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Calculation of a key function in the asymptotic description of moving contact lines 

Julian F. Scott 

Laboratoire de Mécanique des Fluides et d’Acoustique (LMFA), Université de Lyon, 
France 

Abstract 

An important element of the asymptotic description of flows having a moving liquid/gas 

interface which intersects a solid boundary is a function denoted  iQ   by Hocking 

and Rivers (1), where 0     is the contact angle of the interface with the wall. 

 iQ   arises from matching of the inner and intermediate asymptotic regions 

introduced by those authors and is required in applications of the asymptotic theory. 

This article describes a new numerical method for the calculation of  iQ  , which, 

because it explicitly allows for the logarithmic singularity in the kernel of the governing 
integral equation and uses quadratic interpolation of the nonsingular factor in the 
integrand, is more accurate than that employed by Hocking and Rivers. Nonetheless, 
our results show good agreement with theirs, with, however, noticeable departures near 
  . We also discuss the limiting cases 0   and   . The leading-order terms 

of  iQ   in both limits are in accord with the analysis of Hocking (2). The next-order 

terms are also considered. Hocking did not go beyond leading order for 0   and we 
believe his results for the next order as    to be incorrect. Numerically, we find 

that the next-order terms are  2O   for 0   and  1O  as   . The latter result 

agrees with Hocking, but the value of the  1O  constant does not. It is hoped that 

giving details of the numerical method and more precise information, both numerical 

and in terms of its limiting behaviour, concerning  iQ   will help those wanting to use 

the asymptotic theory of contact-line dynamics in future theoretical and numerical work. 

1. Introduction 

Flows with a moving fluid/fluid interface which intersects a solid wall are problematic 
because the usual model, i.e. the Navier-Stokes equations with a no-slip condition at the 
wall, leads to an unacceptable singularity at the contact line (see e.g. Moffatt (3), Huh 
and Scriven (4)).  Although there is no agreed definitive model of this situation (Bonn et 
al. (5)), a commonly used one is to allow slip at the wall via a Navier condition in which 
slip is proportional to the shear rate, the constant of proportionality being referred to as 
the slip length and denoted  . 

In such a model, the slip length is very small, of the order of molecular scales, which 
leads to different matched asymptotic regions, the smallest of which being the inner 

region, for which the distance from the contact line is  O  . In addition to his notable 

later work on the lubrication approximation (see Hocking (6)), an analysis of the inner 



region was given by Hocking (2) and forms the basis of the present paper. 
Subsequently, Hocking and Rivers (1) studied the slow spreading of a liquid droplet on 
a plane wall without gravity using matched asymptotic expansions. Their work is 
limited to the most commonly occurring case, in which the outer fluid is a gas of 
negligible viscosity (compared with the liquid), as is ours. Three asymptotic regions, 
namely inner, intermediate and outer, were used. The outer region represents the bulk of 
the drop, while, as its name suggests, the intermediate region corresponds to distances 
from the contact line which are small compared with the drop scale, but large compared 
with  . Matching was applied between the outer and intermediate regions and between 
the intermediate and inner ones. The latter matching condition is expressed by equation 
(4.7) of Hocking and Rivers and involves information from the inner solution via a 

single function of the contact angle,  , denoted  j  .  j   is in turn related to the 

function  iQ   ( i  for inner), which is the subject of this article, by their equation 

(5.10). This function is at the heart of the asymptotic theory and is required for its use.  

Hocking and Rivers made a number of simplifying assumptions: axisymmetry, small 
Reynolds and Bond numbers and neglect of the unsteady term in the momentum 

equation. Because  iQ   arises from consideration of the flow at distances from the 

contact line which are much smaller than the drop size, the resulting inner/intermediate 
matching condition has more general applicability. For instance, there may be 
significant effects of fluid inertia and gravity in the outer region, but provided they do 
not reach down into the inner region, matching between the inner and intermediate 
regions is unaffected. Furthermore, we expect the flow near the contact line to be two 
dimensional so local application of the matching condition should be valid for 
asymmetric drops (see Cox (7)). 

