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ABSTRACT
The Student distribution has already been used to obtain robust maximum likelihood estimator
(MLE) in the framework of binary choice models. But, until recently, only the logit and probit bi-
nary models were extended to the case of multinomial choices, resulting in the multinomial logit
(MNL) and the multinomial probit (MNP). The recently introduced family of reference models,
well defines a multivariate extension of any binary choice model, i.e. for any link function. In
particular, this is the first extension of the binary robit to the case of multinomial choices. These
models define the choice probability for category j relative to an (interchangeable) reference cat-
egory. This paper highlights the robustness of reference models with Student link function, by
showing that the influence function is bounded. Inference of the MLE is detailed through the
Fisher’s scoring algorithm, which is appropriated since reference models belong to the family of
generalized linear models (GLMs). These models are compared to the MNL on the benchmark
dataset of travel mode choice between Sydney and Melbourne. The results obtained on this
dataset with reference models are completely different compared with those usually obtained
with MNL, nested logit (NL) or MNP that failed to select relevant attributes. It will be shown
that the travel mode choice is totally deterministic according to the terminal waiting time. In
fact, the use of Student link function allow us to detect the total artificial aspect of this famous
dataset.

1. Introduction
The use of Student distribution to obtain robust estimations has been introduced by Lange, Little, and Taylor [1989]

in the framework of linear regression. For a binary response variable, the use of Student distribution was suggested by
Albert and Chib [1993] as an alternative to logit or probit regression. Liu [2004] called this model the robit regression
model and demonstrated the robustness of the MLE. Koenker and Yoon [2009] studied the importance of the link
function in binary choice models with a focus on Student link function. But the variety of link functions defined in the
literature, is considerably decreasing when the number of alternative choices J is more than two. Only the logit and
probit binary models were extended to the case of multinomial choices, resulting in the MNL and the MNP. Contrarily
to the MNL, the probabilities of alternative choices have no analytic forms with the MNP. Their computation has to
be made through approximations and this complexity often leads the practitioner to neglect the MNP when J > 3.
Despite these difficulties, the extension of theMNPwithmultivariate Student error distribution in the context of random
utility maximisation (RUM), has recently been introduced by Dubey, Bansal, Daziano, and Guerra [2020]. But this
multinomial choice model (J ≥ 2) is not the natural extension of the binary robit model since the difference of two
Student independent errors does not follow a Student distribution. This is the case only with MNL and MNP since the
difference of two independent Gumbel errors follows a logistic distribution and the difference of two Gaussian errors
follows a Gaussian distribution.

An alternative way to extend link functions when J > 2, has been recently introduced by Peyhardi, Trottier,
and Guédon [2015] in the context of GLMs. The family of reference models was thereby introduced, for which all
alternatives are compared to a reference alternative. Since each of these J −1 comparisons is binary, the link function
through the linear predictor can be made with a cumulative distribution function (cdf). All usual econometric outputs
(willingness-to-pay, elasticities, . . . ) of reference models have been determined by Bouscasse, Joly, and Peyhardi
[2019]. The goal of the present paper is to demonstrate the robustness of reference models defined with Student link
function. A usual way to study the robustness is to study the influence function [Hampel, 1974]. This approach is well
established in the GLM framework for the class ofM estimators [Künsch, Stefanski, and Carroll, 1989]. We propose to
study the influence function for a reference model based on the score  = )l∕)�. We extend the results on robustness

thumbnails/cas-email.jpeg

jean.peyhardi@umontpellier.fr (J. Peyhardi)
thumbnails/cas-url.jpeg

https://www.researchgate.net/profile/Jean_Peyhardi (J. Peyhardi)
ORCID(s): 0000-0001-7511-2910 (J. Peyhardi)

Page 1 of 13Peyhardi: Preprint submitted to Elsevier

Robustness of Student link function in multinomial choice 
models
Dr Jean Peyhardia,∗,1 (Assistant Professor)
aInstitut Montpellierain Alexander Grothendieck, 34000 Montpellier

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1755534520300270
Manuscript_feb27b6d5041d65397307645e97ad158

https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1755534520300270


Student link function in multinomial choice models

of Student link function, shown by Liu [2004], to the case of J > 2 alternatives. More precisely the influence function
for a reference model is shown to be unbounded for the logistic and normal link functions and bounded for the Student
link function.

Student and logistic link function are then compared on the well known dataset of travel mode choice between Syd-
ney and Melbourne. This is certainly the most used benchmark dataset to compare different families of discrete choice
models [Greene, 2003, Hensher and Greene, 2002]. The MNL, the NL and the MNP models have been extensively
studied among this dataset, principally to highlight the limitation of the independence of irrelevant alternatives (IIA)
property. This paper presents the IIA property for reference models and relates it to invariance property under permu-
tations of alternatives. It will be shown that, even if the NL or the MNP model do not share this property, they fail, as
the MNL, to select relevant attributes. The model selection is clearly in favour of the Student link function against the
MNL, NL and MNP. It reveals that the travel mode choice is driven only by the terminal time. Plotting the observed
choices according to the terminal time, revealed that all individuals made the same choice for each given terminal time
value. Moreover, using a three dimensional plot, it is noticed that the design experiment takes a geometric form of a
cross. In fact, the use of Student link function allow us to highlight the total artificial aspect of this famous dataset and
thus reconsider classical results obtained in the usual literature [Greene, 2003, Hensher and Greene, 2002].

The present paper is organized as follows. The second section presents the family of reference models as an
extension of the MNL. The third section describes the invariance property of such models under permutations of the
alternatives and relates it to the IIA property. It is highlighted that a reference model is depending on the reference
alternative. Otherwise, the reference model is also depending on the degree of freedom parameter of the Student
distribution. In Section 4, the Fisher’s scoring algorithm is therefore firstly detailed for a given reference alternative
and a given degree of freedom. Then the inference procedure is described when these two parameters are unknown.
The influence function of a reference model is described according to the chosen link function, i.e. the chosen cdf. It
is thus easily seen that the influence function is bounded with Student cdf and unbounded with logistic or normal cdf.
Section 5 briefly presents the dataset. The model selection is then detailed, leading to a simple model with only the
terminal time as attribute. This section then backs to the dataset and highlights its artificial aspect, using a well chosen
plot of the dataset. It makes this dataset the perfect candidate to study the sensitivity of a model to different kind of
noise. Indeed the general cost, for instance, can be considered as a noise in attribute (i.e., the corresponding parameter
is null) and some observations can be considered as outliers (i.e., prediction and observation are the opposite). Section
6.1 presents a simulation that firstly studies the inference accuracy of the degree of freedom estimator and then the
sensitivity of the inference to the noise in attributes.

