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Recursive estimators of integrated squared density derivatives

, the recursive estimators may achieve the parametric rate n -1 ; the striking fact is that their MSE are then equivalent to those of their nonrecursive versions, whereas the recursive nonparametric estimators are known for usually having larger MSE than their nonrecursive version. We also provide recursive estimators of the optimal bandwidth in the framework of density estimation.

Introduction

The estimation of quadratic functionals of a density and its derivatives has attracted great interest since [START_REF] Hall | Estimation of integrated squared density derivatives[END_REF] showed that such functionals can be estimated at the parametric rate. Let us cite, among many others, [START_REF] Bickel | Estimating integrated squared density derivatives: sharp best order of convergence estimates[END_REF], [START_REF] Birgé | Estimation of Integral Functionals of a Density[END_REF], [START_REF] Giné | Uniform in bandwidth estimation of integral functionals of the density function[END_REF], [START_REF] Laurent | Efficient estimation of integral functionals of a density[END_REF][START_REF] Laurent | Estimation of integral functionals of a density and its derivatives[END_REF][START_REF] Laurent | Adaptive estimation of a quadratic functional of a density by model selection[END_REF], and [START_REF] Laurent | Adaptive estimation of a quadratic functional by model selection[END_REF]. Let us mention that parametric rate appears also in density estimation of convolutions, see [START_REF] Du | Root-n consistency and functional central limit theorems for estimators of derivatives of convolutions of densities[END_REF], [START_REF] Giné | On local U-statistic processes and the estimation of densities of functions of several sample variables[END_REF], and Schick and Wefelmeyer (2004a, 2004b, 2007a[START_REF] Schick | Uniformly root-n consistent density estimators for weakly dependent invertible linear processes[END_REF], 2008).

Let X, X 1 , X 2 , . . . , X n be independent and identically distributed (i.i.d.) random variables with probability density f . For any function g and s ∈ N, let g (s) denote the derivative of order s of g; by convention g (0) = g. The estimation of the parameters I (m) = R [f (m) (x)] 2 dx, m ≥ 0, is necessary in different contexts, among which the data-driven bandwidth selection for density estimation. [START_REF] Hall | Estimation of integrated squared density derivatives[END_REF] introduced kernel estimators of these parameters, by setting

I (m) n = (-1) m n(n -1) i,j∈{1,...,n} i =j K (2m) hn (X i -X j ) ,
where K is a kernel, (h n ) a bandwidth, and, for h > 0,

K h (x) = h -1 K h -1 x .
With the development of Big Data, a major concern is the use of recursive estimators, whose updates are much more straightforward. In order to define a recursive version of the estimators of Hall and Marron, we fix an initial value Î(m)

1 ∈ R and we set, for n ≥ 2,

Î(m) n = (1 -γ n ) Î(m) n-1 + γ n (-1) m n -1 n-1 k=1 K (2m) hn (X n -X k ) , (1) 
where the stepsize (γ n ) is a positive sequence going to zero. The computational advantage of Î(m) n is clear, since its update requires O(n) operations, whereas that of I (m) n needs O(n 2 ) operations.

