even submicromolar for NDM-1 and OXA-48. Finally, keeping Ar 1 = p-iodophenyl and Ar 2 = 2,4dichlorophenyl (7dfa), variations on Ar 3 were then further investigated. Surprisingly (compared with 7aaa and 7aac in Table 1), the p-benzyloxyphenyl derivative (7dfc) proved to be slightly less active than 7dfa (Table 5). Compound 7dfc was then converted into a free phenol (7dfm) by AlCl 3 -mediated cleavage of the ether bond (see Scheme 3). This compound exhibited submicromolar K i 's for the three enzymes: 0.07 µM for NDM-1 and OXA-48 and 0.28 µM for KPC-2. a K i values were calculated only for inhibitions >50% at 10µM. Color code: K i <0.5 µM K i <1.0 µM K i <10 µM IC 50 >10 µM While the homologous benzylic alcohol analogue 7dfn was found to be less active, the corresponding carboxylic acid 7dfo (obtained by oxidation of 7dfn with KMnO 4 , see Scheme 3) was the most active compound on NDM-1 (which could be explained by strong interactions of the carboxylate function with the zinc ions of the active site) in this series with a K i of 0.035 µM, albeit at the expense of a complete loss of activity against OXA-48.

Scheme 3. Synthesis of compounds 7dfn and 7dfo.

Complementary assays.

Having found a lead (7dfm) in our novel azetidinimine BLI series, we then performed complementary assays to more accurately assess its therapeutic potential. First, it was screened at 10 µM against a wider panel of BLs (Table 6). At this concentration a complete inhibition of three NDM variants (NDM-4, NDM-7 and NDM-9) and of VIM-1 (class B) was observed. In contrast, VIM-52 (a His224Arg variant of VIM-1, [START_REF] Naas | Betalactamase database (BLDB) -structure and function[END_REF] class B) was not affected.

The extended-spectrum β-lactamase CTX-M-15 (class A) and the cephalosporinase CMY-2 (class C) were also inhibited (83% and 86%, at 10 µM, respectively). These latter results demonstrate that compound 7dfm can inhibit not only carbapenemases from 3 classes but, more generally, BLs from all four classes. In view of future in vivo assays, the phase I metabolic stability of 7dfa, 7dfc and 7dfm was evaluated and the three compounds were found to possess an excellent stability profile with a Cl int between 2.0 and 13.9 µL/min/mg protein in mouse hepatic cells (Table 7). Their toxicity was measured against both normal cells (MRC-5) and cancer cells (HCT-116) and although 7dfm was found to have an IC 50 in the 20-30 µM range, neither 7dfa nor 7dfc was found to be cytotoxic (IC 50 >100µM). Finally, all three compounds were evaluated for the repotentiation of imipenem against the clinical strain of E. coli that expresses NDM-1

(amongst other genes of resistance). [START_REF] Bonnin | Characterization of an IncFII plasmid encoding NDM-1 from Escherichia coli ST131[END_REF] In the absence of inhibitor, the MIC was above the resistance threshold at 16 µg/mL. For 7dfa, no effect was observed for concentrations up to 100 µM (although at 200 µM, the MIC was eventually divided by two). In the presence of 50 µM (i.e. 30 µg/mL) of 7dfc, a notable effect was witnessed as the MIC was divided by 4, bringing it down to the intermediate/resistant limit. The bacteria could be made susceptible again (with a MIC of 2 µg/mL) by using 100 µM (60 µg/mL) of the compound. An effect was observed for 20 µM (i.e. 10 µg/mL) of 7dfm, as the MIC was halved. Using 50 µM (i.e. 25 µg/mL) of 7dfm, it could be brought down to 4 µg/mL, but no improvement could be made using a higher concentration of the inhibitor. a Stability after 45 min in the presence of mouse hepatic microsome in the absence of NADPH; b CL int was determined using mouse hepatic microsomes and is given in µL/min/mg protein; c inhibition of cell proliferation;

d Minimum inhibitory concentration for imipenem using E. coli GUE-NDM1 [START_REF] Bonnin | Characterization of an IncFII plasmid encoding NDM-1 from Escherichia coli ST131[END_REF] clinical strain. No antibiotic effect was observed when the bacteria were incubated with 7dfa, 7dfc or 7dfm at 20 µM, 50 µM or 100 µM.