2. Reference models
We first recall the notations used all along the paper. The individual subscript will be omitted for convenience,

without loss of generality. Let Y denote the response variable corresponding to the choice with J the number of
alternatives. Let x ∈ ℝp denote the vector of p individual attributes and ! = {!j}j=1,…,J ∈ ℝqJ the vectors of
q alternative specific attributes. Let �j = P (Y = j) denote the probability of choosing the alternative j given the
attributes x and !.
2.1. Multinomial logit models

Reference models can be presented as an extension of the MNL. The MNL is classically presented by the J equa-
tions

P (Y = j) =
exp(�∗j )

∑J
k=1 exp(�

∗
k)
, j = 1,… , J , (1)

where �∗j is the predictor associated with alternative j generally assumed to be linear in attributes. Different logit
models are obtained according to the form of the linear predictors. They can be defined using individual attributes x
and/or alternative specific attributes !. In the following we will use the more general parametrization (containing both
individual and alternative specific attributes), i.e.,

�∗j = �
∗
j + !

t
j

∗ + xt�∗j

for j = 1,… , J . But these predictors �∗j are not identifiable and thus the intercept and slope parameters no more. By
convention, the last alternative J is considered as the reference alternative. The numerator and denominator of the
Peyhardi: Preprint submitted to Elsevier Page 2 of 13
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fraction in equations (1) are divided by exp(�∗J ). Thanks to the exponentiation identity exp(a+ b) = exp(a) exp(b), the
J equations (1) are equivalent to the J − 1 equations

P (Y = j) =
exp(�j)

1 +
∑J−1
k=1 exp(�k)

, j = 1,… , J − 1, (2)

where �j = �∗j − �∗J for all j = 1,… , J − 1, and consequently the probability of the reference alternative is given by

P (Y = J ) = 1
1 +

∑J−1
k=1 exp(�k)

.

This entails a translation of with respect to the reference alternative:
• alternative constants: �j = �∗j − �∗J ,
• individual attributes parameter: �j = �∗j − �∗J ,
• alternative specific attributes: !j − !J ,

Remark that the alternative specific parameter 
 = 
∗ stays unchanged. The translated predictors are given by
�j = �j + (!j − !J )t
 + xt�j , j = 1,… , J − 1,

where �1,… , �J−1, �1,… , �J−1 and 
 are identifiable parameters.
2.2. Extension of logit models

The equations (2) can be rewritten as
�j

�j + �J
=

exp(�j)
1 + exp(�j)

, j = 1,… , J − 1. (3)

The right part of these equations corresponds to the logistic cdf F (x) = ex∕(1 + ex). It is proposed to use another cdf.
In this paper, focus is made on the use of Student cdf denoted by F� , where � is the degree of freedom. The model is
described by the J − 1 equations

�j
�j + �J

= F�(�j), j = 1,… , J − 1, (4)

with

F�(x) =
1
2
+
xΓ

(

�+1
2

)

2F1
(

1
2 ,

�+1
2 ;

3
2 ; −

x2

�

)

√

�� Γ
(

�
2

) ,

where 2F1 denotes the hypergeometric function.
Otherwise, the vector of linear predictors �t = (�1,… , �J−1) can be written as the product of the design matrix Z

and the vector of parameters �t = (�1,… , �J−1, 
t, �t1,… , �tJ−1) where

Z =
⎛

⎜

⎜

⎝

1 (!1 − !J )t xt
⋱ ⋮ ⋱

1 (!J−1 − !J )t xt

⎞

⎟

⎟

⎠

.

The parametrization of the linear predictors �1,… , �J−1 is characterized by the design matrix Z. A reference model
is therefore specified by the choice of the cdf F and the design matrix Z. More generally, Peyhardi et al. [2015]
introduced an unifying specification of GLMs for categorical responses, including reference models as a special case.
This specification is based on three components (r, F ,Z) that characterize the equations:

rj(�) = F�(�j), j = 1,… , J − 1,

Peyhardi: Preprint submitted to Elsevier Page 3 of 13
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where � = (�1,… , �J−1). Three other ratios (adjacent, cumulative and sequential) can also be used but only if a total
ordering assumption is made among the J alternatives. In the following we will denote a model by its corresponding
(r, F ,Z) triplet. For instance the MNL is fully characterized by the triplet (reference, logistic, Z) and can thus be
viewed as a special case of reference models. It is considered as the canonical reference model since it corresponds
to the canonical link function in the framework of GLMs. All along this paper we will only use the reference ratio
rj(�) = �j∕(�j + �J ) since it is appropriate for non-ordered alternatives. It can be ensure by study the invariance
properties under permutations of the alternatives.

Otherwise, an interesting property of the family of Student distributions is that Cauchy, logistic, and normal dis-
tributions can be viewed as special cases. First, the Cauchy distribution is exactly the Student distribution with � = 1.
Albert and Chib [1993] note that "logistic quantiles are approximately a linear function of  (8) quantiles." In appli-
cation we will see that the (reference, F8, Z) model and the MNL give similar results. Finally, it is know that F�converges towards the normal cdf when � tends to infinity. In application we will see that the (reference, F20, Z)
model and the (reference, normal, Z) model give similar results. It should be remarked, to avoid confusion, that the
(reference, normal, Z) model and the MNP are different models. They are equivalent only in the binary case J = 2.

3. Invariance property under permutations of alternatives
3.1. Transposition of the reference alternative

It can be shown that the MNL, or equivalently the (reference, logistic,Z) model is invariant under all permutations
of alternatives. It means that a permutation of alternatives only implies a (linear) transformation of the parameter vector
� such that the fitted probabilities stay unchanged. In particular, the MNL is invariant under any transposition of the
reference alternative. It means that the choice of the reference alternative has no impact on the fitted probabilities. This
is quite different for (reference, F� , Z) models. They are invariant under all permutation except under transposition of
the reference alternative [Peyhardi et al., 2015]. We will therefore denote by (reference, F� , Z)j0 the model defined
with j0 as reference alternative, i.e., such that

�j
�j + �j0

= F�(�j), ∀j ≠ j0.

Otherwise, the J − 1 non-reference alternatives j ≠ j0 can be permuted without modifying the model. We will see in
the application that this invariance property of reference models will be crucial. The reference alternative has thus to
be selected as a part of the link function.
3.2. Independence of irrelevant alternatives

Let us remark that the total invariance property of the MNL is related to the IIA property. For non-canonical
reference models the IIA property partially holds, i.e., we have

�j
�j0

=
F�

1 − F�

{

�j + (!j − !j0 )
t
 + xt�j

}

, ∀j ≠ j0. (5)
These J − 1 ratio of probabilities are independent of other alternatives. On the contrary for two non-reference alter-
natives j ≠ j0 and k ≠ j0 we have

�j
�k

=
�j∕�j0
�k∕�j0

,

�j
�k

=

F�
1−F�

{

�j + (!j − !j0 )
t
 + xt�j

}

F�
1−F�

{

�k + (!k − !j0 )
t
 + xt�k

} .