The recursive estimator [START_REF] Bickel | Estimating integrated squared density derivatives: sharp best order of convergence estimates[END_REF] is defined as a stochastic algorithm approximating the zero of the function x → I (m) -x. The most famous use of stochastic approximation algorithms in the framework of nonparametric statistics is the work of [START_REF] Kiefer | Stochastic estimation of the maximum of a regression function[END_REF], who built up an algorithm which allows the approximation of the maximizer of a regression function. Their well-known algorithm was widely discussed and extended in many directions (see, among many others, [START_REF] Blum | Multidimensional stochastic approximation methods[END_REF], [START_REF] Fabian | Stochastic approximation of minima with improved asymptotic speed[END_REF], [START_REF] Kushner | Stochastic approximation methods for constrained and unconstrained systems[END_REF], [START_REF] Hall | Martingale limit theory and its application[END_REF], [START_REF] Ruppert | Almost sure approximations to the Robbins-Monro and Kiefer-Wolfowitz processes with dependent noise[END_REF], [START_REF] Chen | Lower rate of convergence for locating a maximum of a function[END_REF], [START_REF] Spall | A stochastic approximation algorithm for large-dimensional systems in the Kiefer-Wolfowitz setting[END_REF], [START_REF] Dippon | Weighted means in stochastic approximation of minima[END_REF], [START_REF] Spall | A one-measurement form of simultaneous perturbation stochastic approximation[END_REF], [START_REF] Chen | A Kiefer-Wolfowitz algorithm with randomized differences[END_REF], [START_REF] Dippon | Accelerated randomized stochastic optimization[END_REF], and [START_REF] Mokkadem | A companion for the Kiefer-Wolfowitz-Blum stochastic approximation algorithm[END_REF]). Stochastic approximation algorithms were also introduced by [START_REF] Révész | Robbins-Monro procedure in a Hilbert space and its application in the theory of learning processes I[END_REF][START_REF] Révész | How to apply the method of stochastic approximation in the non-parametric estimation of a regression function[END_REF] to estimate a regression function at any point; his work was then extended by [START_REF] Mokkadem | The multivariate Révész's online estimator of a regression function and its averaging[END_REF]. Let us also mention the works of Cardot et al. (2012a[START_REF] Cardot | Fast clustering of large datasets with sequential k-medians : a stochastic gradient approach[END_REF] and Godichon-Baggioni (2016) on the use of stochastic approximation algorithms for the recursive estimation of the geometric median, and that of [START_REF] Douma | Online Estimation of Hazard Rate Under Random Censoring[END_REF] who give a two-time-scale algorithm estimating the hazard rate under random censoring.

We first compute the bias and the variance of Î(m) n , and then deduce the MSE of these estimators. The most striking result is for m = 0. Assuming only that f has smoothing of order greater than 2, and without needing higher-order kernels, we get the parametric rate. Moreover, an adequate choice of the stepsize (γ n ) makes the recursive estimator Î(0) n have the same asymptotic MSE as the nonrecursive estimator I Let us now consider the case m ≥ 1. If the smoothness of f is sufficient, it is possible to make Î(m) n converge with the optimal rate, but only by using a higher order kernel; in this case, the asymptotic MSE of Î(m) n is, thanks to an adequate choice of (γ n ), equal to that of

I (m)
n . On the other hand, if the smoothness of f is less, or if the use of a higher order kernel is not desired, then the behaviour of Î(m) n is more in line with what is expected from a recursive estimator, its asymptotic MSE being in particular slightly larger than that of

I (m) n .
Finally, we show how these results allow to estimate recursively the optimal bandwidth in the framework of density estimation, and give a recursive version of the Sheather-Jones (1991) bandwidth selector.

Assumptions and Main Results

Before stating our assumptions, let us recall that:

• f is said to have smoothness of order p > 0 whenever there is a constant M > 0 such that, for all x, y ∈ R, f (l) (x) -f (l) (y) ≤ M |x -y| α , where p = l + α and 0 < α ≤ 1.

• The kernel function K is said to have order k when

R x j K(x) =      1 if j = 0, 0 if j ∈ {1 . . . , k -1}, C = 0 if j = k. • A nonrandom positive sequence (u n ) n≥1 is said to be in GS (u * ), u * ∈ R, if lim n→+∞ n 1 - u n-1 u n = u * . (2) 
Condition (2) was introduced by Galambos and Seneta (1973) (see also [START_REF] Bojanic | A unified theory of regularly varying sequences[END_REF]). Typical sequences in GS (u * ) are, for b ∈ R, n u * (log n) b , n u * (log log n) b , and so on.

The assumptions to which we shall refer are the following.

(A0) The functions f (j) are integrable for all j ∈ {1, . . . , p}.

(A1) The kernel function K is symmetric, has order k, and has 2m derivatives which vanish when |x| goes to infinity.

(A2) (h n ) ∈ GS(-a) with a ∈ 0, 2 4m+1 .

(A3) (γ n ) ∈ GS(-1) and there exists γ such that lim n→∞ nγ n = γ.