Molecular modeling

Compound 7dfm was selected for a more in-depth study of the interaction with NDM-1, KPC-2 and OXA-48. The docking of these enzymes with the two enantiomers of 7dfm was performed using GOLD [START_REF] Verdonk | Improved protein-ligand docking using GOLD[END_REF] and the results for NDM-1 are presented in Figure 3 and those for KPC-2 and OXA-48 in Figure S1 (see Supplementary Information). Both enantiomers of 7dfm appear to interact with NDM-1 in a similar manner as 7aaa (see Figure 2). The phenol moiety would be coordinated with the two zinc ions and the 4-iodophenyl substituent positioned in the same subpocket in both cases, possibly establishing a stabilizing halogen bond with the side-chain of Asp212. This would position the 2,4-dichlorophenyl substituent in a hydrophobic environment bordered by residues Val73, Ile35, Met67 and Phe70 for the S enantiomer (Figure 3b) and in the vicinity of Asn220 for the R enantiomer (Figure 3a).

A comparison between this modeling and the crystallographic structures of NDM-1 in complexes with various ligands published recently [START_REF] Torelli | Active-Site Druggability of Carbapenemases and Broad-Spectrum Inhibitor Discovery[END_REF][START_REF] Pemberton | Heteroaryl Phosphonates as Noncovalent Inhibitors of Both Serine-and Metallocarbapenemases[END_REF] would suggest that our compounds bind more deeply in the NDM-1 active site cavity and explore different subpockets (Figure S2, see Supplementary Information). Particularly interesting is the lack of inhibition observed for VIM-52, in contrast with VIM-1, as VIM-52 is a His224Arg variant of VIM-1 [START_REF] Naas | Betalactamase database (BLDB) -structure and function[END_REF] and this mutation occurs in the L3 loop, which is known to play a role in substrate recognition and specificity. [START_REF] Merino | Role of changes in the L3 loop of the active site in the evolution of enzymatic activity of VIMtype metallo-β-lactamases[END_REF][START_REF] Leiros | Structural and biochemical characterization of VIM-26 shows that Leu224 has implications for the substrate specificity of VIM metallo-β-lactamases[END_REF] Although its carbapenemase activity remains the same, the hydrolysis of ceftazidime and cefepime is slower. Superposition of the two VIM variants on the docking conformations of the 7dfm enantiomers shows that the loss of activity for VIM-52 could indeed be due to the impossibility of the compound to access the active site, as opposed to VIM-1. This difference is mainly due to the formation of a salt bridge between Arg224 and Glu225, which blocks a significant part of the binding pocket in VIM-52. This salt bridge cannot be formed between His224 and Glu225 in VIM-1. Under these conditions, only minor steric hindrance with the 4-iodo substituent of Ar 1 is observed in VIM-1, whereas important clashes are present between Ar 1 and the residues Arg224 and Glu225 in VIM-52 (Figure S3, see Supplementary Information). It is worth nothing that this different behavior of 7dfm towards VIM-1 and VIM-52 provides experimental support for the binding mode proposed here, confirming that 7dfm interacts with the L3 loop of NDM-1 and VIM-1, which is not the case with the metallo-β-lactamase inhibitors reported recently by Renslo and Chen [START_REF] Torelli | Active-Site Druggability of Carbapenemases and Broad-Spectrum Inhibitor Discovery[END_REF][START_REF] Pemberton | Heteroaryl Phosphonates as Noncovalent Inhibitors of Both Serine-and Metallocarbapenemases[END_REF] (Figure S2).

