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Abstract

Semi-supervised clustering is a constrained clustering technique that organizes

a collection of unlabeled data into homogeneous subgroups with the help of

domain knowledge expressed as constraints. These methods are, most of the

time, variants of the popular k-means clustering algorithm. As such, they are

based on a criterion to minimize. Amongst existing semi-supervised cluster-

ings, Semi-supervised Evidential Clustering (SECM) deals with the problem of

uncertain/imprecise labels and creates a credal partition. In this work, a new

heuristic algorithm, called SECM-h, is presented. The proposed algorithm re-

laxes the constraints of SECM in such a way that the optimization problem is

solved using the Lagrangian method. Experimental results show that the pro-

posed algorithm largely improves execution time while accuracy is maintained.

Keywords: Evidential clustering, label constraints, constrained clustering,

theory of belief functions, optimization

1. Introduction

Clustering is a knowledge discovery approach that aims at grouping objects

according to a notion of similarity based on the characteristics of the objects.

Clustering algorithms are divided into two families: hierarchical clustering that

builds a hierarchy of clusters and partitional clustering that generates disjoint

subsets of the data. Partitional clustering methods include k-means and its
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variants that try to minimize an intraclass inertia with respect to constraints

on the partition. The k-means algorithm, which assigns an object to a unique

cluster, has been shown to be useful in various domains such as Internet of

Things [1], time series [2], recommender systems [3, 4], among others. How-

ever, the obtained partition, called hard or crisp partition, is unable to express

uncertainties regarding the class membership of an object. Such information

is particularly interesting in case, for instance, of overlapped classes. Thus,

modifications of the k-means algorithm have been proposed in order to gen-

erate a soft partition. The most popular extension corresponds to the Fuzzy

c-means (FCM) that produces a probabilistic partition. It has been applied in

many applications [5, 6, 7, 8]. Other variants, such as Possibilistic c-means and

Rough k-means, use possibilities and rough set theories respectively to handle

more precisely uncertainties. A more general variant, called evidential c-means

(ECM) [9], is based on the theory of belief functions. It generates a credal

partition that encompasses hard, probabilistic, and rough partitions [10]. The

algorithm allows to obtain a rich representation of the uncertainties related to

the data. As a consequence, it has been used in various applications [11, 12, 13]

and several extensions of ECM have been proposed ever since. The RECM

algorithm has been developed to handle dissimilarity data [14]. The ECMdd

is a medoid-based variant of ECM [15]. The CCM method considers meta-

clusters to reduce misclassification [16] and the DEC algorithm extends CCM

by providing a dynamic edited framework [17]. Evidential clustering also com-

prises EVCLUS [18], a method that searches for a credal partition minimizing

the discrepancy between the object pairwise distances and the conflict obtained

by their mass functions. A faster optimization of EVCLUS has been proposed

in [19].

Clustering algorithms create groups with no other information than the char-

acteristics of the data. However, it has been shown that introducing some

background knowledge in a clustering process can highly improve the cluster-

ing solution [20, 21, 22, 23]. Such methods, called semi-supervised clustering

or constrained clustering, express prior information as constraints. The most

2



famous types of constraints correspond to instance-level constraints: the must-

link constraint, which specifies that two objects should be in the same class, the

cannot-link constraint, which indicates that two objects are in different classes,

and finally, the label constraint, which directly assigns an object into a class. Re-

cently, various semi-supervised evidential clustering algorithms have been pro-

posed for pairwise (i.e must-link and cannot-link) constraints [24, 25, 26, 27, 28]

and for label constraints [29, 30, 27, 28]. The evidential framework is used to ex-

press imprecision for label constraints and allows for any type of instance-level

constraints, as for evidential clustering, to generate a credal partition. How-

ever, the integration of instance-level constraints implies a greater optimization

complexity. Thus, [26] proposes a new optimization scheme on CEVCLUS [25],

a version of EVCLUS handling pairwise constraints. This method, named k-

CEVCLUS, iteratively optimizes for each instance their mass function using

a quadratic programming solver. k-CEVCLUS has been generalized by NN-

EVCLUS [28] which uses a neural network trained to find the mass functions

which minimize the difference between conflicts and the pairwise distances. The

NN-EVCLUS algorithm copes with both pairwise and label constraints.

Although the pairwise constraints are more general, the label constraint is

often available and provides more information. Thus, many k-means variants

using label constraints have been proposed [20, 31, 29]. Amongst them, the

SECM algorithm [29, 30] corresponds to the extension of ECM for fuzzy labels.

Its goal is twofold: guide the clustering algorithm towards a better solution and

take advantage of the richness of information available with credal partition to

make decisions.

Similarly to any semi-supervised variants of k-means [20], the SECM al-

gorithm adds a penalty term into the objective function in order to take into

account the label constraints. Such penalty term complicates the criterion and

leads to an increase in the computing time spent for its resolution. Thus, we

propose to relax some constraints of the SECM objective function in order to

create a new heuristic. The new algorithm, called SECM-h, increases the con-

vergence speed of minimization while keeping a clustering solution close to the
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solution produced by the exact approach, i.e. SECM.

The rest of the paper is organized as follows. Section 2 recalls the neces-

sary background on the theory of belief functions and the extensions of k-means

leading to the evidential c-means. Then, the SECM algorithm is detailed. Sec-

tion 3 depicts the SECM-h algorithm, a new approach to minimize SECM. The

interest of the method is presented in Section 4 with some experiences on real

data sets. Section 5 concludes the paper and gives some perspectives.

2. Preliminaries

Evidential clustering is based on the Dempster-Shafer theory or theory of

belief functions. Then, to make this paper self-contained, a reminder of some

important definitions and results of the Dempster-Shafer theory is presented in

this section.

2.1. Theory of Belief Functions

In order to provide the belief function framework used in the following sec-

tions, we present the following definitions based on [32, 33].

Definition 1. A frame of discernment, Ω = {ω1, . . . , ωc}, is said to be a set

of all possible states that correspond to the interpretation of a finite propositional

language.

Let a proposition be represented by a variable ω which is assumed to take

values in Ω, then the partial knowledge regarding such proposition can be rep-

resented by a basic belief assignment defined as follows:

Definition 2. Let m : 2Ω → [0, 1] be a mass function. If m verifies:∑
Aj⊆Ω

m(Aj) = 1. (1)

then, m is called basic belief assignment ( bba).

In order to interpret the mass functions, a major focus on the positive degree,

i.e. m(Aj) > 0, of belief is performed which lead us to the following definition.
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Definition 3. Let Aj ∈ Ω such that m(Aj) > 0, then Aj is said to be a focal

set of m.

Special cases arise depending on which focal sets are actives [19]. As such,

if focal sets only consist of singletons, then the mass function is said to be

Bayesian. If the whole belief is allocated to a unique singleton, then the bba is

considered as certain. Finally, if m(Ω) = 1, then it represents a total uncertainty

about the real state of ω.

Originally in [32], Equation (1) is constrained with m(∅) = 0. Such mass

function, called a normal bba, assumes that one state in Ω corresponds to the

actual value of ω, leading to a closed-world assumption [33]. Inversely, if there

exists the possibility that ω /∈ Ω, then the empty set can be a focal set. This

open-world assumption can be interpreted as the belief given to other states not

included in Ω.

A bba can be transformed into a normal bba by transferring the empty set

belief to all the other sets Aj ⊆ Ω [33]:

m∗(Aj) ,


m(Aj)

1−m(∅) if Aj 6= ∅,

0 otherwise.