In the sequel, we shall use the following notation.

b m,k = (-1) k/2 I (m+k/2) (k!) -1 R u k K(u)du v m = R f 2 (x)dx R [K (2m) (u)] 2 du , c m = R [f (2m) (x)] 2 f (x)dx -I (m) 2 .
Moreover, we let E(.), V(.), and C(., .) denote the expectation, the variance, and the covariance, respectively.

Proposition 1 Let (A0)-(A3) hold.

1. If f has smoothness of order p > 2m and if γ > max 1 2 , 1 -a(4m+1)

2

, then

V Î(m) n = γ 2 [2γ -2 + a(4m + 1)] n 2 h 4m+1 n v m + γ 2 + 4γ (2γ -1)n c m + o 1 n 2 h 4m+1 n + 1 n . 2. If f has smoothness of order p ∈]m, 2m] and if γ > max 1 -a(4m+1) 2 , 1-a(4m-2p) 2 , then V Î(m) n = γ 2 [2γ -2 + a(4m + 1)] n 2 h 4m+1 n v m + O 1 nh 4m-2p n + o 1 n 2 h 4m+1 n . 3. Let f have smoothness of order p > k + m. (a) If γ > ak, then E Î(m) n -I (m) = γh k n γ -ak b m,k + o h k n . (b) For all v < γ ≤ ak, E Î(m) n -I (m) = o n -v . 4. Let f have smoothness of order p ∈]m, k + m]. (a) If γ > a(p -m), then E Î(m) n -I (m) = O h p-m n . (b) For all v < γ ≤ a(p -m), E Î(m) n -I (m) = o n -v .
As mentioned in the introduction, the case m = 0 is special since the parametric rate is attainable with a kernel of order 2, and by assuming that f only has smoothing of order greater than 2. The following corollary gives the optimal MSE of Î(0) n in that case.

Corollary 1 (The case m = 0) Set k = 2 and m = 0, let (A0)-(A1) hold, and assume that f has smoothness of order p > 2. Then, the optimal MSE of Î(0) n is obtained for (h n ) satisfying (A2) with nh n → ∞ and nh 4 n → 0, and for (γ n ) satisfying (A3) with γ = 2. We then have

E Î(0) n -I (0) 2 = 4c 0 n + o 1 n .
Remark 1 The assumptions on (h n ) made in Corollary 1 are satisfied in particular when (A2) holds with a ∈]1/4; 1[.

Let us point out that the asymptotic MSE of Î(0)

n is then equal to that of the nonrecursive estimator [START_REF] Hall | Estimation of integrated squared density derivatives[END_REF]. This is quite surprising since recursive estimators in nonparametric statistics are known to usually have a larger MSE than their nonrecursive version.

I (0) n of
In the case m ≥ 1, it is possible also to have Î(m) n converge at the parametric rate. However, the use of higher order kernels is then necessary. 

E Î(m) n -I (m) 2 = 4c m n + o 1 n .
Remark 2 The assumptions on (h n ) made in Corollary 2 are satisfied in particular when (A2) holds with a ∈ 1 2 min{k;p-m} ; 1 4m+1 .

Remark 3

The assumptions of Corollary 2 imply that min{k, p -m} > 2m + 1/2. In particular, f must have smoothness of order p > 3m + 1/2, and the kernel must be of order k ≥ 2m + 1 when m ≥ 1.

We point out that, similarly to the case m = 0, the recursive estimator Î(m) Let us now consider the case when the smoothness of f is less or when the use of a higher order kernel is not desired.

Corollary 3 (Optimal rate with less smoothness in the case m ≥ 1) Set m ≥ 1, assume that f has smoothness of order p > 2m, and that (A0)-(A1) hold with k < 2m + 1/2 and k < p -m. Then, the optimal MSE of Î(m)

n is obtained for (γ n ) satisfying (A3) with γ = 2, for (h n ) =   (4m + 1)(k + 4m + 1)v m 2k(2k + 4m + 1)b 2 k,m n -2 1 2k+4m+1   ,
and we then have

E Î(m) n -I (m) 2 = ρ m,k (2k + 4m + 1) b 2 m,k 4m + 1 4m+1 2k+4m+1 v m k 2k 2k+4m+1 n -4k 2k+4m+1 (1 + o(1)), with ρ m,k = 1 2 2k 2k+4m+1 2k + 4m + 1 k + 4m + 1 1+ 4m+1 2k+4m+1 .
Let us mention that the optimal asymptotic MSE given in Corollary 3 equals ρ m,k times that of the nonrecursive estimator I (m) n of [START_REF] Hall | Estimation of integrated squared density derivatives[END_REF].