CONCLUSIONS

The evaluation of azetidinimines, imino-analogues of β-lactams, as β-lactamase inhibitors led to the development of a new family of non-covalent carbapenemase inhibitors. [START_REF] Torelli | Active-Site Druggability of Carbapenemases and Broad-Spectrum Inhibitor Discovery[END_REF][START_REF] Pemberton | Heteroaryl Phosphonates as Noncovalent Inhibitors of Both Serine-and Metallocarbapenemases[END_REF] Structural optimization led to the identification of phenol 7dfm as the lead compound, which can strongly inhibit class B MBL NDM-1, class A SBL KPC-2 and class D SBL OXA-48 with Ki's of 0.07, 0.28 and 0.07 µM, respectively, which compared quite favorably with the most recently developed MBL-specific and poly-carbapenemase inhibitors (see Figure 1). This molecule can also inhibit other MBLs (NDM-4, NDM-7, NDM-9 and VIM-1), as well as a class C cephalosporinase (CMY-2). Molecular modeling with NDM-1 showed that this compound does not mimic a β-lactam within the enzyme active sites and that both enantiomers can interact with the enzymes. While this gives hints towards the mode of action of these derivatives against NDM-1 as the prototypical MBL, there are chances that they act in a very different fashion against SBLs. Studies are underway to ascertain the mode of actions of this family of compounds against specific SBLs. The lead compound 7fdm and two submicromolar inhibitors of NDM-1 7dfa & 7dfc exhibited excellent metabolic stability and moderate to very low cytotoxicity. Significant repotentiation of imipenem against an NDM-1 expressing resistant E. coli strain was achieved with both 7dfm and 7dfc. Further refinement of the structure of these molecules will be pursued to improve the efficiency and the druglike properties of these β-lactamase pan inhibitors, before initiating in vivo studies.

MATERIALS AND METHODS

General Procedure for Azetidinimine Synthesis.

The imine (1.0 equiv.), the ynamide (2.0 equiv.) and the additive -silica gel (1.0 equiv.) or ZnOTf 2 (10 mol%) -were successively added in a microwave sealable tube and placed under argon before the addition of t-BuOLi -solid or 2.2 M in solution in THF -(2.0 equiv.) followed by extra dry DMF (0.3M). The sealed tube was placed in a microwave apparatus for 1 h at 100 °C. The crude material was purified by flash chromatography on silica gel or by preparative TLC. See Supporting Information for detailed synthetic procedures and characterizations of the compounds.

Cloning of the NDM-1, OXA-48 and KPC-2 Genes.

The sequences without the peptide signal (predicted by SignalIP 4.1 Server) of bla NDM-1 , bla OXA-48 and bla KPC-2 genes, encoding for the mature proteins: NDM-1( from amino 29 to 293), OXA-48 (from amino 23 to 261), KPC-2 (from amino 30 to 293) and deleted of the stop codon, were amplified by PCR using primers including NdeI and XhoI restriction sites. Then, PCR product was cloned into pET41b vector (Invitrogen®, Life Technologies, Cergy-Pontoise, France), using NdeI and XhoI restriction enzymes, to obtain a C-Term His8-tag. The accuracy of the recombinant plasmid was verified by sequencing, using a T7 promoter and T7 terminator with an ABI Prism 3100 automated sequencer (Applied Biosystems, Thermo Fisher Scientific, Les Ulis, France). The nucleotide sequences were analyzed by using software available at the National Center for Biotechnology Information website (http://www.ncbi.nlm.nih.gov).

Protein Expression and Purification for NDM-1, OXA-48 and KPC-2.

The recombinant plasmids harboring -lactamase genes were transformed into E. coli BL21 (DE3), and an overnight culture was used to inoculate 2 L of Luria Bertani medium broth containing 50 g/mL of kanamycin. Bacteria were cultured at 37 °C, until an OD of 0.6 at 600 nm was reached. The expression of the -lactamase genes was carried out at 37 °C for 3 h, with 1 mM of IPTG as an inducer. Cells were pelleted by centrifugation, at 6000 g for 15 min, then resuspended with 25 mM of phosphate sodium pH 7.4, 300 mM of K 2 SO 4 (for OXA -48) or NaCl (for NDM-1 and KPC-2), and 10 mM of imidazole. Bacterial cells were disrupted by sonication, and the bacteria debris was removed by 2 centrifugations: first at 10,000 g for 1 h at 4°C, and then the supernatants obtained were centrifuged at 96,000 g for 1 h at 4 °C.