Therefore these (J−12
) ratios of probabilities are depending on the reference alternative specific attributes !j0 . In the

case of canonical link (i.e., logistic cdf), the function F∕(1 − F ) turns out to be the exponential function and thus the
dependence disappears:

�j
�k

=
exp

{

�j + (!j − !j0 )
t
 + xt�j

}

exp
{

�k + (!k − !j0 )
t
 + xt�k

} ,
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�j
�k

= exp
{

�j + (!j − !k)t
 + xt(�j − �k)
}

.

4. Inference procedure
The inference procedure is first described for a (reference, F� , Z)j0 model with a fixed reference alternative j0 anda fixed degree of freedom �.

4.1. Fixed alternative reference j0 and degree of freedom �
4.1.1. Fisher’s scoring algorithm

Reference models belong to the set of GLMs and thus the Fisher’s scoring algorithm is easily computed. For
maximum likelihood estimation, the t + 1th iteration of Fisher’s scoring algorithm is given by

�[t+1] = �[t] −

{

E
(

)2l
)�t)�

)

�=�[t]

}−1
(

)l
)�

)

�=�[t]
,

where l denotes the log-likelihood among the dataset (yi,!i,xi)i=1,…,n. Using the chain rule and properties of the
exponential family of distributions, the score becomes the following product of matrices

)l
)�

=
n
∑

i=1

)li
)�

=
n
∑

i=1

)�i
)�

)�i
)�i

)li
)�i

)l
)�

=
n
∑

i=1
Zt
i
)�i
)�i

(yi − �i)

where �i ∶= (�i,j)j≠j0 , �i ∶= (�i,j)j≠j0 , �i ∶= (�i,j)j≠j0 and yi ∶= (yi,j)j≠j0 such that yi,j = 1 if the alternative j
is chosen by the individual i and yi,j = 0 otherwise. The parameter �i is the natural parameter of the multinomial
distribution, viewed as member of the exponential family. In this framework , it can be shown that �i,j = ln(�i,j∕�i,j0 ).Now, using the equation (5) we obtain �i,j = lnF�(�i,j) − ln{1 − F�(�i,j)} and thus

)�i
)�i

= Di = diagj≠j0
[ f�(�i,j)
F�(�i,j){1 − F�(�i,j)}

]

,

where f� denotes the probability density function (pdf) of the Student distribution with � degree of freedom, i.e.,

f�(x) =
Γ
(

�+1
2

)

√

�� Γ
(

�
2

)(

1 + x2
�

)(�+1)∕2
.

Following the same way, the Fisher’s information matrix is given by

E
(

)2l
)�t)�

)

= −
n
∑

i=1
Zt
i Di Cov(Yi) Di Zi,

with Cov(Yi) = diag(�i) − �i�ti. It could be remarked that this algorithm is simplified if the logistic cdf F is used
(instead of the Student cdf F�) since f = F (1 − F ) and therefore Di becomes the identity matrix of size J − 1.
4.1.2. Robustness of estimator

An usual way to study the robustness of the estimator is to study the influence function [Hampel, 1974]. It measures
the influence of a new observation on aM estimator. According to Künsch et al. [1989], the influence function of a
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new observation (y∗,!∗,x∗) on the MLE � of a GLM, is given by

IF{(y∗,x∗), �̂} =
{

E
(

)2l
)�t)�

)

�=�̂

}−1
(

)l∗

)�

)

�=�̂
,

where l (respectively l∗) denotes the log-likelihood computed on the full dataset {(yi,!i,xi)
}

i=1,…,n (respectively onthe new observation (y∗,!∗,x∗)). Since the left factor on the right hand side is not depending on the new observation,
it is sufficient to show that the score vector )l∕)� is bounded according to (y,!,x) ∈ {0, 1}J−1 × ℝqJ+p. Without
loss of generality, focus is made on one coordinate of this vector, i.e., for k ∈ {1,… , p} focus is made on quantity

sup
yj∈{0,1},!∈ℝqJ ,x∈ℝp

xk
f�(�j)

F�(�j){1 − F�(�j)}
(yj − �j).

The right part (yj − �j) lies in (−1, 1). The parameter � being constant, we can consider that xk and �j are equivalent.Focus is thus made on the superior bound on ℝ of the function
�f�(�)

F�(�){1 − F�(�)}
. (6)

This function being continuous on ℝ, we only study limit when � → −∞ or � → +∞.

lim
�→−∞

�f�(�)
F�(�){1 − F�(�)}

= lim
�→−∞

�f�(�)
F�(�)

.

As noted by Liu [2004], we have

lim
�→−∞

�f�(�)
F�(�)

= 1 − lim
�→−∞

(1 + �)�2

� + �2
= −�.

The other limit is given by

lim
�→+∞

�f�(�)
F�(�){1 − F�(�)}

= lim
�→+∞

�f�(�)
1 − F�(�)

.

By symmetry of the Student distribution we have

lim
�→+∞

�f�(�)
1 − F�(�)

= lim
�→+∞

�f�(−�)
F�(−�)

= �.

The influence function of a (reference, F , Z) model is therefore bounded if F is the Student cdf. On the contrary it is
unbounded when F is the logistic cdf since

�f (�)
F (�){1 − F (�)}

= �,

or if F is the normal cdf since
lim
�→−∞

�f (�)
F (�){1 − F (�)}

= lim
�→−∞

�2.

Let us remark that the influence function for Student link function is bounded since the degree of freedom � is fixed. If
� tends to infinity then the influence function is not bounded anymore. In fact, it turns out to be the case of the normal
link function. The three different behaviours of function 6 according to the three cdfs (Student, logistic and normal)
are well represented in Figure 1.
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4.2. Unknown alternative reference j0 and degree of freedom �
The Fisher’s scoring algorithm for a (reference, F� , Z)j0 model has been detailed for a given link function, i.e.,

for a given reference alternative j0 and degree of freedom �. The link function is here selected, by simply comparing
the log-likelihood of models for all values of j0 and �. First assume that the reference alternative is fixed. The aim is
to select � among (0,+∞). Let us note that Student distributions with different degrees of freedom F�1 and F�2 arenot connected by a linear transformation and thus lead to different models (reference, F�1 , Z) and (reference, F�2 , Z),
i.e, different likelihood maxima. That is why we have to estimate � contrarily to the location or scale parameter of the
cdf. In practice a finite discretization of � values is proposed and all corresponding models are compared using the
log-likelihood since the same parametrization is used (i.e., the same design matrix Z).

