

Structure et dynamique de l'eau/glace adsorbée sur des suies d'avion – Implications atmosphériques

B. Demirdjian, V. Tishkova*, D. Ferry

*CEMES / UPR CNRS 8011, 29 rue Jeanne Marvig, Toulouse

e-mail: demirdjian@cinam.univ-mrs.fr

Les suies d'avion : contexte scientifique

Emission gas:

 $\mathbf{H_{2}O}$, \mathbf{CO} , $\mathbf{CO_{2}}$, $\mathbf{C_{x}H_{y}}$, $\mathbf{NO_{x}}$, $\mathbf{SO_{x...}}$

- Mécanisme de croissance?
- Distribution en taille?
- Structure?
- Composition chimique?

Les suies d'avion : contexte scientifique

Lee et al., Atmospheric Environment 43 (2009)

La suie de chambre de combustion

Réacteur d'avion	T _{inlet} (K)	T _{outlet} (K)	Air / fuel ratio	Pression (atm)
D30-KU	300	1250-1450	4 - 4.5	3 - 5

Aviation kerosene TC1 sulfur content: 1100 µg.g-1

La suie de chambre de combustion

19e Journées de la diffusion neutronique (JDN 19) – Batz sur Mer (44) – 6 au 10 juin 2011

Production de la suie de laboratoire

Microstructure: DN et SAED

Dans la suie de chambre de combustion on observe des impuretés métalliques contenant du fer **FeO**, **FeO**(**OH**), du cuivre **CuO**, **Cu**₂**O** et de l'aluminium **Al**(**OH**)₃.

Groupes de surface : FTIR

Suie de lampe	Bandes (cm ⁻¹)	Hydro
suie de chambre		philicité
CH déformation, aromatiques	650-920	faible
-C-O-C- anhydrides, aryles	1230	moyenne
C-OH stretch, phénols	1154,1112	moyenne
-O- aromatique ester	1154, 1112	faible
O-H stretch, hydroxyle	3290	haute

Suie de chambre	Bandes (cm ⁻¹)	Hydrophilicité
C=O carbonyle, aliphatique	1673	haute
C=O carbonyle, aromatique	1583	haute
HSO ₄ - ion	1355,1230 1050, 873, 582	haute
Sulfates organiques	1355, 1419	haute

Suie de chambre de combustion présente des groupes fonctionnels de surface plus hydrophiles que la suie de lampe.

Adsorption de l'eau à t° ambiante

Diffractogrammes différence correspondant à l'eau adsorbée sur les différentes suies (RH = 100 %)

Isothermes d'adsorption de l'eau sur les suies à t° ambiante

Eau adsorbée /
suie de chambre
de combustion
> eau / suie de
lampe

Pic eau liquide à 280 K vers 1.9 Å⁻¹ (asymétrique pour l'eau / suie de chambre de combustion)

Structure de la glace / suies

Coexistence d'un pic large (vers 1.8 Å⁻¹) + pics de Bragg de la glace Ih

Le recuit induit une forte modification du diffractogramme de la glace / suie de lampe:

- Disparition du pic large et apparition de pics de Bragg de la glace Ih

INam Effet recuit sur glace/suie de chbre combustion

Le pic large à 1.8 Å⁻¹ existe toujours (eau confinée micropores / glace amorphe ?)

Seuls les ratio d'intensité des pics de Bragg de Ih sont modifiés

Etude dynamique par DQEN (suie de lampe)

T (contrails): 220 – 240 K

 $Q = 0.63 \text{ Å}^{-1}$

B. Demirdjian et al., Chemical Physics Letters 480 (2009) 247–252

Etude dynamique par DQEN (suie de lampe)

T (K)	D _t (10 ⁻⁵ cm ² /s)	Tau (ps)	Fraction liquide (%)	Fraction solide (%)
275	1.5±0.8	-	62	38
240	0.8±0.4	8±4	33	67
220	0.5±0.3	17±8	25	75

- eau surfondue observée jusqu'à 220 K
 - → confinement eau dans les micropores
- fraction quasi-solide à 275 K (confinement, sites actifs de surface)

Conclusions / implications atmosphériques

Propriétés physico-chimiques des particules de suies :

- → hygroscopicité et adsorption de l'eau
- → nucléation et structure de la glace

Dans les conditions de formation des contrails/cirrus (220 K < T < 240 K) pour les 2 types de suie plus de 50 % de l'eau est sous forme de glace

- → particules de suie = bons noyaux potentiels pour la condensation de la glace dans l'atmosphère (contrails)
- → effet recuit important sur la structure des cristaux de glace : simulation effet vieillissement dans l'atmosphère (formation des cirrus)

Remerciements

- O.B. Popovicheva (Univ Moscou)
- B. Beuneu, I. Mirebeau, R. Kahn (LLB, Saclay)
- M. Johnson, Th. Hansen (ILL, Grenoble)
- Tous les services communs du CINaM, en particuliers le service de <u>Microscopie Électronique</u> (D. Chaudanson et S. Nitsche)