In [34], it has been shown that various measures can be associated with a

given bba. Amongst them, the plausibility function pl(Aj) : 2Ω → [0, 1] allows

to quantify the amount of possibility that Aj includes the real state ω.

pl(Aj) ,
∑

A`⊆Ω,Aj∩A` 6=∅

m(A`) ∀Aj ⊆ Ω.

The probability function BetP (ω) : Ω→ [0, 1] provides from a bba a pignistic

probability distribution:

BetP (ω) ,
∑
ω∈A`

m∗(A`)

|A`|
∀ω ⊆ Ω.

where |A`| denotes the cardinality of A` ⊆ Ω.

2.2. Evidential c-Means algorithm (ECM)

Evidential C-Means (ECM) is a clustering algorithm for object data intro-

duced in [9] which is based on the concept of credal partition defined as follows:
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Definition 4. Let Ω = {ω1, · · · , ωc} be the set of all possible clusters for the

set of objects X = {xi ∈ Rp} ∀i = 1, .., n and mi a mass function defined

in Ω. Then, the collection M = (m1, · · · ,mn)T ∈ Rn×2c

is called the credal

partition of X.

As discussed in [9], a credal partition is a generalization of well-known data

partitions such as: hard, fuzzy, and possibilistic. It allows to represent the

uncertainty and imprecision regarding the cluster membership of each object

xi ∈ X. ECM assumes that each cluster ωk is represented by a prototype or

barycenter vk ∈ Rp and the set of all prototypes is defined as the collection

V = {vk}. Since ECM is a credibilistic variant of Fuzzy C-Means (FCM) [35],

then the evidential clustering problem has been stated in [9], [24] as finding the

credal partition M that minimizes the following cost function:

JECM(M,V,S) =

n∑
i=1

∑
Aj⊆Ω,Aj 6=∅

|Aj |αmβ
ijd

2
ij +

n∑
i=1

δ2mβ
i∅, (2)

subject to ∑
Aj⊆Ω,Aj 6=∅

mij +mi∅ = 1 ∀i ∈ {1, n} (3)

mij ≥ 0 ∀i ∈ {1, n},∀Aj ⊆ Ω. (4)

det(Sk) = 1 ∀k ∈ {1, c} (5)

where mij = mi(Aj) corresponds to the mass of the object i allocated to the

subset Aj , mi∅ defines more particularly the mass for the object i allocated

to the empty set, α ≥ 1 is a parameter that allows controlling the degree of

imprecision of the partition, β > 1 is used to penalize a high level of uncertainty

on the partition, δ is a positive constant parameter that controls the importance

given to the empty set, Sk is the covariance matrix of the kth cluster, and dij

is the Mahalanobis distance defined as:

d2
ij = ‖xi − vj‖2Sj

= (xi − vj)
T

Sj (xi − vj) . (6)

Let vj be the prototype for the subset Aj such that

vj ,
1

|Aj |

c∑
l=1

sljvl ∀Aj ∈ Ω,
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with

slj =

 1 if ωl ∈ Aj ,

0 otherwise.

The set S = {S1, . . .Sc} designates the covariance matrices for the clusters and

Sj represents the evidential covariance matrix for the jth prototype. It is defined

as:

Sj ,
1

|Aj |
∑
ωk∈Aj

Sk ∀Aj ∈ Ω.

The optimal solution is obtained using a Gauss-Seidel type optimization

method. First, V and S are assumed to be fixed, in order to obtain the solution

of the constrained problem (2) with respect to M. The optimality of M is

obtained with

mij =
|Aj |−α/(β−1)

d
−2/(β−1)
ij∑

Ak 6=∅ |Ak|
−α/(β−1)

d
−2/(β−1)
ik + δ−2/(β−1)

∀i = {1, n} ∀Aj 6= ∅,

and

mi∅ = 1−
∑
Aj 6=∅

mij ∀i = {1, n}.

Following the successive displacement optimization method, M and S are

assumed to be fixed and the optimality of V is obtained as the solution of the

linear system

HV = B, (7)

where B ∈ Rc×p is given by

B`q =

n∑
i=1

xiq
∑
Aj 6=∅

|Aj |α−1
mβ
ijs`j ∀` = {1, c} ∀q = {1, p}, (8)

and H ∈ Rc×c is given by:

H`k =

n∑
i=1

∑
Aj 6=∅

|Aj |α−2
mβ
ijs`jskj ∀k, ` = {1, c}. (9)

Finally, M and V are assumed to be fixed in order to obtain the optimal

solution for (2) w.r.t. S. To do so, the following change of variable is defined

Σk ,
n∑
i=1

∑
Aj3ωk

|Aj |α−1mβ
ij (xi − vj) (xi − vj)

T ∀k = {1, c}. (10)

7



Then, the optimal solution for S is given by

Sk = det(Σk)1/pΣ−1
k . (11)

ECM provides sufficient conditions to find the optimal credal partition on

object data. However, it does not take into account previous knowledge which

is present in many real clustering applications. Such knowledge often takes the

form of labeled data.

2.3. Semi-supervised ECM (SECM)

It is known that data labeling is usually carried out by experts. However,

experts often face the problem of labeling objects for which they are not fully

certain of the class they belong to. Then, in [30], a method to handle imprecise

but certain labels is presented. An imprecise label on an object i is expressed

with a subset Aj ⊂ Ω, |Aj | ≥ 1 such that the real class of xi belongs to Aj . The

consistency between this imprecise label subset Aj and the bba mi assigned to

object i is evaluated using the Tij measure defined as follows:

Tij , Ti (Aj) =
∑

A`⊆Ω,Aj∩A` 6=∅

|Aj ∩A`|
r
2

|A`|r
mi`, ∀i ∈ {1, n}, Aj ⊆ Ω. (12)

Such measure favors degrees of belief containing the constrained subset Aj or a

part of it as well as subsets with low cardinalities. The r ≥ 0 parameter controls

the degree of precision expected for the object i: high values of r penalize subsets

with high cardinalities whereas low values of r allow high value of Tij for subsets

with high cardinalities. If r = 0, Tij corresponds to the plausibility that the

object xi belongs to Aj .

Notice that Tij = 1 when belief is assigned for an object i that belongs to

a cluster in the subset Aj . Inversely, Tij = 0 when no belief is assigned for an

object i to belong to a cluster in Aj , i.e., xi /∈ Aj .

To illustrate the behavior of the Tij measure, let us consider DiamondK3,

a synthetic data set composed of 15 points that needs to be divided into three

groups (cf. Figure 1(a)). An execution of the ECM algorithm with α = 1,

β = 2, and δ2 = 100 provides us a credal partition, the main masses of which
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are presented in Figure 1(b). As it can be seen, the highest beliefs on the clusters

ω1 and ω2 are correctly recovering the points 1 to 10 and the highest beliefs on

the last cluster ω3 are assigned to the points 12 to 15. Point 6, located between

two classes, has all its mass allocated to the subset {ω1, ω2}.

(a) (b)

Figure 1: DiamondK3 data set (a) and a sample of the mass functions obtained using ECM

(b).

Let us suppose that we know that object 6 belongs to ω1 and object 13

belongs either to ω1 or to ω3, but not to ω2. Such partial knowledge can be

traduced into the following constraints: x6 ∈ {ω1} and x13 ∈ {ω1, ω3}. The Tij

measure allow us to quantify the degree of agreement between the constraint

and the mass function obtained by ECM. The highest is the measure, the better

the constraint is respected.