Interest in the function  iQ   has recently re-emerged in attempts to use the 

asymptotic theory to undertake numerical simulations of (possibly three-dimensional) 
flows with moving contact lines for realistic values of the slip length (Sui and Spelt (8), 
Sui, Ding and Spelt (9)). The computational costs of numerical simulations of the full 
problem (wherein the flow is resolved numerically down to the slip length) are 
prohibitive due to the very large range of length scales involved, but coupling the 
numerically resolved interface with the asymptotic theory to represent the unresolved 
flow has been demonstrated to yield useful results (Sui and Spelt (10), Solomenko, 
Spelt and Alix (11)). 

This paper describes a new numerical method for calculating  iQ   and presents 

some results. The motivation is that only a table of values is given by Hocking and 
Rivers and details of the numerical method are not given, except to say it is based on 
that of Hocking (2). Referring to the latter paper, the method approximates the integral 
in equation [I.3.6] (where, here and henceforth, we refer to equation (x.y) of Hocking 
(2) as [I.x.y]) using the midpoint rule. Given the presence of a logarithmic singularity in 
the derivative of the integrand, one may ask questions about the numerical accuracy of 



the results, questions which are not addressed by these authors. For these reasons, we 
revisit the numerical solution of the integral equation [I.3.1], providing a new method 
which allows for the singularity and is also more precise because it uses quadratic 
interpolation of the nonsingular part of the integrand. We believe it to be considerably 
more accurate. 

The paper is organised as follows. Section 2 gives the integral equation which is 

subsequently solved numerically and the expression for  iQ   in terms of the solution. 

Section 3 concerns the leading-order behaviour of  iQ   in the limits 0   and 

  . Although these limits are addressed in Hocking (2), we give a brief description 
to prepare the reader for later numerical results. This is especially needed in the analysis 
of the    limit, whose presentation by Hocking using Bessel functions of small 
order is best described as opaque and with which we disagree at higher order. Section 4 
describes the numerical method, while section 5 gives results, compares them with those 
of Hocking and Rivers and examines their consequences in the limits 0   and 
  . 

2. Formulation of the problem 

The tangential stress at the wall in the liquid is given by the first of equations [I.2.18], 

where the nondimensional quantity  k   is governed by the integral equation [I.3.1], 

i.e. 

      1 e k L k d     



     , (2.1) 
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which follows from [I.3.3] when 0  .  L   is an even, positive function having a 

logarithmic singularity at 0   and which decays exponentially as   . According 

to [I.3.5], 
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where k  is the     limit of  k  . In the opposite limit,   0k    as   . 

Both limits are approached exponentially rapidly. Note that, to simplify the notation, we 
have dropped the subscript 1 from k  and L . 

Defining 
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   goes to zero as    . Using (2.3), (2.1) implies 
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where 
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   . (2.8) 

(2.6) and (2.7) provide an alternative form of the integral equation which will be used in 
the subsequent numerical method. 

As    , 

    ~k d k j


   
   , (2.9) 

which defines the function  j  . Note that the corresponding equation, (4.6), of 

Hocking and Rivers is incorrect: there should be an integral over   on the left-hand 

side, as in our equation (2.9). Using (2.4) and (2.5), 

    j d  



  . (2.10) 

Equation (5.10) of Hocking and Rivers gives 
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iQ k d  


 

   (2.11) 

for the function which it is our aim to calculate. This requires determination of    

and evaluation of the integral in (2.11). 

3. The limits 0   and    at leading order 

3.1 Small   

When   is small, (2.2) implies that  L   is only significantly nonzero for  O  . 

Presuming variations of  k   take place over ranges of  1O , as found numerically, 

 k   is approximated by  k   in (2.1). Using (2.3), this leads to 
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1
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which corresponds to [I.3.17]. According to (3.1),  k   undergoes a transition from e  

behaviour to the constant value k  as   increases. The transition region is located at 

ln k   and has  1O  width. The latter of these results indicates that  k   does 

indeed vary over ranges of  1O . The former result, combined with 1~ 3k  
  from 

(2.3), locates the transition region at  1ln 3   . Thus, the transition region moves to 

increasingly large   as   decreases. This can be understood as follows. 

 ln 1k O    for the transition region corresponds to    1r O k O  
  , which 

means that the distance of the liquid/gas interface from the wall is  O  . Outside this 

region, slip at the wall is small, whereas inside it is significant. Thus, for small  , the 
condition for significant slip is that the distance of the interface from the wall be of the 
order of the slip length. As   decreases, significant slip occurs further and further from 
the contact line. 