In the remaining of this section, we first show how the estimators Î(m) n can be used to estimate the optimal bandwidth for density estimation, and then give a recursive version of the Sheather-Jones (1991) bandwidth selector.

Recursive estimator of the optimal bandwidth for density estimation Let L be a twoorder kernel, let (α n ) be a bandwidth, and let

f n (x) = 1 n n j=1 L αn (x -X j ) and fn (x) = 1 n n j=1 L α j (x -X j )
denote the estimators of the density of X introduced by Rosenblatt (1956) and [START_REF] Wolverton | Asymptotically optimal discriminant functions for pattern classification[END_REF], respectively. The bandwidth minimizing the asymptotic MSE of f n and fn is

α * n = c f R L 2 (z)dz I (2) R z 2 L(z)dz 1/5
n -1/5 , with c f = 1 for the Rosenblatt estimator and c f = 3/10 for the Wolverton-Wagner estimator.

Replacing I (2) with Î( 2) n (defined with the optimal bandwidth γ n = 2 n ) in the expression of α * n straightforwardly leads to the recursive estimator α * n defined by the double algorithm obtained by setting ( Î(2)

1 , α * 1 ) ∈ R 2 and, for n ≥ 2,      Î(2) n = 1 -2 n Î(2) n-1 + 2 n(n-1) n-1 k=1 K (4) hn (X n -X k ) α * n = 1 -1 n Î(2) n-1 Î(2) n 1/5 α * n-1 .
Let us underline that Î(2) n has the same asymptotic MSE as the estimator I

n of [START_REF] Hall | Estimation of integrated squared density derivatives[END_REF], that is, O(n -8/13 ) when k = 2, and O(n -1 ) when k ≥ 6. So, there is no loss in the convergence rate when estimating α * n recursively by using Î(2) n , rather than nonrecursively by using

I (2)
n . Of course, we can also estimate the optimal bandwidth h * n , which minimizes the AMSE of Î(2) n . However, we rather give a recursive version of the widely used Sheather-Jones bandwidth selector for the estimation of I (2) . 

Recursive version of the

Ǐ(m) n = n -1 n I (m) n + 1 nh 2m+1 n J m ,
and choose the kernel such that

J m = (-1) m K (2m) (0) > 0 and r k = (-1) 1+k/2 R x k K(x)dx > 0.
(

We can define a recursive version of the Jones and Sheather estimator of I (m) , by reintroducing the nonrandom diagonals terms in the estimator Î(m) n : we set Ĩ(m)

1 ∈ R and, for n ≥ 2, Ĩ(m) n = (1 -γ n ) Ĩ(m) n-1 + γ n (-1) m n -1 n k=1 K (2m) hn (X n -X k ) . (4) 
The [START_REF] Jones | Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives[END_REF] and Sheather and Jones (1991), we set

(2m + 1/2)}, then E Ĩ(m) n -I (m) 2 = γh k n γ -ak b m,k + γ (γ -[1 -(2m + 1)a])nh 2m+1 n J m 2 + γ 2 [2γ -2 + a(4m + 1)] n 2 h 4m+1 n v m + o h 2k n + o 1 n 2 h 4m+2 n . Now, following
AMSE Ĩ(m) n = γh k n γ -ak b m,k + γ (γ -[1 -(2m + 1)a])nh 2m+1 n J m 2 + γ 2 [2γ -2 + a(4m + 1)] n 2 h 4m+1 n v m ,
we choose a kernel K satisfying Conditions (3), and we note that AMSE Ĩ(m) n is minimum when the bandwidth makes the leading bias terms cancel altogether.

Corollary 4 (Minimizing AMSE(

Ĩ(m) n )) Let the assumptions of Corollary 3 hold and let K satisfy Conditions [START_REF] Blum | Multidimensional stochastic approximation methods[END_REF].