5. Application
Weuse the benchmark dataset of travel modes between Sydney andMelbourn used by Louviere, Hensher, and Swait

[2000], Greene [2003]. The dataset contains 210 observations of choice among J = 4 travel modes: air, bus, car and
train. The two considered alternative specific attributes were the general cost (GC) denoted by c = (cair, cbus, ccar, ctrain)and the terminal waiting time (TTime) denoted by t = (tair, tbus, tcar, ttrain). The two considered individual attributes
were the household income (Hinc) denoted by ℎ and the number of people travelling (PSize) denoted by p.
5.1. Model selection

Let us first remark that the designmatrixZ is depending on the reference alternativeZ = Zj0 . The linear predictorsare given by
�j = �j + (tj − tj0 )


1 + (cj − cj0 )

2 + (ℎ�1air + p�

2
air)1(j=air) (7)

for all j ≠ j0. This is the design proposed by Louviere et al. [2000] page 157. Using the bus as the reference alternative,for instance, the design matrix is given by

Zbus =
⎛

⎜

⎜

⎝

1 0 0 tair − tbus cair − cbus ℎ p
0 1 0 tcar − tbus ccar − cbus 0 0
0 0 1 ttrain − tbus ctrain − cbus 0 0

⎞

⎟

⎟

⎠

.

Note that, using the car as reference alternative, gives the design matrix

Zcar =
⎛

⎜

⎜

⎝

1 0 0 tair cair − ccar ℎ p
0 1 0 tbus cbus − ccar 0 0
0 0 1 ttrain ctrain − ccar 0 0

⎞

⎟

⎟

⎠

,

since the terminal time of the car is null tcar = 0. In the following we will denote (reference, F , Z)j0 instead of
(reference, F , Zj0 )j0 to simplify the notations.
Selection of the link function For each reference alternative j0 ∈ {air, bus, car, train}, the cdf F was selected among
the family of Student cdfs (F�)�>0. In practice, the values of � was discretized into a fine grid between 0 and 2 (scale
of 0.05) and coarse grid between 2 and 20 (unit scale). The result was compared with the (reference, logistic, Z)j0model, i.e., the MNL, and the (reference, normal, Z)j0 model. The results are represented in Figure 2, corresponding
to the four reference alternatives. As expected we can check that:

• the log-likelihood of the (reference, F� , Z)j0 model converges towards those of the (reference, normal, Z)j0model when � → +∞, in the four situations j0 ∈ {air, bus, car, train},
• the log-likelihood of the (reference, F� , Z)j0 model equals those of the MNL for values of � around 8, in the

four situations j0 ∈ {air, bus, car, train},
• the MNL gives the same result, in the four situations j0 ∈ {air, bus, car, train} (invariance under permutation),
• the best (reference, F�∗ , Z)j0 models outperforms the MNL in the four situations j0 ∈ {air, bus, car, train}.
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The AIC obtained with the MNL is 385.83 as obtained by Louviere et al. [2000] page 157 (the log-likelihood is equal
to −185.91). The AICs obtained with the (reference, F�∗ , Z)j0 models were 387.3, 383.58, 300, 382.98 respectively
with the four reference alternatives j0 =air, j0 =bus, j0 =car, j0 =train and corresponding degree of freedom �∗ = 3,
�∗ = 20, �∗ = 0.2, �∗ = 1.35. The results are clearly in favour of the reference alternative j0 =car since the gain
in AIC is 85.83 compared to MNL results, i.e., 22% of the AIC. It is a very huge difference compared to the results
given in the literature [Louviere et al., 2000, Greene, 2003], obtained with MNL and also with NL. Note that AIC is
used here instead of log-likelihood because the additional parameter � has to be take into account in the comparison
between Student and logistic link functions.
Selection of relevant attributes After the selection of the link function (reference alternative and degree of freedom),
focus is made on parameter estimations and variables selection. Before to compare parameters of different models, a
first step is to choose a normalized space F of cdfs, i.e., with fixed location and scale values. The normalized space
Fq0.95 is proposed as the standard case; see [Bouscasse et al., 2019]. The estimates obtained for the (reference, normal,
Z)car and (reference, logistic, Z)car models have comparable scales compared to results obtained with the normalized
space F1; see the Supplementary Material. This step is useful to obtain comparable scale values but not necessary
since ratios of parameters stay constant for any normalized space. For instance, the willingness to pay for the terminal
time, given by WTP = −
1∕
2 (see [Bouscasse et al., 2019] for demonstration), stay constant when we change the
normalized space (e.g., F ∈ Fq0.95 or F ∈ F1).Let us now focus on parameter estimations obtained with (reference, F� , Z)car models. The behaviour of the
log-likelihood suggests that the MLE for � lies in (0, 1); see Figure 2.(C). Estimates of � are more chaotic near to 0
because of computation instabilities; see Figure 3. The log-likelihood is maximal for � = 0.2 but parameter estimates
are very high, especially for alternative constants; see Table 1. We thus chose the smallest � > 0.2 such that at least
the alternative constant estimates were significant (p-value less than 0.01). Results obtained for the (reference, F0.45,
Z)car model are summarized in Table 2. Even if the parameter estimates obtained with � = 0.2 have a different scale
compared to those obtained with � = 0.45 or the MNL, the ratio of parameters are comparable. For instance, the
ratios of alternative constant are nearly identical between the two models: �air∕�bus and �bus∕�train are equal to 1.9357and 0.91843 with � = 0.2 compared to 2.042 and 0.822 with the MNL; see Table 3 for the MNL results. The two
models specially differ by their slope parameters. The terminal time effect is favoured by the Student distribution.
The willingness to pay for the terminal time is −146.142 for the (reference, F0.45, Z)car versus −4.263 for the MNL.
Moreover, regarding the p-values and their associated test, the three other variables have no significant effect (p-values
more than 0.1).

We thus propose to use a more simple design with only the terminal time variable, i.e., we have �j = �j + tj
 for
j ∈ {air, bus, train}. Equivalently the design matrix is given by

Z′ =
⎛

⎜

⎜

⎝

1 0 0 tair
0 1 0 tbus
0 0 1 ttrain

⎞

⎟

⎟

⎠

.