Using (2.4), (2.5) and (3.1), 
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whose integration yields 

   ~ lnd k k 


 
  . (3.4) 

Employing (2.11), 

   1
~ ln ~ ln
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, (3.5) 

which agrees with [I.3.18]. 

3.2   near   

It is shown in Appendix A that 
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Consider the first of the bracketed terms in (3.6) when 1n  . This term dominates the 
others as   , hence 
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where 1 /     is small. (2.8) and (3.7) imply 
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(3.7)-(3.9) indicate that  L   and  0K   have slow variations as functions of  . It 

might be thought that   , the solution of (2.6), (2.7), would inherit these slow 

variations. However, this is not what is found numerically. Instead, it appears that 
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0      (3.10) 

as 0  , where  0   does not depend on  . 

Consider (2.6) and (2.7) with  , 1O   . (3.7)-(3.10), 2~ 2k   (from (2.3)) and 

small   imply 

  0 2d  



   (3.11) 

at leading order. Thus, (2.11), 2~ 2k   and (3.10) give 

   1~iQ
 

 
 


, (3.12) 

which is in agreement with the leading-order term of [I.3.29], though, as discussed later, 
we have doubts concerning the next-order term in that expansion. Note that, according 

to (3.5) and (3.12),  iQ   goes from   to   as   increases from 0  to  . 

4. Numerical method 

As noted earlier, calculation of  iQ   requires the solution of (2.6), (2.7) and the 

evaluation of the integral in (2.11). Both involve numerical approximations of integrals 
by sums. To this end,   is discretised and truncated to a finite range by defining 

 n n          2n N , (4.1) 



where   is small and max 2N    is large. The unknown function    is represented 

by its values 

  n n   . (4.2) 

Because, given its definition by (2.4) and (2.5),    has a discontinuous jump at 

0  , there is a choice in the value to be given to 0 . We define it as the limit of 

   as 0   from below, the limit from above being 0 k  . Within each interval 

2 2 2m m     , N m N   , quadratic interpolation gives 
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where *
n n    for 0n   and *

0 0 k    . Note that we do not use interpolation of the 

entire integrand in (2.6) and (2.7), just   . This is because, as noted earlier,  L   

has a logarithmic singularity, so doing so would degrade precision. 

Equation (2.6) is applied with n  , 0 2n N  , and (2.7) is used for n  , 

2 0N n   . The contribution of the interval 2 2 2m m      to the integral in (2.6) 

and (2.7) is approximated using (4.3). Thus, 

     

   

         

           

2 2

2

0 1 0*
2 1 2 2 2 2 2 2

22 1 0*
2 2 2 2 1 2 2 2

1
2 1

2

1
2 2 2 1 2 1

2

m

m
n

m m n m m m n m n

m m m m n m n m n

L d

d d n m d

d n m d n m d




   

    

    

   

         
 

            
 



, (4.4) 

where we have used the fact that  L   is an even function and introduced the notation 
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Summing over intervals and recalling the definition of *
n , 
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where 
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Neglecting the contribution from max   , because    is exponentially small at large 

 , (4.9) is a numerical approximation of the integral in (2.6) and (2.7) when n  . The 

result is a system of 4 1N   linear equations for the unknowns n . This system is solved 

using LAPACK routine DGESV. Appendix B describes the numerical calculation of the 

functions  0K  ,  1K   and  2K  . 

As for the integrals in (2.6) and (2.7), the contribution to the integral in (2.11) from 

max   is neglected on the grounds that    is exponentially small at large  . The 

contribution from max   is approximated using (4.3), leading to 
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which amounts to Simpson’s rule. Finally, (2.11) gives  iQ  . 