To better understand the concept, Table 1 presents a set of possible mass

functions for the object 6 and the subsequent computation of T6({ω1}) using

r = 1, and then with r = 0, i.e. Pl6({ω1}). The first case fully respects the

constraint x6 ∈ {ω1}, giving T6({ω1}) = Pl6({ω1}) = 1 whereas case 4 totally

ignores the constraints, giving T6({ω1}) = Pl6({ω1}) = 0. The second and the

third case partially respect the constraint, since the bba is allocated to subsets

containing ω1. When r = 1, the more the cardinality of the subset, the lower the

value of T6({ω1}). With the plausibility measure, any partial information gives

Pl6({ω1}) = 1. This means that a partial respect of the constraint is considered
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as enough.

Table 1: Possible mass functions for object x6 constrained on {ω1} and calculation of Ti(Aj)

with r = 1 and Pli(Aj). Columns ωj,l show the mass assigned to subset {ωj , ωl}.

m6(Aj) ∅ ω1 ω2 ω3 ω1,2 ω1,3 ω2,3 Ω T6({ω1}) Pl6({ω1})

case 1 0 1 0 0 0 0 0 0 1 1

case 2 0 0 0 0 1 0 0 0 1/2 1

case 3 0 0 0 0 0 0 0 1 1/3 1

case 4 0 0 1 0 0 0 0 0 0 0

Table 2 shows different possible mass function for the object 13. As it can be

observed, the plausibility measure ensures the partial respect of the constraints.

When r = 1, Tij is null when no focal sets contains ω1 and/or ω3. Conversely,

Tij > 0 when there exists degree of belief on a subset including at least ω1 or

ω3. The measure favors subset with a low cardinality. For the same amount of

subsets, for example in Table 2 {ω1, ω2} and {ω1, ω3}, a higher value is given to

subsets containing the most of classes in the constraint, i.e. here {ω1, ω3}.

Table 2: Possible mass functions for object x13 constrained on {ω1, ω3} and calculation of Tij

with r = 1 and Pli(Aj). Columns ωj,l show the mass assigned to subset {ωj , ωl}.

m13(Aj) ∅ ω1 ω2 ω3 ω1,2 ω1,3 ω2,3 Ω T13({ω1, ω3})Pl13({ω1, ω3})

case 1 0 1 0 0 0 0 0 0 1 1

case 2 0 0 0 0 0 1 0 0
√

2/2 1

case 3 0 0 0 0 1 0 0 0 1/2 1

case 4 0 0 0 0 0 0 0 1 1/3 1

case 5 0 0 1 0 0 0 0 0 0 0

The Tij measure is used to define the following penalty term:

Js ,
n∑
i=1

∑
Aj⊆Ω,Aj 6=∅

bij(1− Tij),

such that

bij =

 1 if xi is constrained by Aj ,

0 otherwise.
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The problem of semi-supervised evidential clustering is then defined as find-

ing the 3-tuple (M,V,S) that minimizes the following cost function

JSECM (M,V,S) = (1− γ)
1

2cn
JECM (M,V,S) + γ

1

s
Js(M), (13)

subject constraints (3)-(5). The s parameter is the number of constraints, 1
2cn

and 1
s are coefficients to balance the two terms 1 and γ ∈ [0, 1] the coefficient to

control the tradeoff between the objective function of ECM and the constraints.

In order to lighten the notations, we define ξ and χ such as:

ξ , (1− γ)
1

2cn
, (14)

χ , γ
1

s
, (15)

and

c`j ,
|Aj ∩A`|

r
2

|Aj |r
. (16)

Using (14)-(16), the objective function (13) can be rewritten as:

JSECM (M,V,S) = ξ

 n∑
i=1

∑
Aj 6=∅

|Aj |αmβ
ijd

2
ij +

n∑
i=1

δ2mβ
i∅


+χ

 n∑
i=1

∑
Aj⊆Ω,Aj 6=∅

bij

1−
∑

Aj∩A` 6=∅

c`jmi`

 .(17)

When the β parameter is set to 2, the minimization problem in (17) becomes

a quadratic optimization problem with linear constraints which is solved using

classical methods [36, 37].

3. Heuristic Semi-supervised Evidential Clustering

3.1. Optimization scheme

The SECM problem discussed in the previous section can also be solved using

a heuristic approach. Indeed, heuristic methods have been used in optimization

1Providing that the distances between objects and centroids are less or equal to 1. This

can be done using a data normalization method, e.g. min-max scaling.
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problems to improve the algorithm’s execution time [20, 21]. Such methods

usually result in a trade off between execution time and optimality, completeness

and/or accuracy.

As discussed in section 2.3, the SECM problem has been solved using a

Gauss-Seidel optimization method to find the 3-tuple (V,S,M) that minimizes

the cost function (13). Then, let us recall that the optimal centers of gravity V

are found using (7) while the covariance matrix S are obtained using (11). The

credal partition M can be found using both exact and heuristic methods which

are discussed in the following sections.

3.2. Exact optimization

In order to obtain the credal partition M using an exact method, let V

and S be constant and the β parameter of the cost function be set to 2. Let

mi ∈ R1×2c

be the mass for object xi and the focal sets in the first term of (17)

be rewritten in matrix form, Gi ∈ Rn2c×n2c

, using

Gij ,

 δ2 if Aj = ∅

|Aj |αd2
ij otherwise.

Developing Js, the second term in (17), we obtain

Js =

n∑
i=1

∑
Aj⊆Ω,Aj 6=∅

bij −
n∑
i=1

∑
A`⊆Ω

mij(
∑
Aj⊆Ω

bij`c`j),

with

bij` ,

 1 if xi is constrained to Aj and A` ∩Aj 6= ∅,

0 otherwise.

Finally, the label constraints can also be written in matrix form Fi ∈ R1×2c

as:

Fi` ,


0 if A` = ∅

−
∑
Aj⊆Ω

bij`c`j otherwise,

and

fi ,
∑
Aj

bij .
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Then, the objective function (17) can be rewritten as follows:

JSECM (M) = ξ

n∑
i=1

mT
i Gimi + χFTi mi + χfi. (18)

which can be solved using the well known sequential quadratic programming

method [36, 37].

3.3. Heuristic Optimization

In order to improve algorithm execution time we propose a heuristic algo-

rithm that relaxes constraint (4). It eases the optimization problem for the

update of the mass mij . However, constraints (3) and (4) together imply that

0 ≤ mij ≤ 1 ∀i ∈ {1, n},∀Aj ⊆ Ω. Thus, removing constraint (4) allows

mij ∈ R. As it will be discussed later in this section, the case mij < 0 only

appears on constrained objects xi, for subsets Aj violating the constraints. As

a consequence, to respect constraint (3), the case mij′ > 1 appears for subsets

Aj′ 6= Aj respecting the label constraint. Since constraint (3) is respected and

constraint (4) should be restored to comply with the definition (2) of a mass

function, negative elements mij can be set to 0 and the negative quantity of

belief can be used as a coefficient to equivalently lower the other masses. This

is achieved using the following mass re-assignment:

m∗ij =


mij

1+ai
if mij > 0,

0 otherwise,
∀i = 1 . . . n,∀Aj ⊆ Ω (19)

such that

ai = −
∑
Aj⊆Ω

min(mij , 0).