The soluble fraction was filtered and then passed through a HisTrap TM HP column (GE Healthcare®, Velizy-Villacoublay, France). The recombinant proteins were eluted, using elution buffer (25 mM of phosphate sodium pH 7.4, 300 mM of K 2 SO 4 or NaCl, and 500 mM of imidazole). The eluted proteins were concentrated by using Vivaspin 20 (10000 MWCOPES Sartorius®, Aubagne, France), dialyzed against 0.1 M of HEPES (pH 7.5) buffer and 150mM K 2 SO 4 or NaCl and then loaded onto a HiLoad 16/600 Superdex 75 pg (GE Healthcare). The protein purity, estimated by SDS-PAGE (see Figures S4-S6 in the supplementary information), was more than 99%, and the pooled fractions were dialyzed against 100 mM sodium phosphate buffer pH 7 (and 50M ZnSO 4 for NDM-1) and concentrated, using Vivaspin columns. Protein concentration was determined by Bradford Protein assay (Bio-Rad, Marnes-La-Coquette, France).

In vitro β-lactamase inhibition assay.

Spectrophotometric assays were performed using ULTROSPEC 2000 UV spectrophotometer and the SWIFT II software (GE Healthcare, Velizy-Villacoublay, France). Assay conditions were as follows: 100 mM phosphate buffer, pH 7 (supplemented with 50 μM ZnSO 4 when testing NDM-1, and with 50 mM NaHCO 3 [START_REF] Studentova | Detection of OXA-48-type carbapenemase-producing Enterobacteriaceae in diagnostic laboratories can be enhanced by addition of bicarbonates to cultivation media or reaction buffers[END_REF][START_REF] Che | The Different Inhibition Mechanisms of OXA-1 and OXA-24 β-Lactamases Are Determined by the Stability of Active Site Carboxylated Lysine[END_REF] when testing OXA-48), 100 μM imipenem (Sigma-aldrich, Saint-Quentin Fallavier, France). The reaction was monitored at 297 nm, time course 600 seconds at 25 °C with 3 min of incubation (compound/carbapenemase). Enzyme concentration were : 1 nM for NDM-1, 1.7 nM for KPC-2 and 5.8 nM for OXA-48. Initial steady-state velocities from imipenem hydrolysis were measured at a wavelength of 297 nm. IC 50 values for each inhibitor compound were assayed at seven different concentrations, and performed in triplicate. The K i of each inhibitor was calculated according to the Cheng-Prusoff equation: K i = IC50/(1 + [S]/Km), where [S] is the imipenem concentration and Km is the Michaelis constant of the enzymes. [START_REF] Yung-Chi | Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction[END_REF] Percentage of inhibition was determined when the IC 50 of the compound was lower than 10 μM.

Minimal Inhibition concentrations.

MIC values were determined by broth microdilution, in triplicate, in cation-adjusted Mueller Hinton broth according to the Clinical Laboratory Standards Institute (CLSI, https://clsi.org/) guidelines. The enterobacterial clinical strain E. coli NDM-1 GUE expressing the carbapenemase NDM-1 was used. [START_REF] Bonnin | Characterization of an IncFII plasmid encoding NDM-1 from Escherichia coli ST131[END_REF] Experiments were performed in microtiter plates containing the medium with imipenem and inhibitors (dissolved in DMSO). Three inhibitor concentrations were tested: 50, 100 and 200 μM. Plates were incubated overnight at 37 °C for 18-24 h. In all MIC assays, a negative control (bacteria incubated with different concentrations of compound) was performed. No antibiotic effect was observed, for all the compounds, even with the highest concentration tested (200 M).

Incubations in hepatic microsomes.