The above procedure should converge to the true value of  iQ   as the numerical 

parameters,  , N , and K  (which is the number of terms in the truncated series (B.4)-(B.7)), 
approach the limits 0 ,  N   and K  . Thus, the numerical parameters were 

varied and convergence sought. The exact value  / 2 ln 2 0.1159315iQ       (  is 

Euler’s constant) follows from [I.3.10] and was used as a check. The numerical value using 
0.1  , 200N   and 10K   agreed to the given seven decimal places of accuracy. For 

other values of  , comparisons between different choices of  , N , and K  were made. 



Concerning convergence with increasing K , for 10K   and the large N  required for 
convergence, we found that it was limited by machine precision (IEEE double precision was 
used throughout). Thus, 10K   was adopted. Varying   and N , it was found that the most 
important constraint is that of large N . We found that 0.1  , 200N   and 10K   lead 

to values of  iQ   with better than six decimal places of precision for the values of   in 

Table 1 and the following results use these numerical parameters. 

5. Results 

Results of both our calculations and those of Hocking and Rivers are given in Table 1. There 
is good agreement for lower values of  , but larger differences appear when   approaches 

 . For instance, compared to ours for 2.9   and 3.0  , their values of iQ  differ from 

ours by ~ 2%  and ~ 8% . The results also disagree to a lesser extent for smaller  . For 

instance, when 0.5  , we find -1.751748iQ  , compared with -1.7519iQ   from Hocking 

and Rivers. In any case, it is clear that the tabulated results of Hocking and Rivers should not 
be relied on to give the precision suggested by their table. 

Fig. 1 shows  iQ   as a function of  . It is apparent that, as we found analytically in 

section 3,  iQ   goes from   to   as   increases from 0  to  , passing through zero 

when 0  , where 0 1.642671  . The leading-order limiting forms, (3.5) as 0   and 

(3.12) as   , are well respected by the numerical results. Because the next-order terms 
are, by definition, small compared with the leading-order ones, accuracy of their numerical 
determination is a challenge. Nonetheless, thanks to the intrinsic precision of the present 

scheme, clear results emerge. Fig. 2 plots the difference between  iQ   and the logarithmic 

form, (3.5), divided by 2 . It appears that the next term in the small-  expansion (3.5) is 

 2O  , the numerically determined coefficient of that term being 0.156 . 

 

 A B  A B 

0.1 -3.399640 -3.3982 1.6 -0.069580 -0.0696 
0.2 -2.701800 -2.7011 1.7 0.097430 0.0974 
0.3 -2.288442 -2.2880 1.8 0.280572 0.2805 
0.4 -1.989559 -1.9905 1.9 0.485179 0.4850 
0.5 -1.751748 -1.7519 2.0 0.718325 0.7181 
0.6 -1.551079 -1.5509 2.1 0.989705 0.9888 
0.7 -1.374626 -1.3745 2.2 1.313059 1.3112 
0.8 -1.214487 -1.2143 2.3 1.708597 1.7053 
0.9 -1.065352 -1.0653 2.4 2.207374 2.2010 
1.0 -0.923350 -0.9231 2.5 2.859730 2.8487 
1.1 -0.785429 -0.7853 2.6 3.753054 3.7349 
1.2 -0.648990 -0.6489 2.7 5.053636 5.0312 
1.3 -0.511644 -0.5116 2.8 7.121957 7.0840 



1.4 -0.371022 -0.3710 2.9 10.914176 10.6700 
1.5 -0.224612 -0.2246 3.0 20.084725 21.6400 

 

TABLE 1. Values of  iQ   according to the present calculations (A) and Hocking and 

Rivers (B). 

 

 

FIG. 1. Numerically determined  iQ  . 

Concerning the limit   , Fig. 3 shows the difference between  iQ   and the limiting 

form, (3.12), implying 

 ~iQ C


 



 (5.1) 

as   . The first term in (5.1) corresponds to (3.12), whereas the second is a higher-order 
correction. Our numerical results indicate 2.116C   , which is clearly different from the 

value,  2 ln 2 0.683446C      , obtained from [I.3.29]. Given the opacity of the analysis 

leading to that equation, it is difficult to know the precise reasons for this higher-order 
discrepancy. However, it seems to us that even the first step in the analysis, namely the 
approximation of the integral equation by [I.3.21], although justified at leading order, is 
inadequate at the order considered here. Our numerical results suggest a value close to 

ln 2 2 2.115932C       and, although being unable to prove it, we conjecture that this is 

the exact value. 
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FIG. 3.    / iR Q        as a function of   . The    limiting value, 

0.683446 , of Hocking (2) is also indicated. 