The optimal credibilistic partition can be found using the Lagrangian mul-

tiplier method.

L(M, λ1, . . . , λn) = JSECM −
n∑
i=1

λi

 ∑
Aj⊆Ω,Aj 6=∅

mij +mi∅ − 1

 .
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The derivatives w.r.t. mi,j and mi∅ are:

∂L
∂mij

= ξ2|Aj |αmijd
2
ij − χ

 ∑
Aj∩A` 6=∅

cljbij`

− λi,
∂L
∂mi∅

= 2ξδ2mi∅ − λi.

Annulating the derivatives gives

mij =
λi
2ξ

1

|Aj |αd2
ij

+

χ

 ∑
Aj∩A` 6=∅

cljbij`


2ξ|Aj |αd2

ij

, (20)

mi∅ =
λi

2ξδ2
. (21)

Solving ∂L
∂λi

= 0, we obtain:
∑

Aj⊆Ω,Aj 6=∅

λi
2ξ

1

|Aj |αd2
ij

+

χ

 ∑
Aj∩A` 6=∅

cljbij`


2ξ|Aj |αd2

ij

+
λi

2ξδ2
= 1,

λi
2ξ

=

1−
∑

Aj⊆Ω,Aj 6=∅

χ

 ∑
Aj∩Al 6=∅

cljbij`

(2ξ|Aj |αd2
ij

)−1

∑
Aj⊆Ω,Aj 6=∅

(
|Aj |αd2

ij

)−1
+ δ−2

.

Replacing λi

2ξ in (20) and (21) enables to obtain the update equations:

mij =

1−
∑

Al⊆Ω,Al 6=∅

χ

 ∑
Al∩Al′ 6=∅

cll′bij`′

(2ξ|Al|αd2
il

)−1

|Aj |αd2
ij

∑
Al⊆Ω,Al 6=∅

(
|Al|αd2

il

)−1
+ δ−2

+

χ

 ∑
Aj∩Al 6=∅

cljbij`


2ξ|Aj |αd2

ij

,

(22)

and

mi∅ = 1−
∑

Aj⊆Ω,Aj 6=∅

mij . (23)

As discussed above, since constraint (4) has been relaxed and as it can be

seen Equation (22), the update of the mass mij can be negative. This can occur
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only for constrained objects. Indeed, negative values only appear in the first

term, when the second term of the numerator is higher than 0, which is only

possible for some bij`′ = 1, i.e. when there exists a constraint on xi. This

behavior can be controlled by reducing the value of the coefficient χ.

The solution for the semi-supervised Evidential clustering problem is sum-

marized in Algorithm 1.

Algorithm 1 SECMH

Require: data X, number of classes c and subsets Aj ⊆ Ω

Ensure: credal partition M, centroids V, covariance matrices S

k ← 0

Initialize Vk randomly, initialize S to identity matrices.

repeat

k ← k + 1

Compute distances using (6).

Update credibilistic partition Mk using (22) and (23).

Correct Mk to respect contraints (4) using eq. (19).

Update cluster centroids Vk using eq. (7).

Update covariance matrix Sk using eq. (11).

until ‖Vk −Vk−1‖ < ε

3.4. Complexity analysis

The complexity of SECMH is defined by the sum of the complexity of the

different steps in the loop. The difference with ECM resides in the update of

the credal partition. Let f be the number of focal elements such that f = 2c

if all subsets are used. A reduction of this value can be achieved by privileging

specific subsets, for instance, f = c+ 2 when only singletons, Ω, and the empty

set are selected.

• The computation of the Mahalanobis distance Equation (6) is performed

in O(p2nf). If the covariance matrices are fixed to identity matrices, i.e.
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a Euclidean distance has been chosen, then the complexity is decreased to

O(pnf).

• The complexity for update of the credal partition Equations (22) and

(23) is O(nf). The correction using Equation (19) requires at the worst

case nf operations. The overall complexity of the three equations is then

O(nf). This also corresponds to the complexity of the update of the credal

partition for the ECM algorithm [15].

• To compute the update of the cluster centroids Vk Equation (7), it is

first necessary to compute matrices B, Equation (8), which requires cpnf

operations and H, Equation (9), which requires c2nf operations. Since

our implementation uses a QR decomposition, its implies a complexity of

O(c3) if c ≤ p, O(p3) otherwise. The resulting complexity of the overall

sub-steps is O(cpnf + c2nf + min(c, p)3).

• Finally, the complexity of the covariance matrix, Equation (11), that is

used only when adaptive distances are chosen, is O(cp3) due to the com-

putation of the inverse of Σk. The computation of Σk, Equation (10),

requires cp2nf operations.

As a result, the SECMH algorithm using adaptive distances has a complex-

ity of O(kc2nf + kmin(c, p)3 + kcp3 + kcp2nf) where k represents the number

of iterations reached before convergence. When using a Euclidean distance, the

complexity is O(kcpnf + kc2nf + kmin(c, p)3). Considering that n � p and

n� c, the complexity for both distances becomes O(knf + kmin(c, p)3).

When the exact optimization is used to update of credal partition, i.e. a

sequential quadratic programming method on Equation (17), the complexity is

O(n3f3)[37]. Thus, the overall complexity of SECM with an adaptive distance

using an exact optimization (named SECME) is O(kp2nf + kn3f3 + kc2nf +

kmin(c, p)3 + kcp2nf). Considering that n � p and n � c, the complexity

becomes O(kn3f3 + kmin(c, p)3).
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4. Results

4.1. Experimental protocol

To illustrate the effectiveness of the proposed clustering method, we carried

out a series of experiments using data sets coming from the UCI repository [38].

The characteristics of the data sets are shown in Table 3.

Table 3: A quick view of UCI data sets involved.

Name # objects # attributes # classes # objects per classes

Column 310 6 3 {60,150,100}

Ionosphere 351 34 2 {225, 126}

Iris 150 4 3 {50, 50, 50}

LettersIJL 227 16 3 {81, 72, 74}

Wdbc 5569 30 2 {357,212}

Wine 178 13 3 {59, 71, 48}

Real labels are known for all data sets. LettersIJL refers to the Letters data

set where only three classes are kept and the number of instances is reduced by

randomly selecting 10% of them per class, as it has been done in [22]. Since

Column, Wdbc and Wine are a data sets characterized by great variations of

scale amongst the attributes, we use a standardization method to avoid unequal

contributions of the features during the clustering process. The Mahalanobis

distance has been used for all data sets except for Column, Wdbc and Wine

that use the Euclidean distance as they have spherical shaped groups.

The performance of the evidential clustering method is measured using the

Adjusted Rand Index (ARI) [39] that takes values in [0, 1]. The ARI is based on

the pairwise comparisons of the crisp partition P with a second crisp partition

P∗. A perfect match between P and P∗ is reflected by the ARI equal to 1. In

our context, the P partition is obtained by first converting the credal partition

M into a fuzzy partition U using the pignistic transformation. Then, the objects

are assigned to clusters with the maximum of pignistic probability.

In order to determine the closeness of credal partitions, Denœux [10] pro-

posed a Credal Rand Index (CRI), where CRI ∈ [0, 1] and CRI=1 means that
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the compared partitions are identical. More precisely, we employ the CRI re-

lated to the similarity index with a Jousselme’s distance.