AMSE( Ĩ(m) n ) is minimum for (γ n ) satisfying (A3) with γ = 2 -(4m + 1)(2m + k + 1) -1 , for h * * n = J m k! r k I (m+k/2) 1/(2m+k+1) n -1/(2m+k+1) ,
and we then have

AMSE * * Ĩ(m) n = 2 - 4m + 1 2m + k + 1 v m r k I (m+k/2) J m k! (4m+1)/(2m+k+1)
n -(2k+1)/(2m+k+1) .

It turns out that h * * n equals the bandwidth of Jones and Sheather (1991), which minimizes AMSE( Ǐ(m) n ) (which is defined as the sum of the leading variance term and of the squared sum of the two leading bias terms of Ǐ(m) n ). On the other hand, AMSE * * ( Ĩ(m) n ) is smaller than AMSE * * ( Ǐ(m) n ), with a ratio equal to 1 -(4m + 1)(4m + 2k + 2) (in particular equal to 5/14 in the widely used case m = 2 and k = 2). This is explained by the fact that, for both estimators, AMSE * * equals the leading variance term, which is well-known to be smaller for the recursive estimators than for their non-recursive version.

Now, the expression of h * *

n depends on I (m+k/2) ; the Sheather-Jones bandwidth selector is obtained by replacing this unknown integral with any consistent estimator (see [START_REF] Sheather | A reliable data-based bandwidth selection method for kernel density estimation[END_REF]). To define a recursive version of the Sheather-Jones bandwidth selector, we set ( Ĩ(m+k/2)

1 , h * * 1 ) ∈ R 2 and, for n ≥ 2,        Ĩ(m+k/2) n = 1 -2 n Ĩ(m+k/2) n-1 -2(-1) m+k/2 n(n-1) n k=1 K (2m+k) νn (X n -X k ) h * * n = 1 -1 n Ĩ(m+k/2) n-1 Ĩ(m+k/2) n 1/(2m+k+1) h * * n-1 ,
where ν n is a bandwidth chosen such that Ĩ(m+k/2) n is a consistent estimator of I (m+k/2) n .

Proofs

Let us first recall that, if f has smoothness of order p > m, then classical computations yield (see [START_REF] Hall | Estimation of integrated squared density derivatives[END_REF])

E (-1) m K (2m) hn (X 1 -X 2 ) = R 2 K(u)f (m) (x)f (m) (x -h n u) dudx, (5) 
V K (2m) hn (X 1 -X 2 ) = v m h -4m-1 n + o h -4m-1 n , (6) 
C K (2m) hn (X 1 -X 2 ) , K (2m) h k (X 1 -X 3 ) = O [h n h k ] -2m+p if p ≤ 2m, c m + o (1) if p > 2m. ( 7 
)
3.1 Proof of Proposition 1

Proof of Parts 3 and 4

In view of ( 1) and ( 5),

E Î(m) n -I (m) = (1 -γ n ) E Î(m) n-1 -I (m) + γ n E (-1) m K (2m) hn (X 1 -X 2 ) -I (m) = (1 -γ n ) E Î(m) n-1 -I (m) + γ n R 2 K(u)f (m) (x) f (m) (x -h n u) -f (m) (x) dudx. If p > m + k, it follows that E Î(m) n -I (m) = (1 -γ n ) E Î(m) n-1 -I (m) + γ n h k n b m,k (1 + o(1)).
Part 3(a) follows from the application of Lemma 1 in Mokkadem and Pelletier (2016). Part 3(b) follows by writing that, for v < γ ≤ ak,

E Î(m) n -I (m) = (1 -γ n ) E Î(m) n-1 -I (m) + γ n o n -v ,
and by applying Lemma 1 in Mokkadem and Pelletier (2016) again. Similarly, if p ≤ m + k, we have

E Î(m) n -I (m) = (1 -γ n ) E Î(m) n-1 -I (m) + γ n O h p-m n ,
and Part 4 follows from applications of Lemma 1 in Mokkadem and Pelletier (2016).