Estimates of the (reference, logistic, Z′)car and (reference, F0.45, Z′)car models are summarized in Tables 4 and 5.
The (reference, logistic, Z′)car model poorly fits the data, obtaining a log-likelihood of −206.82 using only the TTime
versus −185.91 using all the variables. The (reference, F0.45, Z′)car model obtains log-likelihood of −146.68 versus
−145.89 using all variables, confirming the essential role of the terminal time in travel mode choices for this dataset.
To confirm these result, several (reference, F� , Z′)car models were estimated for � ∈ (0, 20]. The corresponding
log-likelihoods are represented in Figure 4.(A). Looking at the result obtained near to 0 in Figure 4.(B), we see that
more the degree of freedom is small better is the fit. But some problems occur in the standard error estimation; see the
estimates of the (reference, F0.05, Z′)car model in Table 6. As noticed by Koenker and Yoon [2009], it may be due to
poor evaluations of the pdf f� and the cdf F� when the degree of freedom � is small, impacting the Fisher’s scoring
algorithm computation. Nevertheless, the ratios of parameters stay consistent even if estimates are very small; see for
instance �air∕�bus = 1.943 and �bus∕�train = 0.979 whereas estimates are less than 10−4.

Finally, using the Student link function, it is concluded that only the terminal time is discriminant in travel mode
choice. This conclusion is totally different of those obtained with the MNL, which states that the general cost, the
household income and the number of people travelling are discriminant attributes. It should be noted that the NL (see
[Hensher and Greene, 2002] pages 169-170 or [Greene, 2003] pages 732-733) and the MNP (see [Greene, 2003] page
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735) also selects these attributes as relevant. To go a step further, we will see that these attributes can be considered
as noise regarding the travel mode choice.
5.2. Back on the dataset

The variables selection is totally different using the Student distribution instead of the logistic distribution. Using
only the terminal time attribute, the model fitting is represented in Figure 5. Indeed, the observed and predicted
probability P (Y = j|Y ∈ {j, j0}) are represented according to the terminal time of alternative j, where j0 is the
reference alternative car and j is the air alternative in Figure 5.(A), the bus alternative in Figure 5.(B) and the train
alternative in Figure 5.(C). Looking at these graphs, the dataset is very surprising since all observed proportions are
either 0 or 1. It means that all individuals, sharing the same terminal time value, take the same decision. In other
words, knowing the terminal time value, the travel mode choice is totally deterministic.

To check this surprising fact, the dataset has been reduced by conserving only the columns corresponding to the
terminal time of air, bus and train. Then, all individuals being in the same situation, i.e., with the same terminal
time values (for air, bus and train), have been aggregated and the weight (number of observations) has been added
as a new column. Looking at the three dimensional representation of terminal time values (tiair, tibus, titrain)i=1,…,n=210,in Figure 6 (left), we clearly see two groups with the same geometric form of a cross. For a better view, these two
groups have been represented separately. Let us focus on the first cross (similar comments can be made on the second
cross). This cross has a middle point with coordinates t0 = (69, 35, 34). All other points are obtained by fixing two
coordinates and letting free the last one. It corresponds to a theoretical design that aims to study the effect of terminal
time modification for a given alternative when the two other are fixed. Now let see in Figure 6 (right) the travel
mode chosen by individuals in each terminal time situation of the first cross. Recall that there is potentially several
observations for the same situation (the size of points are represented proportionally to the number of individuals).
For each terminal time situation, remark that all individual made the same travel mode choice. For instance, for the
middle point t0 = (69, 35, 34), all the 22 individuals have chosen the car alternative.

Now imagine that this point corresponds to the starting point of stated preference study. Since all the 22 individual
chose the car alternative in this situation, the terminal time values t0 = (69, 35, 34) can be considered as a threshold
value. Now let increase the terminal time value only for air alternative. The individual behaviour should take the car
again. But the data show that all individuals in situation t = (tair, 35, 34) with tair > 69 have chosen the air alternative.More generally we observe that all individuals in situation t = (tair, 35, 34) have chosen the air alternative for any
value of tair ≠ 69. The same observation is made when modifying the terminal time of bus or train and fixing the
two others. This cross design is totally deterministic, each of the three axes corresponding to exactly one travel mode
choice (air, bus or train) except the intersection that corresponds to the car choice. The same observation is made for
the other cross; see Figure 6 (left) that represents all the dataset. We can conclude that neither the design experiment,
or the travel mode choice corresponds to real observations in this dataset. In other words, this is totally improbable to
observe these data.
5.3. Sensitivity of the link function to the noise

One can distinguish two kinds of noise: a noise concerning the attributes and another concerning the choice of
alternative. The first kind corresponds to the addition of columns (variables) in the dataset and the second to the
addition of rows (individuals). The influence function measure the sensitivity of the model to the addition of an outlier,
i.e., an observation (y,w,x) for which the distance between y and the prediction � is high. Such an observation is
also called bad leverage point or contamination. It can be considered as a noise in the choice of alternative (response
variable in regression). But it is also interesting to study the impact on the model, of a noise in attributes (explanatory
variables in regression). It corresponds to the addition of attributes that have no influence on alternative choice, i.e.,
whose the true parameter is null. One talk about over-fitting when the model is to sensitive to this kind of noise. As
previously seen, the benchmark dataset of travel mode choice between Sydney and Melbourne is totally artificial. It is
perfect to highlight the sensitivity of the model to these two kind of noise. We propose to compare the sensitivity of
the logistic and Student link functions.
5.3.1. Noise in attributes

As previously seen, the alternative choice is totally deterministic knowing the terminal time. It means that the
general cost, the household income and the number of people traveling can be considered as noise in attributes. Fig-
ure 7 represents the probability of choosing alternative j versus j0 before and after the addition of theses three non-
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informative attributes. The results are here presented for alternative j = air and j0 = car, but similar results are
holding with alternatives bus and train. The first model is estimated, using only the terminal time; see Tables 4 and 5.
It corresponds to the equations

�j
�j + �j0

= F (�̂j + 
̂ tj). (8)

This probability is represented for all values of terminal time t between 0 and 100. The second model is estimated,
using the terminal time, the general cost, the household income and the number of people traveling; see Tables 2 and
3. It corresponds to the equations

�j
�j + �j0

= F
{

�̂j + 
̂1tj + 
̂2(cj − cj0 ) + �̂
1ℎ + �̂2p

}

.

This probability is represented for all values of terminal time t between 0 and 100 and for median (and also 25% and
75% percentiles) values of c, ℎ and p. It can be seen that amplitude in prediction error is small for Student link function
and high for logistic link function. The Student link function is clearly less sensitive to noise in attributes.
5.3.2. Noise in alternative choice

Now assume that only the terminal time is used as an attribute, i.e., the model is described by equation (8). Here
we focus on the conditional choice between bus and car alternatives since it is more representative, but similar results
are holding for the two other conditional probabilities. As previously seen, based on the Figure 5 (B), it can be seen
that the individual behaviour is to choose the bus alternative while t < 35 and the car alternative when t ≥ 35. Note
that the car alternative is chosen for two terminal time values: t = 35 and t = 53.