Compounds (5 μM) were incubated in 0.5 mg/mL of pooled male mouse liver microsomes (from Biopredic, France), in 0.1 M phosphate buffer at pH 7.4 at 37 °C. After prewarming the mixture for 5 min, reactions were initiated by the addition of NADPH (1 mM). Incubations (400 µL) were performed at 37 °C for 0, 5, 15, 30 and 45 min in duplicate and the reaction immediately terminated by adding 200 μL of cold acetonitrile. Samples (including the control to evaluate non NADPH-dependent stability) were centrifuged and the supernatant fractions analyzed by UPLC-MS/MS with multiple reaction monitoring (MRM). Diphenhydramine was used as positive control in the mouse liver microsomes tests. The MRM area response of the analyte was set to 100% with the T0 incubation, the relative decrease in MRM area ratio intensity over time against that of the control (percent parent decrease) was used to determine the half-life (t1/2) of compounds in the incubation. Half-life values were calculated from the relationship: T1/2 (min) = 0.693/k, where k is the slope of the Ln concentration vs time curve. The intrinsic clearance (CLint) was calculated as: CLint = (0.693 x incubation volume (μL))/(t (min) x mg of microsomal protein).

Cell culture and proliferation assay.

Assays were carried out at the Institut de Chimie des Substances Naturelles by the CIBI screening platform. Cell lines were obtained from the American Type Culture Collection (Rockville, USA) and were cultured according to the supplier's instructions. Briefly, human MRC-5 cells were grown in DMEM supplemented with 10% fetal calf serum (FCS) and 1% glutamine and HCT116 colorectal carcinoma cells were grown in RPMI 1640 containing 10% FCS and 1% glutamine. All cell lines were maintained at 37 °C in a humidified atmosphere containing 5% CO 2 . Cell growth inhibition was determined by an MTS assay according to the manufacturer's instructions (Promega, Madison, WI, USA). Briefly, the cells were seeded in 96-well plates (2.5 × 103 cells/well) containing 200 μL of growth medium. After 24 h of culture, the cells were treated with the test compounds at different final concentrations.

After 72 h of incubation, 40 μL of resazurin was added for 2 h before recording absorbance at 490 nm with a spectrophotometric plate reader. The IC 50 value corresponded to the concentration of compound inducing a decrease of 50% in absorbance of drug-treated cells compared with untreated cells. Experiments were performed in triplicate. Paclitaxel was used as the reference compound. Whole-cell DNA of the enterobacterales expressing β-lactamases NDM-4, NDM-7, NDM-9, VIM-1, VIM-52, CTX-M-15 and CMY-2 was extracted, using the QIAamp DNA mini kit (Qiagen, Courtaboeuf, France) and used as a template to amplify all the different genes. The sequences without the peptide signal (predicted by SignalIP 4.1 Server, http://www.cbs.dtu.dk/services/SignalP-4.1/) encoding for the mature protein, were obtained by PCR amplification, using the forward primers, which included an NdeI restriction site, and the reverse primer which included an XhoI restriction site and a deletion of the stop codon of the gene to allow the expression of an C_Term His tag. Then, PCR product was cloned into pET41b vector (Invitrogen ® , Life Technologies, Cergy-Pontoise, France), using NdeI and XhoI restriction enzymes, to obtain a C-Term His 8 -tag. The accuracy of the recombinant plasmid was verified by sequencing, using a T7 promoter and T7 terminator with an ABI Prism 3100 automated sequencer (Applied Biosystems, Thermo Fisher Scientific, Les Ulis, France). The nucleotide sequences were analyzed by using software available at the National Center for Biotechnology Information website (http://www.ncbi.nlm.nih.gov). An overnight culture of E. coli BL21 DE3 harboring recombinant pET41b plasmids was used to inoculate 2 L of LB medium broth containing 50mg/L kanamycin. Bacteria were cultured at 37 °C until an OD of 0.6 at 600 nm was reached. The expression of the β-lactamase genes was carried out overnight at 22 °C with 0.2 mM IPTG as inducer. Cultures were centrifuged at 6000 g for 15 min and then the pellets were resuspended with the binding buffer (10 mM imidazole, 25 mM sodium phosphate pH 7.4 and 300 mM NaCl). Bacterial cells were disrupted by sonication and the bacterial pellet was removed by two consecutive centrifugation steps at 10000g for 1 h at 4 °C; the supernatant was then centrifuged at 96000g for 1 h at 4° C. The soluble fractions were filtered and then passed through a HisTrapTM HP column (GE Healthcare) and proteins were eluted with the elution buffer (500 mM imidazole, 25 mM sodium phosphate pH 7.4 and 300 mM NaCl). Finally, a gel filtration step was performed with 100 mM sodium phosphate buffer pH 7 and 150 mM NaCl with a Superdex 75 column (GE Healthcare). The protein purity was estimated by SDS-PAGE. The pooled fractions were dialyzed against 10 mM Tris-HCl pH 7.6, 50 µM of ZnSO 4 was added for NDM and VIM, then concentrated using Vivaspin columns (Sartorius, Aubagne, France).