Proof of Parts 1 and 2

In view of (1),

V Î(m) n = (1 -γ n ) 2 V Î(m) n-1 + γ 2 n (n -1) 2 V n-1 k=1 K (2m) hn (X n -X k ) + 2(-1) m (1 -γ n ) γ n n -1 C Î(m) n-1 , n-1 k=1 K (2m) hn (X n -X k ) . (8) 
On the one hand,

V n-1 k=1 K (2m) hn (X n -X k ) = n-1 k=1 V K (2m) hn (X n -X k ) + k,j∈{1,...,n-1} k =j C K (2m) hn (X n -X k ) , K (2m) hn (X n -X j ) = (n -1)V K (2m) hn (X 1 -X 2 ) + (n -1)(n -2)C K (2m) hn (X 1 -X 2 ) , K (2m) hn (X 1 -X 3 ) . (9) 
On the other hand,

C Î (m) n-1 , n-1 k=1 K 
(2m) hn (X n -X k ) = C   (1 -γ n-1 ) Î(m) n-2 + (-1) m γ n-1 n -2 n-2 j=1 K (2m) h n-1 (X n-1 -X j ) , n-1 k=1 K (2m) hn (X n -X k )   = (1 -γ n-1 ) C Î(m) n-2 , n-2 k=1 K (2m) hn (X n -X k ) + (-1) m γ n-1 n -2 C   n-2 j=1 K (2m) h n-1 (X n-1 -X j ) , n-2 k=1 K (2m) hn (X n -X k )   + (-1) m γ n-1 n -2 C   n-2 j=1 K (2m) h n-1 (X n-1 -X j ) , K (2m) 
hn (X n -X n-1 )

  = (1 -γ n-1 ) C Î(m) n-2 , n-2 k=1 K (2m) hn (X n -X k ) + 2(-1) m γ n-1 C K (2m) h n-1 (X 2 -X 1 ) , K (2m) 
hn (X 3 -X 1 ) .

• If p > 2m then, in view of ( 6) and ( 7), we get from ( 9) and ( 10) that

V n-1 k=1 K (2m) hn (X n -X k ) = (n -1) h 4m+1 n v m (1 + o(1)) + (n -1)(n -2)c m (1 + o(1)) and C Î(m) n-1 , n-1 k=1 K (2m) hn (X n -X k ) = (1 -γ n-1 ) C Î(m) n-2 , n-2 k=1 K (2m) hn (X n -X k ) + 2(-1) m c m γ n-1 (1 + o(1)) = 2(-1) m c m (1 + o(1)).
In view of (8), we obtain

V Î(m) n = (1 -2γ n + o(γ n )) V Î(m) n-1 + γ 2 n nh 4m+1 n v m (1 + o(1)) + γ 2 n c m (1 + o(1)) + 4γ n n c m (1 + o(1)) = (1 -2γ n + o(γ n )) V Î(m) n-1 + 2γ n γ 2n 2 h 4m+1 n v m (1 + o(1)) + γ + 4 2n c m (1 + o(1)) .
A first application of Lemma 1 in Mokkadem and Pelletier (2016) in the case

n 2 h 4m+1 n = o(n) and a second one in the case n = O(n 2 h 4m+1 n ) yield V Î(m) n = γ 2 [1 -(2 -a(4m + 1))(2γ) -1 ] n 2 h 4m+1 n v m (1 + o(1)) + γ + 4 2 [1 -(2γ) -1 ] n c m (1 + o(1)),
which gives Part 1.

• If p ≤ 2m, then ( 9) and [START_REF] Dippon | Weighted means in stochastic approximation of minima[END_REF] give, in view of ( 6) and ( 7),

V n-1 k=1 K (2m) hn (X n -X k ) = (n -1) h 4m+1 n v m (1 + o(1)) + O n 2 h 4m-2p n and C Î(m) n-1 , n-1 k=1 K (2m) hn (X n -X k ) = (1 -γ n-1 ) C Î(m) n-2 , n-2 k=1 K (2m) hn (X n -X k ) + γ n-1 O 1 h 4m-2p n = O 1 h 4m-2p n ,
by application of Lemma 1 in [START_REF] Mokkadem | The multivariate Révész's online estimator of a regression function and its averaging[END_REF]. In view of (8), we then have