In the framework of semi-supervised clustering, we also assess the perfor-

mance of the clustering methods using well-known classification measures such

as Precision, Recall, and F1 score. These measures are computed as in [40] and

generalized for multiclass. The precision quantifies from the number of objects

predicted in a class how many are really in that class, whereas the recall indi-

cates the fraction of objects in a class that is correctly assigned in that class.

The F1 score is the harmonic mean of the precision and the recall.

The SECME and SECMH algorithms take into account prior information

in the form of label constraints which may be imprecise. First, a percentage of

the real labels of the data sets are selected to obtain the set Ls of hard labeled

instances with no imprecision, also called single set. This percentage varies from

0 to 30%. Note that given a percentage p1 allowing to obtain Lsp1 , the set Lsp2
of a higher percentage p2 > p1 is created such that Lsp1 ⊂ Lsp2 in order to better

illustrate the interest of adding constraints. A single set is only composed of

hard and clean labels. However, in a real application, these labels can be noisy.

Thus, we introduced 20% of noise into the Ls set to form a hard noisy label

set referred to as Ln. Finally, the imprecision on the class membership of an

object is simulated by the concatenation of Ls and Ln, leading to the double

set Ld that contains 20% of objects constrained to two classes. Notice that Ld
is a set of imprecise labels but not noisy since for every labeled object, the real

class is present in Ld. The generation of the different sets of labels is resumed

in Figure 2.

The evidential clustering algorithms SECME and SECMH are compared

with the most similar semi-supervised clustering algorithms that provide a hard

partition (SKMEANS [31]) and a fuzzy partition (SFCM [20, 23]). Default

parameters for the evidential methods are α = 1, β = 2, δ2 = 100 and γ = 0.5.

The exponent α is set to 1 as [9] to allow enough imprecision in the credal

partition. The coefficient of fuzzification β is equivalently fixed for SFCM on

the fuzzy partition. As discussed in [9], setting the δ parameter is difficult since
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Figure 2: Generation of noisy and double labels. Gray numbers represent an example of the

sets given three classes {1, 2, 3}.

it strongly depends on the data. In this work, we set δ parameter to a high

value as no outliers exist in the data sets. The parameter γ, which controls the

tradeoff between constraints and the data structure has been tested with values

varying from 0.1 to 0.7. It is set by default for SFCM, SECME , and SECMH

to 0.5 in order to be balanced.

The imprecise information contained in the double set Ld is exploited by

SECM using constraints on subsets. However, this information cannot be taken

by SKMEANS and must be transformed into uncertain information for SFCM.

Indeed, SFCM only allows objects to be constrained to single classes with de-

grees of probability. Thus, we chose to set a probability of {0.5, 0.5} for each

object having imprecision between two classes. Note that the meaning of the

information is slightly different as it represents precise information, although

uncertain [41].

Since SKMEANS, SFCM, and SECM are semi-supervised variants of k-

means, they all need a random initialization of the centroids and labels as prior

information. With the view to making performance comparisons, the same ini-

tializations are applied for each algorithm and the same set of labels are used.

An experiment consists of 100 trials of an algorithm. Results present the av-

erage and confidence interval measures (as the constraint sets are different for

each trial). A trial is characterized by 5 executions of the algorithm with differ-

ent initialization of the centroids. The final partition kept is the one with the
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minimum objective function. The experiments were performed on an Intel(R)

Xeon(R) CPU E5-2670 v2 @ 2.50 GHz.

4.2. Influence of the γ parameter

The γ parameter is a coefficient set between 0 and 1 that allows giving more

or less importance to the respect of the constraints. Tables 4 and 5 present

several values of γ tested with SECME and SECMH using 30% of single or

doble constraints. The results correspond to the average of the ARI on the whole

data sets and the average of the ARI on unconstrained objects only (ARIu).

Table 4: Influence of the γ parameter with 30% of constraints and r = 1. Standard deviations

are shown in brackets, confidence intervals are between 0.00 and 0.01.

Ls set Ld set

SECMH SECME SECMH SECME

ARI ARIu ARI ARIu ARI ARIu ARI ARIu

C
o
lu

m
n

0.1 0.50 0.39 0.52 0.40 0.45 0.36 0.48 0.39
[0.04] [0.05] [0.03] [0.03] [0.05] [0.05] [0.04] [0.04]

0.3 0.57 0.43 0.58 0.44 0.54 0.42 0.54 0.43
[0.03] [0.04] [0.03] [0.04] [0.03] [0.04] [0.03] [0.03]

0.5 0.58 0.44 0.58 0.44 0.55 0.43 0.54 0.43
[0.03] [0.04] [0.03] [0.04] [0.03] [0.04] [0.03] [0.03]

0.7 0.58 0.44 0.57 0.43 0.55 0.43 0.54 0.43
[0.03] [0.04] [0.03] [0.04] [0.03] [0.04] [0.03] [0.03]

Io
n
o
sp

h
e
re

0.1 0.71 0.62 0.71 0.62 0.70 0.62 0.69 0.61
[0.04] [0.05] [0.03] [0.05] [0.03] [0.04] [0.03] [0.04]

0.3 0.67 0.55 0.66 0.54 0.65 0.56 0.64 0.55
[0.04] [0.05] [0.04] [0.05] [0.03] [0.05] [0.04] [0.05]

0.5 0.58 0.44 0.57 0.43 0.57 0.46 0.56 0.44
[0.04] [0.05] [0.04] [0.05] [0.04] [0.05] [0.04] [0.05]

0.7 0.54 0.38 0.52 0.36 0.53 0.41 0.51 0.38
[0.04] [0.05] [0.04] [0.05] [0.04] [0.06] [0.04] [0.05]

Ir
is

0.1 0.92 0.89 0.93 0.90 0.92 0.89 0.92 0.89
[0.03] [0.05] [0.03] [0.05] [0.04] [0.05] [0.04] [0.05]

0.3 0.92 0.89 0.93 0.89 0.92 0.89 0.92 0.89
[0.03] [0.05] [0.03] [0.04] [0.03] [0.05] [0.04] [0.06]

0.5 0.92 0.89 0.93 0.90 0.92 0.89 0.91 0.88
[0.03] [0.05] [0.03] [0.05] [0.03] [0.05] [0.04] [0.06]

0.7 0.92 0.89 0.93 0.90 0.92 0.89 0.92 0.89
[0.03] [0.05] [0.03] [0.05] [0.04] [0.05] [0.03] [0.05]

The constraint set (i.e. Ls or Ld) and the algorithm (i.e. SECME or

SECMH) does not seem to be parameters that influence the choice of γ. We

can also remark that no significant differences in behavior exist between the

ARI and the ARIu.
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Table 5: Influence of the γ parameter with 30% of constraints and r = 1. Standard deviations

are shown in brackets, confidence intervals are between 0.00 and 0.01.