The concentrations were determined by measuring the OD at 280 nm and with the extinction coefficients obtained from the ProtParam tool (Swiss Institute of Bioinformatics online resource portal). [START_REF] Artimo | ExPASy: SIB bioinformatics resource portal[END_REF] 4.10 Molecular modeling.

The three-dimensional structure of compound 7aaa [START_REF] Romero | Base-Mediated Generation of Ketenimines from Ynamides: Direct Access to Azetidinimines by an Imino-Staudinger Synthesis[END_REF] was retrieved from the Cambridge Structural Database [START_REF] Groom | The Cambridge Structural Database in Retrospect and Prospect[END_REF] (CSD refcode KEMJEU) and that of compound 7dfm was built starting from 7aaa by manual editing using UCSF Chimera package. [START_REF] Pettersen | UCSF Chimera-A visualization system for exploratory research and analysis[END_REF] The structures of enantiomers were generated using an in-house script. Molecular docking was performed using the GOLD suite [START_REF] Verdonk | Improved protein-ligand docking using GOLD[END_REF] (CCDC) and the GoldScore scoring function, with the structures 4HL2, [START_REF] Kim | NDM-1, the ultimate promiscuous enzyme: substrate recognition and catalytic mechanism[END_REF] 2OV5 [START_REF] Ke | Crystal Structure of KPC-2: Insights into Carbapenemase Activity in Class A β-Lactamases[END_REF] and 4S2P [START_REF] King | Molecular Mechanism of Avibactam-Mediated β-Lactamase Inhibition[END_REF] as receptors for NDM-1, KPC-2 and OXA-48, respectively.

The binding sites were defined as 15 Å radius spheres centered on the Zn1 ion for NDM-1 and on the OG atom of Ser70 for KPC-2 and OXA-48. In agreement with our previous studies [START_REF] Surpateanu | Evaluation of docking performance in a blinded virtual screening of fragment-like trypsin inhibitors[END_REF][START_REF] Colas | Virtual screening of the SAMPL4 blinded HIV integrase inhibitors dataset[END_REF][START_REF] Martiny | Blind Pose Prediction, Scoring, and Affinity Ranking of the CSAR 2014 Dataset[END_REF][START_REF] Selwa | Molecular docking performance evaluated on the D3R Grand Challenge 2015 drug-like ligand datasets[END_REF][START_REF] Selwa | Blinded evaluation of farnesoid X receptor (FXR) ligands binding using molecular docking and free energy calculations[END_REF][START_REF] Chaput | Blinded evaluation of cathepsin S inhibitors from the D3RGC3 dataset using molecular docking and free energy calculations[END_REF][START_REF] Elisée | Performance evaluation of molecular docking and free energy calculations protocols using the D3R Grand Challenge 4 dataset[END_REF] showing that an enhanced conformational search is beneficial, especially for large molecules, a search efficiency of 200% was used to better explore the ligand conformational space. All other parameters were used with the default values. The VIM-52 structure was generated from the crystallographic structure of VIM-1 (PDB code 5N5I) [START_REF] Salimraj | Crystal structures of VIM-1 complexes explain active site heterogeneity in VIM-class metallo-β-lactamases[END_REF] by the in silico mutation His224Arg using UCSF Chimera, [START_REF] Pettersen | UCSF Chimera-A visualization system for exploratory research and analysis[END_REF] followed by energy minimization of Arg224 and Glu225 to optimize the ionic interaction between these two residues. Images were generated using UCSF Chimera. [START_REF] Pettersen | UCSF Chimera-A visualization system for exploratory research and analysis[END_REF] Supporting Information

Figure 1 .