6. Conclusions 

The function  iQ  , defined by Hocking and Rivers (1), plays a key role in the asymptotic 

theory of liquid/gas flows with moving contact lines on a wall. In this paper, we have 
described a new numerical method for its calculation, which we believe to be more accurate 
than its predecessors because, in dealing with the underlying integral equation, it takes 
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explicit account of a logarithmic singularity and uses a higher-order scheme for the 
nonsingular part of the integrand. We have given results obtained using this method and 
compared them with those of Hocking and Rivers (1). The agreement is good at smaller 
values of  , though not perfect, and less so as    is approached. The limits 0   and 
   have also been examined. Our results agree with Hocking (2) at leading order, i.e. 

   ~ ln / 3iQ    as 0    and    ~ /iQ      as   . However, Hocking did not 

go beyond leading order for 0   and we believe his result for the next order as    to 

be incorrect. Our results indicate that the next order term in the small   expansion is  2O  , 

the numerically determined coefficient of that term being 0.156 , while as   , the 

expansion proceeds as    ~ /iQ C     , where 2.116C   , whereas Hocking claimed 

that  2 ln 2 0.683446C      , where   is Euler’s constant. Our numerical value of C  is 

close to ln 2 2 2.115932      and, although being unable to prove it, we conjecture that 

this is the exact value. 

We hope that the numerical scheme and results presented here will interest those, be they 
theorists or those inclined to numerical simulation, wanting to exploit matched asymptotic 
methods for the study of flows with moving contact lines. 
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Appendix A: Demonstration of equation (3.6) 
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We have 

 

 

/ /
/

1 0

/

2/

1

1

1 2 cosh 1

n n

n n

d d
n e e

d d e

e

e

   
 

 

 

  
 

 



 
 


 





   


 
   
 

 
. (A.3) 



Combining (A.2) and (A.3), 
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According to (A.1),  ˆ 0L    as    , hence the integral of (A.4) gives    L̂ L   for 

0  , where (2.2) has been used. Thus, (3.6) applies when 0  . Because both the left- and 

right-hand sides of that equation are even functions of  , it also holds for 0  . 

Appendix B: Calculation of  0K  ,  1K   and  2K   

 0K  ,  1K   and  2K   are given by (2.8), (4.8) and (4.9). The fact that  L   is an even 

function implies 

      0 0 02 0K K K    , (B.1) 

    1 1K K   . (B.2) 

      2 2 22 0K K K    . (B.3) 

Thus, we can restrict attention to 0  . The values of  0K  ,  1K   and  2K   are then 

required at n   , 0 4n N  . 

Using (3.6) to determine  L  ,  0K  ,  1K   and  2K   gives series which are rapidly 

convergent when   is large and positive. They are numerically calculated by truncation: 
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(B.4)-(B.7) provide  L  ,  0K  ,  1K   and  2K   for 4N   . However, convergence 

is slower when   is reduced and a different method is needed. 

According to (2.2), (2.8), (4.8) and (4.9), 
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where 
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The change of variables from L , 0K , 1K  and 2K  to L̂ , 0K̂ , 1K̂  and 2K̂  removes the 

singularity at 0  . A fourth-order Runge-Kutta scheme with step   is used to integrate 

(B.8)-(B.11) downwards in  , beginning at 4N    and values of L̂ , 0K̂ , 1K̂  and 2K̂  from 

(B.12)-(B.15), with those of L , 0K , 1K  and 2K  from (B.4)-(B.7). The step length is 

/ M   , where M  is a positive integer. Thus, required values of 0K , 1K  and 2K  are 



obtained using (B.13)-(B.15) every M  steps. To maintain precision at small  , M  is chosen 

to be the smallest integer greater than 1  . 
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