V Î(m) n = (1 -2γ n + o(γ n )) V Î(m) n-1 + 2γ n γ 2n 2 h 4m+1 n v m (1 + o(1)) + O 1 nh 4m-2p n .
A first application of Lemma 1 in Mokkadem and Pelletier (2016) in the case n 2 h 4m+1 n = o(nh 4m-2p n ) and a second one in the case nh 4m-2p

n = O(n 2 h 4m+1 n ) yield V Î(m) n = γ 2 [1 -(2 -a(4m + 1))(2γ) -1 ] n 2 h 4m+1 n v m (1 + o(1)) + O 1 nh 4m-2p n ,
which gives Part 2.

Proof of Corollary 1

Set γ > max 1 2 , 1 -a 2 . Since nh n → ∞, Part 1 of Proposition 1 implies that V Î(0) n = γ 2 + 4γ (2γ -1)n c 0 + o 1 n .
Part 3 of Proposition 1 together with the condition nh 4 n → 0 then yield

E Î(0) n -I (0) 2 = γ 2 + 4γ (2γ -1)n c 0 + o 1 n .
Since the function γ → (γ 2 + 4γ)/(2γ -1) reaches its minimum at γ = 2, Corollary 1 follows.

Proof of Corollary 2

Set γ > max 1 2 , 1 -a(4m+1)

2

. In view of Remark 3, p > 2m, so that Part 1 of Proposition 1 holds. Moreover, since nh 4m+1 n → ∞, we have

V Î(m) n = γ 2 + 4γ (2γ -1)n c m + o 1 n . (11) 
Let us now prove that 11), [START_REF] Du | Root-n consistency and functional central limit theorems for estimators of derivatives of convolutions of densities[END_REF], and the fact that the function γ → (γ 2 + 4γ)/(2γ -1) reaches its minimum at γ = 2.

E Î(m) n -I (m) 2 = o n -1 . (12) 

Proof of Corollary 3

Set γ > max 1 2 , 1 - a(4m + 1) 2 , ak , C 1 (γ) = γ 2 b 2 m,k (γ -ak) 2 , and C 2 (γ) = γ 2 v m 2γ -2 + a(4m + 1)
.

The application of Part 1 and Part 3(a) of Proposition 1 ensures that

E Î(m) n -I (m) 2 =      C 1 (γ)h 2k n + o(h 2k n ) if a < 2/(2k + 4m + 1) C 1 (γ)h 2k n + C 2 (γ)n -2 h -4m-1 n (1 + o(1)) if a = 2/(2k + 4m + 1) C 2 (γ)n -2 h -4m-1 n + o(n -2 h -4m-1 n ) if a > 2/(2k + 4m + 1).
To minimize the MSE of Î(m) n , the parameter a must thus be chosen equal to 2/(2k + 4m + 1). Now, let L n = n 2/(2k+4m+1) h n ; the MSE of Î(m) n can then be rewritten as

E Î(m) n -I (m) 2 = n -4k/(2k+4m+1) C 1 (γ)L 2k n + C 2 (γ)L -(4m+1) n (1 + o(1)).
The study of the function

x → C 1 (γ)x 2k + C 2 (γ)x -(4m+1) ensures that the bandwidth making the MSE of Î(m) n minimum is h n = (4m + 1)C 2 (γ)n -2 2kC 1 (γ) 1/(2k+4m+1)
and we then have

E Î(m) n -I (m) 2 = [C 1 (γ)] 4m+1 2k+4m+1 [C 2 (γ)] 2k 2k+4m+1   4m + 1 2k 2k 2k+4m+1 + 4m + 1 2k -(4m+1) 2k+4m+1   n -4k 2k+4m+1 (1 + o(1)) = [C 1 (γ)] 4m+1 2k+4m+1 [C 2 (γ)] 2k 2k+4m+1 4m + 1 2k 2k 2k+4m+1 2k + 4m + 1 4m + 1 n -4k 2k+4m+1 (1 + o(1)).
Since a has been chosen such that 2ak = 2 -a(4m + 1), we deduce that

E Î(m) n -I (m) 2 = γ 2 b 2 m,k (γ -ak) 2 4m+1 2k+4m+1 γ 2 v m 2γ -2ak 2k 2k+4m+1 4m + 1 2k 2k 2k+4m+1 2k + 4m + 1 4m + 1 n -4k
2k+4m+1 Since the function γ → γ 2 /(γ -ak) 2k+8m+2 2k+4m+1 reaches its minimum at γ = 2, Corollary 3 follows.