 1 Figure 1. Representative structures of (a) β-lactam antibiotics (in bold: year of entry to the market; in italics: year of resistance appearance); (b) serine-β-lactamase inhibitors (in bold: year of entry to the market) and inhibitory activities of avibactam and vaborbactam activities vs. carbapenemases; (c) metallo-β-lactamase inhibitors and inhibitory activity vs. NDM-1; (d) dual serine-/metallo-β-lactamase inhibitors and their representative inhibitory activities vs. carbapenemases.

Scheme 1 .

 1 Scheme 1. (a) Staudinger synthesis to access β-lactams; (b) imino-Staudinger synthesis to access azetidinimines.

Figure 2 .

 2 Figure 2. Docking of compound 7aaa in the active site of NDM-1 (left) and schematic drawing of its key interactions with the zinc ions (right). The R and S enantiomers of 7aaa are colored in pink and green, respectively, and the zinc ions are colored in purple.

Figure 3 :

 3 Figure 3: Docking conformations of the R (a) and S (b) enantiomers of compound 7dfm, in the active site of NDM-1 (class B) represented as gray surface; the zinc ions are colored in purple.
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 8 PCR, Cloning, Expression, and DNA Sequencing for NDM-4, NDM-7, NDM-9, VIM-1, VIM-52, CTX-M-15 and CMY-2.

4. 9

 9 Protein purification for NDM-4, NDM-7, NDM-9, VIM-1, VIM-52, CTX-M-15 and CMY-2.

Table 1 .

 1 Influence of Ar 3 on NDM-1, OXA-48 and KPC-2 inhibitory activities compared to 7aaa.

	K i (µM) or % inhibition a

N.E.: no effect (at 10 µM); N. D.: not determined;

Table 2 .

 2 Influence of Ar 2 on NDM-1, OXA-48 and KPC-2 inhibitory activities compared to 7aaa.

	K i (µM) or % inhibition a

Table 3 .

 3 Influence of Ar 1 on NDM-1, OXA-48 and KPC-2 inhibitory activities compared to 7aba and 7cfa.

	K i (µM) or % inhibition a

a Ki values were calculated only for inhibitions >50% at 10µM. b because of some solubility issues (presence of precipitate during the assay) the K i values were not averaged so a range is given instead. Color code: K i <0.5 µM K i <1.0 µM K i <10 µM IC 50 >10 µM

Table 4 .

 4 Influence of Ar 1 on NDM-1, OXA-48 and KPC-2 inhibitory activities compared to 7aha and 7ahb.

	K i (µM) or % inhibition a

Table 5 .

 5 Influence of Ar 2 compared to 7dba and of Ar 3 compared to 7dfa on NDM-1, OXA-48 and KPC-2 inhibitory activities

	K i (µM) or % inhibition a

N.E.: no effect (at 10 µM); N. D.: not determined;

Table 6 .

 6 Additional enzymatic inhibitory activities (% at 10 µM) for 7dfm

	Compound	NDM-4	NDM-7	NDM-9	VIM-1	VIM-52	CTX-M-15	CMY-2

Table 7 .

 7 Metabolic stability, cytotoxicity and imipenem repotentiation for 7dfa, 7dfc and 7dfm

		Stability			IC 50 (µM) c		MIC (µg/mL) d
		Non-NADPH a	CL int	b	MRC-5	HCT-116	0 µM	20 µM	50 µM	100 µM
	7dfa	83%	2.0		>100	>100	16	16	16	16
	7dfc	100%	7.6		>100	>100	16	16	4	2
	7dfm	96%	13.9	19.9	32.3	16	8	4	4
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