

Structure et dynamique de l'eau/glace adsorbée sur des suies d'avion – Implications atmosphériques

B. Demirdjian, V. Tishkova*, D. Ferry

*CEMES / UPR CNRS 8011, 29 rue Jeanne Marvig, Toulouse

e-mail: demirdjian@cinam.univ-mrs.fr

CINIC

Aix+Marseille

Les suies d'avion : contexte scientifique

Lee et al., Atmospheric Environment 43 (2009)

Réacteur d'avion	T _{inlet} (K)	T _{outlet} (K)	Air / fuel ratio	Pression (atm)
D30-KU	300	1250-1450	4 - 4.5	3 - 5

Aviation kerosene TC1 sulfur content: 1100 µg.g⁻¹

CINIS

Aix*Marseille

La suie de chambre de combustion

Aix*Marseille

CINIS

INAM Production de la suie de laboratoire

Aix*Marseille

CINIC

Microstructure : DN et SAED

Dans la suie de chambre de combustion on observe des impuretés métalliques contenant du fer **<u>FeO, FeO(OH)</u>**, du cuivre <u>**CuO, Cu**</u>²**O** et de l'aluminium <u>**Al(OH)**</u>³.

^{19&}lt;sup>e</sup> Journées de la diffusion neutronique (JDN 19) – Batz sur Mer (44) – 6 au 10 juin 2011

(INAM) Groupes de surface : FTIR

Suie de lampe

Suie de chambre de combustion

Suie de chambre de combustion présente des groupes fonctionnels de surface plus hydrophiles que la suie de lampe.

Adsorption de l'eau à t° ambiante

T = 280 K

NaM

Eau adsorbée / suie de chambre de combustion > eau / suie de lampe

Pic eau liquide à 280 K vers 1.9 Å⁻¹ (asymétrique pour l'eau / suie de chambre de combustion)

Diffractogrammes différence correspondant à l'eau adsorbée sur les différentes suies (RH = 100 %)

Isothermes d'adsorption de l'eau sur les suies à t° ambiante

T = 260 K (après recuit) 100 002 eau / suie de chambre de combustion 110 103 102 101 002 100 eau / 110

Coexistence d'un pic large (vers 1.8 Å⁻¹) + pics de Bragg de la glace Ih

Le recuit induit une forte modification du diffractogramme de la glace / suie de lampe :

- Disparition du pic large et apparition de pics de Bragg de la glace Ih

INAM Effet recuit sur glace/suie de chbre combustion

CINIS

Aix*Marseille

T (contrails) : 220 – 240 K

 $Q = 0.63 \text{ Å}^{-1}$

B. Demirdjian et al., Chemical Physics Letters 480 (2009) 247–252

T (K)	$D_t (10^{-5} \text{ cm}^2/\text{s})$	Tau (ps)	Fraction liquide (%)	Fraction solide (%)
275	1.5 ± 0.8	-	62	38
240	0.8±0.4	8±4	33	67
220	0.5±0.3	17±8	25	75

• eau surfondue observée jusqu'à 220 K

\rightarrow confinement eau dans les micropores

• fraction quasi-solide à 275 K (confinement, sites actifs de surface)

Propriétés physico-chimiques des particules de suies :

\rightarrow hygroscopicité et adsorption de l'eau

\rightarrow nucléation et structure de la glace

Dans les conditions de formation des contrails/cirrus (220 K < T < 240 K) pour les 2 types de suie plus de 50 % de l'eau est sous forme de glace

→ particules de suie = bons noyaux potentiels pour la condensation de la glace dans l'atmosphère (contrails)

→ effet recuit important sur la structure des cristaux de glace : simulation effet vieillissement dans l'atmosphère (formation des cirrus)

- O.B. Popovicheva (Univ Moscou)
- B. Beuneu, I. Mirebeau, R. Kahn (LLB, Saclay)
- M. Johnson, Th. Hansen (ILL, Grenoble)
- •Tous les services communs du CINaM, en particuliers le service de <u>Microscopie Électronique</u> (D. Chaudanson et S. Nitsche)