Ls set Ld set

SECMH SECME SECMH SECME

ARI ARIu ARI ARIu ARI ARIu ARI ARIu
L

e
tt

e
rs

IJ
L

0.1 0.65 0.56 0.65 0.57 0.63 0.55 0.63 0.55
[0.05] [0.06] [0.05] [0.06] [0.06] [0.07] [0.06] [0.07]

0.3 0.72 0.62 0.72 0.62 0.69 0.60 0.69 0.60
[0.05] [0.06] [0.05] [0.06] [0.05] [0.07] [0.05] [0.07]

0.5 0.75 0.65 0.75 0.65 0.72 0.63 0.72 0.63
[0.05] [0.06] [0.05] [0.07] [0.06] [0.07] [0.06] [0.07]

0.7 0.76 0.66 0.77 0.68 0.73 0.65 0.74 0.65
[0.05] [0.07] [0.05] [0.07] [0.06] [0.08] [0.06] [0.08]

W
d
b

c

0.1 0.70 0.69 0.70 0.69 0.70 0.69 0.70 0.69
[0.01] [0.02] [0.01] [0.02] [0.01] [0.02] [0.01] [0.02]

0.3 0.72 0.69 0.73 0.69 0.72 0.69 0.72 0.69
[0.01] [0.02] [0.01] [0.02] [0.01] [0.02] [0.01] [0.02]

0.5 0.76 0.69 0.76 0.70 0.74 0.69 0.75 0.69
[0.02] [0.02] [0.02] [0.03] [0.02] [0.02] [0.02] [0.03]

0.7 0.79 0.70 0.79 0.72 0.77 0.70 0.77 0.71
[0.02] [0.03] [0.02] [0.03] [0.02] [0.03] [0.02] [0.03]

W
in

e

0.1 0.91 0.89 0.91 0.90 0.91 0.89 0.91 0.90
[0.01] [0.03] [0.01] [0.03] [0.02] [0.03] [0.01] [0.03]

0.3 0.92 0.88 0.91 0.88 0.91 0.88 0.91 0.88
[0.02] [0.03] [0.02] [0.03] [0.02] [0.03] [0.02] [0.03]

0.5 0.92 0.88 0.92 0.88 0.91 0.88 0.91 0.88
[0.02] [0.03] [0.03] [0.04] [0.02] [0.04] [0.02] [0.03]

0.7 0.92 0.88 0.92 0.88 0.91 0.88 0.91 0.88
[0.03] [0.04] [0.03] [0.04] [0.03] [0.04] [0.03] [0.04]

It can be observed that the best γ value mostly depends on the data set.

Ionosphere, which has an extended region of overlapped classes, shows better

performances with a low value of γ whereas LettersIJL, that has more prolate

ellipsoids, has better results with a high value of γ.

Two schemes are possible when applying a SECM: 1) the overall structure of

the data is already well defined with the unlabeled data and only overlapped ar-

eas between several clusters need the constraints to be less fuzzy. 2) the global

structure found with unlabeled data is not the desired solution and the con-

straints must help to lead the algorithm towards this solution. In the first case,

the γ value should be low to preserve the discovered structure. In the second

case, the γ needs to be large enough to force the global structure towards a new

different one. For the rest of the paper, we suppose that no prior information is

21



available regarding the characteristics of the data sets. Thus, γ is fixed to 0.5.

4.3. Interest of the constraints

Adding constraints allows either to guide a clustering algorithm towards a

desired solution or to refine a partition solution. To show the first behavior, let

us consider a synthetic data set named GaussK2 that needs to be classified into

two groups. The data points with ground truth class labels are shown Figure 3.

Figure 3: GaussK2 data set. Symbols represents the ground truth class labels.

The ECM algorithm, with α = 1, β = 2, δ2 = 100, and a Mahalanobis

distance separates data with a vertical or an horizontal frontier depending on

the centroids initialization. A credal partition obtained with ECM is presented

in Figure 4 (a). Since it does not correspond to the true partition, the ARI is

equal to 0.0025. However, an execution of SECM with only 10 constraints (cf.

Figure 4 (b)) allows to obtain a vertical boundary and an ARI equal to 1.

The interest of label constraints on real data sets is summarized in Table

6 using the precision (P), the recall (R), the F1 score, and the Adjusted Rand

Index (ARI).

As it can be observed, there exist little differences between the precision

and the recall except for Columns that is characterized by unbalanced classes.

The low recall on Column when no constraint exists means that the clustering

algorithm had difficulties, for each class, to correctly identify objects inside. As
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(a) (b)

Figure 4: Contour surfaces of the credal partition obtained by (a) ECM and (b) SECM.

Centroids for singletons and the universe are designed by crosses and stars. Label constraints

are highlighted in red.

shown Table 6, the gap between precision and recall is reduced with constraints

and both of the measures are improved. We can conclude that label constraints

help to better classify objects. In terms of performances, few differences are also

observed between SECMH and SECME . Finally, the F1 score and the ARI

follow the same trend: the more constraints are added, the better the accuracy.

Experiments were also conducted on the Ld set and the results lead to a similar

analysis.

4.4. r parameter

The r parameter controls for labels constraints the penalization given to

subsets with high cardinalities. Two values are tested: r = 1, which is the

default setting of SECM , and r = 0, which is identical to replacing the Tij terms

by plausibilities. Thus, in the following experiments, this version is referred to

as SECMpl. Experiments are conducted on the Ls, Ld and Ln sets for a various

percentage of constraints. Results are presented Table 7.

As expected, best performances are obtained with the most informative set,

i.e. the Ls set, and the lower performances a retrieved by the noisy set Ln.

In the details, we can observe that for the Ls and the Ld sets, SECM works

better for Column and Iris whereas SECMpl find better results for Ionosphere.
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Table 6: Interest of the constraints using Ls set, γ = 0.5 and r = 1. Standard deviations are

shown in brackets, confidence intervals are between 0.00 and 0.02.

SECMH SECME

P R F1 ARI P R F1 ARI
C

o
lu

m
n 0 0.65 0.48 0.52 0.23 [0.00] 0.65 0.48 0.52 0.23 [0.00]

10 0.76 0.73 0.74 0.43 [0.04] 0.75 0.71 0.72 0.41 [0.05]

20 0.81 0.79 0.79 0.51 [0.03] 0.81 0.79 0.79 0.51 [0.03]

30 0.84 0.82 0.83 0.58 [0.03] 0.84 0.82 0.83 0.58 [0.03]

Io
n

o
sp

h
er

e

0 0.69 0.56 0.55 0.01 [0.05] 0.69 0.56 0.55 0.01 [0.05]

10 0.87 0.87 0.86 0.53 [0.06] 0.86 0.86 0.86 0.51 [0.06]

20 0.87 0.87 0.87 0.54 [0.05] 0.87 0.87 0.86 0.53 [0.04]

30 0.89 0.88 0.88 0.58 [0.04] 0.88 0.88 0.88 0.57 [0.04]

Ir
is

0 0.87 0.86 0.86 0.67 [0.01] 0.87 0.86 0.86 0.67 [0.01]

10 0.94 0.93 0.93 0.82 [0.07] 0.94 0.93 0.93 0.83 [0.07]

20 0.97 0.96 0.96 0.90 [0.05] 0.97 0.97 0.97 0.90 [0.05]

30 0.97 0.97 0.97 0.92 [0.03] 0.98 0.97 0.97 0.93 [0.03]

L
et

te
rs

IJ
L 0 0.56 0.50 0.49 0.07 [0.04] 0.56 0.50 0.49 0.07 [0.04]

10 0.83 0.82 0.82 0.56 [0.08] 0.83 0.83 0.82 0.56 [0.08]

20 0.88 0.88 0.88 0.68 [0.06] 0.88 0.88 0.88 0.68 [0.06]

30 0.91 0.91 0.91 0.75 [0.05] 0.91 0.91 0.91 0.75 [0.05]

W
d

b
c

0 0.92 0.92 0.92 0.69 [0.00] 0.92 0.92 0.92 0.69 [0.00]

10 0.93 0.93 0.93 0.72 [0.01] 0.93 0.93 0.93 0.73 [0.02]

20 0.93 0.93 0.93 0.74 [0.02] 0.93 0.93 0.93 0.75 [0.02]

30 0.94 0.94 0.94 0.76 [0.02] 0.94 0.94 0.94 0.76 [0.02]

W
in

e

0 0.96 0.96 0.96 0.88 [0.01] 0.96 0.96 0.96 0.88 [0.01]

10 0.96 0.96 0.96 0.87 [0.04] 0.96 0.96 0.96 0.88 [0.03]

20 0.97 0.97 0.97 0.90 [0.03] 0.97 0.96 0.96 0.89 [0.03]

30 0.97 0.97 0.97 0.92 [0.02] 0.97 0.97 0.97 0.92 [0.03]

To resume, the best performances mostly depends on the data sets.