The perfect situation is therefore to observe only bus travel choice when t < 35 and only car travel choice when
t ≥ 35. These observation are represented by crosses in Figure 5 and are corresponding to a complete separation.
According to Albert and Anderson [1984], for logistic link function, there is not a finite MLE but the maximum of
likelihood is attained at infinity on the boundary of the parameter space. Therefore, if we stop the Fisher’s scoring
algorithm when the likelihood is closed to 1, we obtain a perfect classification of these completely separated data.
The model estimated on this dataset (complete separation) is represented with a dotted line in Figure 5. The second
situation corresponds to the addition of bus observations (resp. air and train) for terminal time values 35 ≤ t ≤ 53
(resp. for 64 ≤ t ≤ 69 and 34 ≤ t ≤ 44). These additional observations are represented by stars in Figure 5 and are
corresponding to an overlap situation. According to Albert and Anderson [1984], for logistic link function, the MLE is
finite and unique. The model estimated on this completed dataset (overlap) is represented with a dashed line in Figure
5. The third situation corresponds to the addition of bus observations (resp. air and train) for terminal time higher than
t = 53 (resp. 69 and 44). These additional observations are represented by points in Figure 5 and are corresponding
to outliers. This is an overlap situation with outliers. The model estimated on the full dataset (overlap with outliers) is
represented with a line in Figure 5. It can be seen that amplitude in prediction error is high for logistic link function
(Figure 5 left) and small for Student link function (Figure 5 right). The Student link function is clearly less sensitive
to outliers (noise in alternative choice).

6. Simulation study
To test the inference procedure of the degree of freedom, a simulation study is here proposed. The same attributes

values than in the benchmark dataset were used. Only the travel mode choice has been simulated according to the
(reference, Student�∗ ,Z′)car model with a fixed value for �∗. Only the terminal time attribute was used to simulate the
travel mode. Then the three other attributes (CG, Hinc and Psize) were added as noise and taken into account in the
estimation procedure. Note that, in order to choose coherent value for �t = (�air, �bus, �train, 
) with respect to "real"
observations, the model was first estimated using the true degree of freedom � leading to the MLE �̂ of �. For each
fixed value of the true parameter �∗, ten datasets were simulated. For each simulation, the (reference, Student, Zcar)and (reference, logistic, Zcar) models were estimated. It means that the slopes of the four attributes (TTime, GC, Hinc
and Psize) were estimated. This procedure of estimation/simulation/estimation was repeated with different values for
�∗ ∈ {0.1; 0.5; 0.8; 1; 2; 8}. Let see in Figure 8 a plot of two different datasets simulated with the same value �∗ = 0.5.
This figure also represents the estimated models (Student with a blue curve and logistic with a dark curve). This plot
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only focus on alternatives air and car. The points represents the observed proportions of air alternatives among air and
car (the point size is proportional to the number of individual in this situation). Note that these simulated proportions
lie in interval [0, 1]whereas the real proportions are either 0 or 1 (see Figure 5(A) of the paper). It means that simulated
datasets are more realistic than the true dataset.
6.1. Inference accuracy of �̂

For each fixed value of the true parameter �∗, ten datasets have been simulated and so ten value of �̂ have been
estimated. The corresponding box-plots are represented in Figure 9.a) for the six values of �∗ ∈ {0.1; 0.5; 0.8; 1; 2; 8}.
It can be seen that, contrarily to what can be expected, more the degree of freedom is small, more the inference accuracy
is good. A zoom of boxplots is proposed in Figure 9.b). When the true parameter �∗ is too high (e.g., �∗ = 8) then the
MLE �̂ tends to infinity. In application, the procedure gives the maximum value of the grid, i.e., �̂ = 20; see Figure
9.a). Figure 10 (resp. 11, 12 and 13) represents the log-likelihood obtained with the (reference, F� , Zcar) model for a
grid of � values between 0 and 20, when �∗ = 0.1 (resp. �∗ = 0.5, �∗ = 2 and �∗ = 8) was used for the simulation.
The blue line represents the log-likelihood obtained with (reference, normal=F∞, Zcar) model and the dark line those
obtained with the (reference, logistic, Zcar) model. These two log-likelihood are very similar whatever the �∗ value
used for the simulation. The true value �∗ used for the simulation is represented by a green vertical line. The MLE
�̂ is represented by a red vertical line. When �∗ = 8, regarding the shape of the log-likelihood of Student models, it
seems that the MLE �̂ tends to infinity. The inference accuracy is therefore very bad in this case. But the difference of
fitting between the (reference, F�∗ , Zcar) and (reference, F∞, Zcar) models in this case is so small that use one model
rather than the other does not really matter. Even if �̂ is very distant from �∗, the interpretation of attributes effects
will be very similar and the prediction of alternative choices to. On the contrary, when �∗ is near to zero, the inference
accuracy is really better and the gain in fitting is much higher. It is important since interpretation and prediction will
be very different between those obtained by the (reference, F�̂ ,Zcar)model and the (reference, F∞,Zcar)model in this
case.

Finally, remark that one can distinguish two kind of log-likelihood profile according to the order between the blue
line and the dark line (normal and logistic). When the blue line is above the dark line, the log-likelihood of Student
models is strictly increasing according to the � value, the MLE �̂ is very distant from the true value �∗ and there is no
gain to use Student instead of normal or logistic distribution. On the contrary, when the blue line is below the dark
line, the log-likelihood of Student models seems locally concave around the maximum, the MLE �̂ is closed to the true
value �∗ and more the �∗ value is close to zero more the fit of the Student model is better compared to the fit of normal
or logistic models. We can see these two profiles in the "real" application : the first profile in Figure 2.(B) and second
profile in Figure 2.(A), (C) and (D).
6.2. Sensitivity to noise

It should be first noted that an additional adjustment of the �̂ value is necessary when zero is too close because of
numerical accuracy problems in standard error estimations. It implies that all p-values are too high and thus cannot be
interpreted. This adjustment consists in increasing the � value until the p-value of intercepts be at least less than 0.01.
The true value �∗ is therefore over estimated.

Recall that the true models used for simulations, only contains the TTime as relevant attribute (� > 0). The three
other attributes (GC, Hinc and Psize) are not used for the simulation but added as noise variables for the estimation. In
order to compare the sensitivity to this noise of the Student and logistic models, one will count the number of estimated
model that only select the TTime as relevant attribute (i.e., the p-value of TTime is less than 0.05 and the p-values of
GC, Hinc and Psize are higher than 0.05) among the ten simulations. Results are summarized in Table 7. Student is
less sensitive than logistic, especially when the true value �∗ is close to zero.
6.3. Conclusions of the simulation study

Firstly, after a comparison between plots of simulated and real observed proportions of alternatives (Figure 8
and Figure 5), it is clear that, for a given transfer time, the travel mode choice is randomly distributed in simulated
dataset whereas it is deterministic in real dataset. There is no longuer any doubt about the total artificial aspect of the
benchmark dataset of travel mode choice between Sydney and Melbourne.