Proof of Proposition 2

In view of ( 4) and ( 5), and since p > k + m, we have 

E Ĩ(m) n -I (m) = (1 -γ n ) E Ĩ(m) n-1 -I (m) + γ n (n -1) n E (-1) m K (2m) hn (X 1 -X 2 ) -I (m) + γ n n ( -1) m K 

Proof of Corollary 4

We set c 1 (γ) = γ γ -ak and c 2 (γ) = γ γ -[1 -a(2m + 1)] , so that

AMSE( Ĩ(m) n ) = c 1 (γ)h k n b m,k + c 2 (γ) nh 2m+1 n J m 2 + C 2 (γ) n 2 h 4m+1 n ,
where C 2 (γ) is defined in [START_REF] Fabian | Stochastic approximation of minima with improved asymptotic speed[END_REF]. Following [START_REF] Jones | Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives[END_REF], we note that the O n -2 h -4m-2 n term in the squared bias dominates the O n -2 h -4m-1 n variance term, so that to minimize AMSE( Ĩ(m) n ), the bandwith h * * n must be chosen on the basis of the bias alone. More precisely, noting that c 1 (γ) = c 2 (γ) when (A2) is satisfied with a = (2m + k + 1) -1 , we get

h * * n = J m k! r k I (m+k/2) 1/(2m+k+1) n -1/(2m+k+1) .
For this optimal choice of bandwidth, we have

AMSE * * ( Ĩ(m) n ) = C 2 (γ)
r k I (m+k/2) J m k! (4m+1)/(2m+k+1)
n -(2k+1)/(2m+k+1) .

The study of the function γ → C 2 (γ) then ensures that the minimum AMSE * * ( Ĩ(m) n ) is achieved for γ = 2 -a(4m + 1) and Corollary 4 follows from a = (2m + k + 1) -1 and

C 2 2 - 4m + 1 2m + k + 1 = 2 - 4m + 1 2m + k + 1 v m .

Corollary 2 (

 2 Optimal parametric rate in the case m ≥ 1) Set m ≥ 1, assume that f has smoothness of order p, and let (A0)-(A2) hold with nh 4m+1 n → ∞ and nh 2 min{k,p-m} n → 0. Then, the optimal MSE of Î(m) n is obtained for (γ n ) satisfying (A3) with γ = 2, and we then have

  n satisfying the assumption of Corollary 2 has the same asymptotic MSE as the nonrecursive estimators I (m) n of Hall and Marron (1987).

  Sheather-Jones (1991) bandwidth selector for the estimation of I (m) Jones and Sheather (1991) define a non-recursive estimator Ǐ(m) n of I (m) by reintroducing the nonrandom diagonals terms in the estimator I (m) n of Hall and Marron (1987). More precisely, they set

  If p > k + m, then the condition nh 2k n → 0, together with Part 3(a) of Proposition 1 yields (12) in the case when γ > ak; moreover, in the case when γ ≤ ak, (12) is obtained by applying Part 3(b) of Proposition 1 with v ∈]1/2, γ[. Similarly, if p ≤ k + m, then the condition nh 2(p-m) n → 0, together with Part 4(a) of Proposition 1 yields (12) in the case when γ > a(p -m); moreover, in the case when γ ≤ a(p -m), (12) is obtained by applying Part 4(b) of Proposition 1 with v ∈]1/2, γ[. Corollary 2 follows from (

= ( 1 -,

 1 γ n ) E Î(m) n-1 -I (m) + γ n h k n b m,k (1 + o(1)) + γ n nh 2m+1 n J m (1 + o(1)).Two successive applications of Lemma 1 in Mokkadem and Pelletier (2016) yield E Ĩ(m) Proposition 2 follows from Part 1 of Proposition 1.
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