On the contrary, SECMpl has most of the time better performances than

SECM using the Ln set. Indeed, r = 0 let for constrained objects equal

possibilities on subsets with various cardinalities. If the label corresponds to a

noise and is in contradiction with the data structure, the algorithm will favor

subsets with high cardinalities, i.e. subsets that include both the label and the

cluster guessed with the data structure.
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Table 7: Influence of the r parameter, γ = 0.5. Average ARI and its standard deviation in

brackets are shown, confidence intervals are between 0 and 0.03.

Ls set Ld set Ln set

SECMH SECMplH SECMH SECMplH SECMH SECMplH

C
o
lu

m
n 0 0.23 [0.00] 0.23 [0.00] 0.23 [0.00] 0.23 [0.00] 0.23 [0.00] 0.23 [0.00]

10 0.43 [0.04] 0.28 [0.02] 0.42 [0.04] 0.27 [0.01] 0.37 [0.04] 0.25 [0.02]

20 0.51 [0.03] 0.37 [0.04] 0.49 [0.04] 0.34 [0.03] 0.41 [0.04] 0.28 [0.03]

30 0.58 [0.03] 0.48 [0.04] 0.55 [0.03] 0.43 [0.04] 0.43 [0.03] 0.33 [0.03]

Io
n

o
sp

h
er

e

0 0.01 [0.05] 0.01 [0.05] 0.01 [0.05] 0.01 [0.05] 0.01 [0.05] 0.01 [0.05]

10 0.53 [0.06] 0.57 [0.04] 0.54 [0.06] 0.57 [0.04] 0.22 [0.13] 0.41 [0.10]

20 0.54 [0.05] 0.59 [0.04] 0.55 [0.04] 0.58 [0.04] 0.32 [0.07] 0.40 [0.06]

30 0.58 [0.04] 0.61 [0.04] 0.57 [0.04] 0.60 [0.04] 0.35 [0.04] 0.38 [0.04]

Ir
is

0 0.67 [0.01] 0.67 [0.01] 0.67 [0.01] 0.67 [0.01] 0.67 [0.01] 0.67 [0.01]

10 0.82 [0.07] 0.77 [0.07] 0.82 [0.07] 0.76 [0.07] 0.51 [0.14] 0.62 [0.08]

20 0.90 [0.05] 0.86 [0.06] 0.89 [0.05] 0.85 [0.07] 0.58 [0.10] 0.61 [0.08]

30 0.92 [0.03] 0.89 [0.05] 0.92 [0.03] 0.88 [0.06] 0.59 [0.08] 0.58 [0.07]

L
et

te
rs

0 0.07 [0.04] 0.07 [0.04] 0.07 [0.04] 0.07 [0.04] 0.07 [0.04] 0.07[0.04]

10 0.56 [0.08] 0.55 [0.08] 0.54 [0.08] 0.52 [0.09] 0.38 [0.09] 0.39 [0.10]

20 0.68 [0.06] 0.67 [0.05] 0.65 [0.06] 0.65 [0.06] 0.47 [0.08] 0.48 [0.08]

30 0.75 [0.05] 0.74 [0.05] 0.72 [0.06] 0.71 [0.05] 0.51 [0.06] 0.51 [0.05]

W
d

b
c

0 0.69 [0.00] 0.69 [0.00] 0.69 [0.00] 0.69 [0.00] 0.69 [0.00] 0.69 [0.00]

10 0.72 [0.01] 0.72 [0.01] 0.72 [0.01] 0.71 [0.01] 0.67 [0.02] 0.66 [0.01]

20 0.74 [0.02] 0.75 [0.02] 0.73 [0.01] 0.74 [0.01] 0.70 [0.02] 0.68 [0.02]

30 0.76 [0.02] 0.76 [0.02] 0.74 [0.02] 0.75 [0.02] 0.71 [0.02] 0.71 [0.02]

W
in

e

0 0.88 [0.02] 0.88 [0.02] 0.88 [0.02] 0.88 [0.02] 0.88 [0.02] 0.88 [0.02]

10 0.87 [0.04] 0.90 [0.02] 0.87 [0.03] 0.90 [0.02] 0.79 [0.04] 0.84 [0.02]

20 0.90 [0.03] 0.91 [0.02] 0.89 [0.03] 0.91 [0.02] 0.77 [0.03] 0.79 [0.02]

30 0.92 [0.02] 0.93 [0.02] 0.91 [0.02] 0.92 [0.02] 0.73 [0.03] 0.74 [0.02]

4.5. Credal partition analysis

Experiments conducted on previous subsection have shown that SECMH

and SECME have similar performances. The performance has been evaluated

using the ARI measure, after a transformation of the credal partition into a hard

partition. In order to study more precisely the difference between the SECMH

and SECME using similar parameters, the closeness between credal partitions

is computed with the CRI. Table 8 presents the results on the Ls set. It can

be concluded that there exists no significant difference between SECMH and

SECME .
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Table 8: CRI (mean[std]) between SECMH and SECME using Ls set, γ = 0.5 and r = 1.

data set 10 20 30

Column 0.970[0.004] 0.961[0.004] 0.963[0.005]

Ionosphere 0.988[0.002] 0.987[0.002] 0.987[0.002]

Iris 0.989[0.005] 0.989[0.007] 0.988[0.009]

Letters 0.998[0.001] 0.995[0.001] 0.988[0.002]

Wdbc 0.996[0.000] 0.994[0.001] 0.991[0.001]

Wine 0.993[0.001] 0.997[0.001] 0.986[0.002]

4.6. Optimization analysis

A study concerning the optimization performances of SECME and SECMH

is performed. Table 9 presents the average and the confidence interval for the

objective function, the penalization Js, and the CPU time in seconds obtained

by the two algorithms using a various number of constraints with the Ls set.

Results clearly show that the penalty term value and the objective function

value are minimal with SECME . However, the difference between the objective

function of SECME and SECMH can be considered as insignificant since the

two algorithms give equivalent clustering performances. On the other hand, the

computation time of SECMH is at least two times lower than SECME .

The same experiments have been conducted on the Ld set. Although the

CPU time is slightly larger than for the Ls set, the same interpretations can

be deduced: SECMH is faster than SECME and SECME achieves the lowest

objective function values.

Figure 5 illustrates the objective function values during the process of 100

execution of SECM on the Ls set for Iris and Wine. Similar results are obtained

with the other data sets. As it can be remarked, the iteration number is lower

for the SECMH algorithm and the minimum values of the objective function

are reached by the SECME algorithm.
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Table 9: Analysis of the Optimization performances of SECM using Ls set, γ = 0.5 and r = 1.