Secondly, the inference accuracy of the MLE �̂ is good for small values of the true parameter (i.e., �∗ ∈ (0, 1]) and
is degrading when the true parameter is higher than 1. Two profiles of log-likelihood have been identified for Student
models. In one profile, the MLE �̂ is reached at infinity and results obtained with Student link function are really close
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to those obtained with normal or logistic link functions. The use of Student link instead of logistic has a little interest in
this case. On the contrary, in the second profile, the MLE �̂ is reached close to zero and results obtained with Student
link function are really different of those obtained with normal or logistic link functions. The fit is much better and the
model is less sensitive to noise in attributes.

7. Discussion
After the introduction of referencemodels by Peyhardi et al. [2015] and the description of their economic outputs by

Bouscasse et al. [2019], this paper studies the robustness of reference models defined with Student link function. More
precisely, their influence function is shown to be bounded contrarily to the MNL, and they are thus less sensitive to
outliers. It is also empirically shown that Student link functions are less sensitive to over-fitting since non-informative
attributes are not selected. The empirical comparison with classical models has been made on a benchmark dataset.
It is thus easy to compare our results with several other models, well studied in the literature. To our knowledge,
the reference model with Student link function, is the first model that detects the total artificial aspect of this dataset,
simply because it is less sensitive to outliers and non-relevant attributes. A limitation of the present paper is the
inference procedure that separates the estimation of the link function (alternative reference and degree of freedom) and
the selection of relevant attributes through a test. It leads to problem with non-significant p-values for small values of
the degree of freedom. It could be improved by using penalized criteria, such as the LASSO for instance.

Furthermore, reference models take several advantages of the GLM framework, such as the simple probability
formulation, simple Fisher’s scoring algorithm. The GLM framework also eases the addition of random effects in
reference models. Finally, extension of reference models to the case of nested alternative has already been introduced
by Peyhardi, Trottier, and Guédon [2016]. All these properties make the reference model with Student link function,
a good candidate among the huge family of discrete choice models.

References
Adelin Albert and John A Anderson. On the existence of maximum likelihood estimates in logistic regression models. Biometrika, 71(1):1–10,

1984.
James HAlbert and Siddhartha Chib. Bayesian analysis of binary and polychotomous response data. Journal of the American statistical Association,

88(422):669–679, 1993.
Hélène Bouscasse, Iragaël Joly, and Jean Peyhardi. A new family of qualitative choice models: An application of reference models to travel mode

choice. Transportation Research Part B: Methodological, 121:74–91, 2019.
Subodh Dubey, Prateek Bansal, Ricardo A Daziano, and Erick Guerra. A generalized continuous-multinomial response model with a t-distributed

error kernel. Transportation Research Part B: Methodological, 133:114–141, 2020.
William H. Greene. Econometric Analysis. Pearson Education, New York, fifth edition, 2003.
Frank R Hampel. The influence curve and its role in robust estimation. Journal of the american statistical association, 69(346):383–393, 1974.
David AHensher andWilliamHGreene. Specification and estimation of the nested logit model: alternative normalisations. Transportation Research

Part B: Methodological, 36(1):1–17, 2002.
Roger Koenker and Jungmo Yoon. Parametric links for binary choice models: A fisherian–bayesian colloquy. Journal of Econometrics, 152(2):

120–130, 2009.
Hans R Künsch, Leonard A Stefanski, and Raymond J Carroll. Conditionally unbiased bounded-influence estimation in general regression models,

with applications to generalized linear models. Journal of the American Statistical Association, 84(406):460–466, 1989.
Kenneth L Lange, Roderick JA Little, and JeremyMGTaylor. Robust statistical modeling using the t distribution. Journal of the American Statistical

Association, 84(408):881–896, 1989.
Chuanhai Liu. Robit regression: a simple robust alternative to logistic and probit regression. Applied Bayesian Modeling and Casual Inference

from Incomplete-Data Perspectives, pages 227–238, 2004.
Jordan J Louviere, David A Hensher, and Joffre D Swait. Stated choice methods: analysis and applications. Cambridge University Press, 2000.
Jean Peyhardi, Catherine Trottier, and Yann Guédon. A new specification of generalized linear models for categorical responses. Biometrika, 102

(4):889–906, 2015.
Jean Peyhardi, Catherine Trottier, and Yann Guédon. Partitioned conditional generalized linear models for categorical responses. Statistical Mod-

elling, 2016.

Peyhardi: Preprint submitted to Elsevier Page 12 of 13



Student link function in multinomial choice models

Table 1
Summary results for the (reference, F0.2, Z)car model using the normalized space Fq0.95 .

Variables Estimate Std. Error p-value Test
Air 338.29 233.69 0.015492 *
Bus 174.78 124.53 0.025326 *
Train 190.29 129.36 0.021186 *
GC −0.41235 0.29453 0.031887 *
TTime −5.524 3.7516 0.020684 *
Hinc(air) 1.3504 1.2499 0.26482
PSize(air) −38.208 27.798 0.055836 ⋅
Loglikelihood −141.998
AIC 323.43
Pseudo R2 0.49958

Table 2
Summary results for the (reference, F0.45, Z)car model using the normalized space Fq0.95 .

Variables Estimate Std. Error p-value Test
Air 6.27604 2.21017 0.00384 **
Bus 3.00083 1.00849 0.00134 **
Train 3.04039 1.03155 0.00139 **
GC −0.00066 0.00246 0.682
TTime −0.09698 0.03289 0.00251 **
Hinc(air) 0.00166 0.0081 0.689
PSize(air) −0.21431 0.26504 0.433
Loglikelihood −145.89
AIC 307.79
Pseudo R2 0.48585

Table 3
Summary results for the (reference, logistic, Z)car model.

Variables Estimate Std. Error p-value Test
Air 7.3347943 0.945712 8.8810−15 ***
Bus 3.5916978 0.4754201 4.19610−14 ***
Train 4.3719054 0.477643 < 10−16 ***
GC −0.0235074 0.005081 3.71810−6 ***
TTime −0.1002126 0.010531 < 10−16 ***
Hinc(air) 0.0238154 0.011184 0.03322 *
PSize(air) −1.1738153 0.2580201 5.38210−6 ***
Loglikelihood −185.915
AIC 385.83
Pseudo R2 0.34481

Table 4
Summary results for the (reference, logistic, Z ′)car model.

Variables Estimate Std. Error p-value Test
Air 5.9486392 0.6667107 < 10−16 ***
Bus 3.1236823 0.4499032 3.84 10−12 ***
Train 3.5354086 0.4170212 < 10−16 ***
TTime -0.101083 0.0104822 < 10−16 ***
Log-likelihood -206.817
AIC 421.634
Pseudo R2 0.27115
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Table 5
Summary results for the (reference, F0.45, Z ′)car model using the normalized space Fq0.95 .

Variables Estimate Std. Error p-value Test
Air 6.59149 2.29819 0.00299 **
Bus 3.4303 1.23521 0.00425 **
Train 3.43999 1.23142 0.00393 **
TTime -0.107856 0.037306 0.0026 **
Log-likelihood -146.68
AIC 303.37
Pseudo R2 0.48307

Table 6
Summary results for the (reference, F0.05, Z ′) model using the normalized space Fq0.95 .

Variables Estimate Std. Error p-value Test
Air 2.74 10−5 8.25 10−5 0.59
Bus 1.41 10−5 4.32 10−5 0.564
Train 1.44 10−5 4.49 10−5 0.561
TTime −5 10−7 1.4 10−6 0.607
Log-likelihood −129.76
AIC 269.52
Pseudo R2 0.54271

�∗ 0.1 0.5 0.8 1 2 8
Student 6 10 8 9 9 8
logistic 0 4 8 8 9 8

Table 7
Number of estimated model (with Student or logistic link function) that only select the TTime as relevant attribute among
the ten simulated dataset and this according to each value of �∗.
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Figure 1: Function (6) with � = 0.5 (blue line), � = 1 (blue dashed-dotted line), � = 2 (blue dashed line), � = 3 (blue
dotted line) and also with the logistic cdf (dark line) and the normal cdf (green line).
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Figure 2: Log-likelihood of the (reference, normal, Z)j0 model (blue line), the (reference, logistic, Z)j0 model (dark line)
and the (reference, F� , Z)j0 models with � ∈ (0, 20] (blue points) in the four cases: (A) j0 = air, (B) j0 = bus, (C) j0 =
car and (D) j0 = train.
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Figure 3: Log-likelihood of the (reference,  (�), Z0)car models with � ∈ {0.05, 0.1,… , 1}.
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Figure 4: Log-likelihood of (reference, F� , Z ′)car models for (A) � ∈ (0, 20] (blue points), (reference, normal, Z ′)car model
(blue line) and (reference, logistic, Z ′)car model (dark line) on the real dataset; (B) zooms on curve for � ∈ (0, 1).
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Figure 5: Conditional probabilities P (Y = j|Y ∈ {j, j0}; tj) with j0 = car and (A) j = air (B) j = bus and (C) j = train,
according to (reference, F , Z ′) model where F is the logistic cdf (left) or Student F0.45 cdf (right). The corresponding
observed proportions are represented by crosses (stars and points), whose the size depends on the number of observations.
The color indicates the chosen alternative (blue for air, red for bus, green for train and dark for car).
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Figure 6: Three dimensional representation of observed terminal time values for A) the whole dataset B) the first group,
and their associated travel mode choice (blue for air, red for bus, green for train and black for car). The size of each point
is proportional to the number of individuals.
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Figure 7: Conditional probabilities P (Y = j|Y ∈ {j, j0}; tj) with j0 = car and j = air, according to (reference, F , Z ′)
model where F is the logistic cdf (left) or Student F0.45 cdf (right) and after addition of non informative attributes, with
median value (dashed line), 25% and 75% percentiles (resp. dotted and dashed-dotted line). The corresponding observed
proportions are represented by crosses (stars and points), whose the size depends on the number of observations. The
color indicates the chosen alternative (blue for air, red for bus, green for train and dark for car).
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Figure 8: Plot of air proportion (represented by points), among air and car alternatives, according to the transfer time.
The blue (resp. dark) curve represents the proportion estimated with the Student (resp. logistic) link function. The two
datasets (left and right) was simulated with �∗ = 0.5.
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Figure 9: Boxplots of estimated values �̂ according to a) �∗ ∈ {0.1, 0.5, 0.8, 1, 2, 8} and b) �∗ ∈ {0.1, 0.5, 0.8, 1} (zoom).
The true value �∗ (used for simulations) is also represented by a green cross. The median of each boxplot is represented
by a red line.
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Figure 10: Log-likelihood of the (reference, normal, Z)car model (blue line), the (reference, logistic, Z)car model (dark
line) and the (reference, F� , Z)car models (blue points) for A) � ∈ (0, 20] and B) � ∈ {0.05, 0.1,… , 0.8} (zoom) estimated
on a simulated dataset. The simulation was made with the (reference, F�∗ , Z)car model with �∗ = 0.1 (represented by a
green vertical line). The MLE �̂ is represented by a red vertical line.

0 5 10 15 20

Degree of freedom

−145

−140

−135

−130

−125

−120

Lo
gl

ik
el

ih
oo

d

0.0 0.2 0.4 0.6 0.8 1.0

Degree of freedom

−145

−140

−135

−130

−125

−120

Lo
gl

ik
el

ih
oo

d

Figure 11: Log-likelihood of the (reference, normal, Z)car model (blue line), the (reference, logistic, Z)car model (dark
line) and the (reference, F� , Z)car models (blue points) for a) � ∈ (0, 20] and b) � ∈ {0.05, 0.1,… , 1} (zoom) estimated on
a simulated dataset. The simulation was made with the (reference, F�∗ , Z)car model with �∗ = 0.5 (represented by a green
vertical line). The MLE �̂ is represented by a red vertical line.
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Figure 12: Log-likelihood of the (reference, normal, Z)car model (blue line), the (reference, logistic, Z)car model (dark
line) and the (reference, F� , Z)car models (blue points) for a) � ∈ (0, 20] and b) � ∈ {0.05, 0.1,… , 2} (zoom) estimated on
a simulated dataset. The simulation was made with the (reference, F�∗ , Z)car model with �∗ = 2 (represented by a green
vertical line). The MLE �̂ is represented by a red vertical line.
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Figure 13: Log-likelihood of the (reference, normal, Z)car model (blue line), the (reference, logistic, Z)car model (dark
line) and the (reference, F� , Z)car models (blue points) for a) � ∈ (0, 20] and b) � ∈ {2, 3… , 20} (zoom) estimated on a
simulated dataset. The simulation was made with the (reference, F�∗ , Z)car model with �∗ = 8 (represented by a green
vertical line). The MLE �̂ is represented by a red vertical line.
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