SECMH SECME

JSECM Js (×10−3) CPU (s) JSECM Js (×10−3) CPU (s)

C
o
lu

m
n 0 0.0 ± 0.0 0.0 ± 0.0 0.30 ± 0.01 0.0 ± 0.0 0.0 ± 0.0 0.30 ± 0.01

10 110.1 ± 1.4 61.4 ± 2.3 0.10 ± 0.01 86.6 ± 0.9 1.1 ± 0.6 5.31 ± 0.64

20 124.7 ± 0.9 73.4 ± 1.5 0.08 ± 0.00 104.1 ± 0.7 6.8 ± 0.8 1.97 ± 0.14

30 135.9 ± 0.9 81.9 ± 1.3 0.11 ± 0.00 118.3 ± 0.8 14.6 ± 0.8 1.42 ± 0.04

Io
n

o
sp

h
er

e 0 0.2 ± 0.0 0.0 ± 0.0 2.56 ± 0.2 0.2 ± 0.0 0.0 ± 0.0 2.56 ± 0.20

10 237.1 ± 0.5 1.6 ± 0.2 1.03 ± 0.03 236.6 ± 0.5 0.0 ± 0.0 2.57 ± 0.07

20 252.7 ± 0.8 13.0 ± 0.5 0.78 ± 0.01 251.6 ± 0.7 7.0 ± 0.4 1.69 ± 0.04

30 266.2 ± 0.8 29.6 ± 0.9 0.69 ± 0.01 265.2 ± 0.8 24.9 ± 0.8 1.45 ± 0.03

Ir
is

0 0.0 ± 0.0 0.0 ± 0.0 1.94 ± 0.06 0.0 ± 0.0 0.0 ± 0.0 1.94 ± 0.06

10 10.8 ± 0.1 0.7 ± 0.2 0.95 ± 0.05 10.4 ± 0.0 0.0 ± 0.0 3.27 ± 0.14

20 11.8 ± 0.1 0.9 ± 0.2 0.63 ± 0.03 11.3 ± 0.1 0.0 ± 0.0 2.26 ± 0.09

30 12.5 ± 0.1 1.1 ± 0.2 0.51 ± 0.02 12.0 ± 0.1 0.0 ± 0.0 1.92 ± 0.07

L
et

te
rs

IJ
L

0 0.2 ± 0.0 0.0 ± 0.0 7.61 ± 0.63 0.2 ± 0.0 0.0 ± 0.0 7.61 ± 0.63

10 420.5 ± 1.4 25.4 ± 1.3 3.01 ± 0.22 415.4 ± 1.3 0.3 ± 0.1 7.07 ± 0.78

20 463.0 ± 1.5 56.0 ± 1.6 2.17 ± 0.11 461.1 ± 1.5 37.1 ± 1.5 4.60 ± 0.19

30 493.1 ± 1.5 100.0 ± 2.2 2.15 ± 0.13 492.5 ± 1.5 92.4 ± 2.2 5.10 ± 0.31

W
d

b
c

0 0.6 ± 0.0 0.0 ± 0.0 0.51 ± 0.01 0.6 ± 0.0 0.0 ± 0.0 0.51 ± 0.01

10 1447.3 ± 1.3 74.7 ± 2.0 0.35 ± 0.01 1447.9 ± 1.3 63.1 ± 2.0 3.74 ± 0.05

20 1476.8 ± 0.9 137.6 ± 1.6 0.41 ± 0.00 1477.6 ± 0.9 132.5 ± 1.5 3.70 ± 0.04

30 1488.6 ± 0.8 175.0 ± 1.6 0.43 ± 0.00 1489.1 ± 0.8 173.5 ± 1.6 3.71 ± 0.04

W
in

e

0 0.1 ± 0.0 0.0 ± 0.0 0.49 ± 0.02 0.1 ± 0.0 0.0 ± 0.0 0.49 ± 0.02

10 191.6 ± 1.3 28.2 ± 1.8 0.23 ± 0.01 184.4 ± 1.0 1.6 ± 0.5 0.96 ± 0.02

20 215.7 ± 1.2 44.6 ± 1.5 0.21 ± 0.01 210.5 ± 1.2 14.0 ± 1.1 0.94 ± 0.04

30 236.3 ± 1.1 65.9 ± 1.6 0.19 ± 0.00 232.7 ± 1.1 36.3 ± 1.5 0.89 ± 0.03

Iris Wine

Figure 5: Objective function value of SECM (Ls set, γ = 0.5 and r = 1) varying with the

iteration number. X-axis uses a logarithmic scale.
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4.7. Algorithms comparison

The SECMH and SECMplH algorithms using γ = 0.5 are compared to

SFCM and SKMEANS algorithms. The SKMEANS method [31] is the

semi-supervised k-means variant that handles crisp labels as prior informa-

tion and generates a hard partition. The SFCM [20] is the fuzzy variant of

SKMEANS: it allows a probability on the labels and returns a fuzzy partition.

First, the Ls set is used. For SFCM , we set a probability to 1 for all con-

strained objects. The average ARIs varying with the percentage of constraints

for all data sets are presented in Figure 6.

Column Ionosphere Iris

LettersIJL Wdbc Wine

Figure 6: Algorithms comparison on the Ls set. The average of the ARI and the confidence

interval is given on 100 trials.

The performances show that integrating label constraints leads to better

define the clustering partition desired whatever the semi-supervised clustering

algorithm. However, a decrease in performance can appear, as it can be seen for

SECMplH on Wine. This result is known to possibly occur when constrained

objects are only in an overlapped area between classes [42].

As it can be seen, the SECM algorithms bring good results on the data sets
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compared to the other algorithms except for the Wine data set.

A similar experiment is performed on the Ld set to compare semi-supervised

clustering methods. The SKMEANS algorithm is excluded since it can only

take crisp labels. For the SFCM algorithm, the imprecisions included in the

Ld set and defined for an object by a subset of two labels are transformed into

an uncertainty between the couple of labels by setting the probabilities of both

labels to 0.5. Figure 7 presents the average ARI with respect to the percentage

of constraints for all data sets.

Column Ionosphere Iris

LettersIJL Wdbc Wine

Figure 7: Algorithms comparison on the Ld set.

The results show that SECM outperforms most of the time SFCM . This

good performance for evidential semi-supervised clustering is explained by its

ability to handle the imprecision coming from the background knowledge.

5. Conclusion

The SECM algorithm is a semi-supervised clustering variant of ECM based

on the theory of belief functions. As such, it is capable of handling uncertainty

and imprecision of the background knowledge and provides a credal partition
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that allows expressing imprecision and uncertainty regarding the assignment of

objects to clusters. The SECM method, which is based on the minimization

of an objective function, introduces prior knowledge in the form of label con-

straints. The optimization problem is solved using a Gauss-Seidel type method,

with an alternate update of the masses and the cluster centroids. In this paper,

a relaxation of constraints is proposed to fasten the optimization. The new

heuristic, referred to as SECM-h, differs from the classical SECM as it provides

a direct update formula for the masses. Experimental tests show that SECM-h

achieves the same performance as its exact solution counterpart at a much lower

execution time cost. Further investigations have also been conducted on the pa-

rameters of SECMH and SECME and a comparison with other semi-supervised

clustering algorithms has been performed. Results show good performance of

the SECM algorithms compared to other algorithms. Future work includes

extending the ideas exposed in this paper to evidential semi-supervised cluster-

ing methods that handle pairwise constraints [24] or both labels and pairwise

constraints [27].
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